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Abstract: 

The catecholamines have long been associated with cognitive control and value-based 

decision-making. More recently, we proposed that the catecholamines might modulate 

value-based decision-making about whether or not to engage in cognitive control. We test 

this hypothesis by assessing effects of a catecholamine challenge in a large sample of young, 

healthy adults (n = 100) on the avoidance of a cognitively demanding control process: task 

switching. Prolonging catecholamine transmission by blocking reuptake with 

methylphenidate altered the avoidance, but not the execution of cognitive control. Crucially, 

these effects could be isolated by taking into account individual differences in trait 

impulsivity, so that participants with higher trait impulsivity became more avoidant of 

cognitive control, despite faster task performance. One implication of these findings is that 

performance-enhancing effects of methylphenidate may be accompanied by an undermining 

effect on the willingness to exert cognitive control. Taken together, these findings integrate 

hitherto segregated literatures on catecholamines’ roles in value-based learning/choice and 

cognitive control. 
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INTRODUCTION 

 

Catecholamine neurotransmitters (dopamine and noradrenaline) have long been implicated 

in key aspects of goal-directed behaviour, including on the one hand cognitive control 

(Arnsten, 1998; Brozoski, Brown, Rosvold, & Goldman, 1979; Cools, D’Esposito, 2011; Cools, 

Clark, & Robbins, 2004; Goldman-Rakic, 1997) and on the other hand value-based learning, 

motivation and choice (Collins & Frank, 2014; Niv, Daw, Joel, & Dayan, 2007; Robbins & 

Everitt, 1996; Salamone, Correa, Mingote, & Weber, 2005; Schultz, 2017). Recently, 

catecholamines have been proposed to also mediate their integration: value-based learning 

and choice about whether or not to recruit cognitive control (Cools, 2016; Westbrook & 

Braver, 2016). This idea implies that catecholaminergic drugs, such as methylphenidate 

(MPH), alter not just the ability to execute cognitive control, but also the willingness to exert 

or conversely, the desire to avoid, cognitive control. Here, we test this hypothesis by 

assessing the effects of a catecholamine challenge on the avoidance of cognitive control.  

 

Catecholaminergic modulation of cognitive control 

Cognitive control refers to the ability to flexibly adjust our behaviour to changing internal 

and external demands in order to attain (long-term) goals (Egner, 2017; Fuster, 1989; 

Monsell, 2003). Disorders accompanied by cognitive control deficits, such as attention 

deficit/ hyperactivity disorder (ADHD), Parkinson’s disease and schizophrenia, are 

commonly treated with drugs that alter catecholamine transmission (Arnsten, 1998; Dagher 

& Robbins, 2009; Frankle & Laruelle, 2002; Prince, 2008). In ADHD, for example, MPH is 

usually the first-line medication and is generally found to remedy cognitive deficits (Coghill 

et al., 2013; Faraone & Buitelaar, 2010; Leonard, Mccartan, White, & King, 2004), such as 
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impairments in task switching (Cepeda, Cepeda, & Kramer, 2000; Kramer, Cepeda, & Cepeda, 

2001), response inhibition (Aron, Dowson, Sahakian, & Robbins, 2003), and working 

memory (Mehta, Goodyer, & Sahakian, 2004). In addition, psychostimulants, such as MPH 

have been shown to enhance cognitive function in healthy volunteers (Linssen, Sambeth, 

Vuurman, & Riedel, 2014), consistent with their use by students and academics to boost 

functioning in periods of high cognitive demand (Maher, 2008). Acute administration of a 

single dose of psychostimulants to healthy volunteers has indeed been shown to improve 

task switching (Samanez-Larkin & Buckholtz, 2013), extradimensional set-shifting (Rogers 

et al., 1999), spatial working memory (Elliott et al., 1997), response inhibition (Spronk, 

Bruijn, Wel, Ramaekers, & Verkes, 2013), distractor-resistant working memory (Fallon et al., 

2016) and selective attention (Ter Huurne et al., 2015). Thus, catecholaminergic drugs can 

both remedy cognitive control deficits in patients and enhance cognitive control in the 

healthy population. 

However, while drugs that potentiate catecholamine neurotransmission, like MPH, 

are generally thought to enhance cognitive control, they certainly do not have enhancing 

effects in all people. Indeed, there is large individual variability in the direction and extent of 

catecholaminergic drug effects on human cognition (Cools et al., 2004; Samanez-Larkin & 

Buckholtz, 2013). These individual differences in drug effects are thought to reflect 

dependency on baseline levels of dopamine (Cools & D’Esposito, 2011) and covary with 

proxy variables, such as trait impulsivity (associated with dopamine receptor availability 

and striatal dopamine release; Buckholtz et al., 2010; Kim et al., 2013; Lee et al., 2009; Reeves 

et al., 2012) and working memory capacity (associated with dopamine synthesis capacity; 

Cools, Gibbs, Miyakawa, Jagust, & D’Esposito, 2008; Landau et al., 2009). Participants with 
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higher trait impulsivity have been shown to exhibit greater beneficial effects of 

catecholaminergic drug administration across tasks including attention switching (Cools, 

Sheridan, Jacobs, & D’Esposito, 2007) and probabilistic reversal learning (Clatworthy et al., 

2009). Such impulsivity-dependent effects of catecholaminergic drugs correspond well with 

the cognitive enhancing effects of MPH in ADHD (Rapoport et al., 1980), with greater MPH-

induced changes in dopamine release in more severely affected ADHD patients (Rosa-Neto 

et al., 2005) and with greater beneficial effects of MPH on impulsive responding in higher 

impulsive experimental rodents (Caprioli et al., 2015). Thus, we expected that MPH-effects 

on cognitive control can be isolated by taking into account proxy variables, such as individual 

trait impulsivity. 

 

Catecholaminergic modulation of learning and choice about cognitive control 

In parallel, a second, so far relatively segregated line of evidence supports a key role for the 

catecholamines, dopamine in particular, in value-based learning and choice (Collins & Frank, 

2014; Cools, Nakamura, & Daw, 2011; Maia & Frank, 2015; Schultz, 2001; Swart et al., 2017; 

van der Schaaf, Fallon, Ter Huurne, Buitelaar, & Cools, 2013). It is well-established that 

phasic firing of midbrain dopamine neurons contributes to the encoding of reward 

prediction errors (Montague, Dayan, & Sejnowski, 1996; Schultz, 1997; Tobler, Fiorillo, & 

Schultz, 2005), driving reinforcement learning and consequently promoting the selection of 

actions with higher predicted values. It has been argued that the same principle applies to 

the selection of cognitive goals, such that dopaminergic reward prediction error signals can 

contribute to the value-based learning and selection of cognitive goals (Braver & Cohen, 
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1999; Collins & Frank, 2014; Frank, Loughry, & O’Reilly, 2001; Frank & Badre, 2012; Hazy, 

Frank, & O’Reilly, 2007).  

This evidence concurs with recent expected value accounts of cognitive control 

(Botvinick & Braver, 2015; Kool, Gershman, & Cushman, 2017; Kurzban, Duckworth, Kable, 

& Myers, 2013; Shenhav et al., 2017), which propose that the degree (and intensity) of 

engagement in an upcoming cognitive computation is based on a cost-benefit analysis. In line 

with this account, it has been shown repeatedly that enhancing motivation, for example by 

offering reward, affects performance on cognitive control paradigms (Aarts, van Holstein, & 

Cools, 2011; Botvinick & Braver, 2015; Chib, Shimojo, & O’Doherty, 2014; Chib, De Martino, 

Shimojo, & O’Doherty, 2012; Manohar et al., 2015; Padmala & Pessoa, 2011). Increasing the 

value or benefit of a demanding computation, such as task switching, seems to outweigh 

perceived demand costs.  

Evidence is accumulating that cognitive demand indeed carries an intrinsic cost 

(Botvinick & Braver, 2015; Westbrook & Braver, 2016), a hypothesis that is supported by 

studies showing that, on average, healthy participants are demand avoidant. They prefer to 

perform a task with a lower cognitive demand, such as less task switching (Botvinick, 2007; 

Gold et al., 2015; Kool et al., 2010; McGuire & Botvinick, 2010) or lower working memory 

load, they choose to forego a higher monetary reward to avoid a more demanding task 

(Massar, Libedinsky, Weiyan, Huettel, & Chee, 2015; Westbrook, Kester, & Braver, 2013) and 

expend physical effort in order to reduce cognitive demand (Risko, Medimorec, Chisholm, & 

Kingstone, 2014). 

A role for the catecholamines in biasing meta-learning and -choice about cognitive 

effort follows also from abundant evidence implicating dopamine in physical effort 
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avoidance. Enhancing dopamine transmission in non-human animals increases selection of 

high effort/high reward trials (Floresco, Tse, & Ghods-Sharifi, 2008; Salamone, Yohn, & Lo, 

2016), while the opposite is true for reductions in dopamine functioning (e.g. Bardgett, 

Depenbrock, Downs, & Green, 2009; see Salamone et al., 2016 for review). In these studies, 

it is evident that dopamine manipulations altered effort-based choice rather than the 

capacity to exert effort per se because animals were still equally able to execute the physical 

effortful task of climbing a barrier (Cousins, Atherton, Turner, & Salamone, 1996; Yohn et al., 

2015). In human patients with Parkinson’s disease, characterized by striatal dopamine 

depletion, dopaminergic medication also increased their willingness to invest physical effort 

on higher reward trials when patients were tested on, relative to off their usual 

dopaminergic medication (Chong et al., 2015; Le Bouc et al., 2016). 

There is suggestive empirical evidence that similar mechanisms underlie learning 

and choice about cognitive demand (Botvinick, Huffstetler, & McGuire, 2009; Kurniawan, 

Guitart-Masip, Dayan, & Dolan, 2013): Prolonging catecholamine transmission by 

amphetamine administration motivated rats to choose a cognitively more demanding option 

for a higher reward, although this was true only for rodents who were more demand-

avoidant at baseline (Cocker, Hosking, Benoit, & Winstanley, 2012; but Hosking, Floresco, & 

Winstanley, 2015). 

In keeping with the proposal that dopamine is implicated in the strategic recruitment 

and/or value-based selection of cognitive control (Boureau, Sokol-Hessner, & Daw, 2015; 

Hazy et al., 2007), effects of cognitive demand on avoidance learning were shown to depend 

on striatal dopamine (Cavanagh et al., 2017; Cavanagh, Masters, Bath, & Frank, 2014). More 

specifically, the presence of response conflict in a Simon task modified learning about action 
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values, such that the value of received rewards was downgraded due to response conflict 

and a lack of reward after response conflict increased avoidance (Cavanagh et al., 2017, 

2014). These effects varied with conditions and manipulations associated with changes in 

striatal dopamine. For example, they varied as a function of a genetic polymorphism 

implicating striatal dopamine (DARPR-32), were modulated by a selective D2 receptor 

agonist (cabergoline) challenge and were altered in patients with Parkinson’s disease, 

characterized by striatal dopamine depletion (Cavanagh et al., 2017, 2014). A separate line 

of evidence comes from incentive motivational work, showing that incentive effects on 

cognitive control vary as a function of striatal dopamine levels in patients with Parkinson’s 

disease, and healthy volunteers (Aarts et al., 2012, 2014; Manohar et al., 2015). Together, 

these prior findings raise the question of whether effects of catecholamine manipulations on 

cognitive control tasks might reflect (in part) changes in value-based learning/choice about 

cognitive control, in addition to reflecting changes in the ability to execute cognitive control 

per se. We note that, by manipulating catecholamines, we cannot draw conclusions about a 

selective role of dopamine in cognitive control avoidance. Indeed there is also abundant 

evidence for a role for noradrenaline in demand avoidance (see discussion).  

   

The present experiment 

In the present experiment, we administered a low, oral dose of MPH to a large group of young 

healthy volunteers to address our primary question of interest: Does manipulation of 

catecholamine transmission alter the avoidance of cognitive demand, here task switching? 

Second, we also investigated effects of MPH on the execution of task switching 

(performance). To expose individual variation in response to MPH, we obtained putative 
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proxy measures of baseline dopamine transmission: trait impulsivity scores for their 

association with dopamine (auto)receptor availability and striatal dopamine release 

(Buckholtz et al., 2010; Dalley et al., 2007; Kim et al., 2013; Lee et al., 2009; Reeves et al., 

2012), as well as working memory span, associated with striatal dopamine synthesis 

capacity (Cools et al., 2008; Landau, Lal, Neil, et al., 2009). Given prior evidence for greater 

MPH-induced improvement of learning in higher impulsive participants (Clatworthy et al., 

2009; see above), we anticipated greater MPH-induced increases in (the learning of) demand 

avoidance in higher impulsive participants. Conversely, our hypothesis with regard to 

working memory capacity was bidirectional, given prior reports of positive, but also negative 

associations between working memory capacity and cognitive effects of MPH (Mehta et al., 

2000; van der Schaaf et al., 2013).  
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METHODS 

2.1 Participants 

106 healthy, young adults participated in this study and were recruited via flyers around the 

campus and the digital participant pool of the Radboud University, Nijmegen. All participants 

were native Dutch speakers and provided written informed consent to participate in the 

study. Participants were screened extensively according to pre-defined exclusion criteria 

(Supplemental Material 1).  

Data from five participants were incomplete due to medical (irregular heart rate: n = 1, 

elevated heart rate and nausea: n = 1), and technical (n = 1) problems and drop-outs (n = 2). 

One additional participant was discarded due to a lack of task understanding (explicitly 

reported and evidenced by below-chance performance). Thus, the analyses include 100 adult 

participants (50 women, mean age 21.5, SD = 2.31, range 18 - 28). Two participants had 

trouble swallowing the capsule such that for one participant the capsule dissolved orally 

before swallowing and for the other participants content of the capsule was dissolved in 

water. We assessed whether relevant results were changed when excluding these 

participants.  

We performed a power analysis using G*Power 3.1.9.2 software (Faul, Erdfelder, 

Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). Previous work from our 

group had revealed a correlation of 0.74 between a proxy measure of dopamine 

transmission, working memory capacity, and effects of MPH on reward-learning with 19 

participants (van der Schaaf et al., 2013). To be conservative, given the small sample size of 

that previous study and given that we are using a different experimental task, we anticipated 

that the true effect size for the present study would be maximally half this size (r = 0.37). Our 
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sample size of 100 (and subsequent subsample of 74: see §3.1) provides 97.6% (92.2%) 

power to detect such an effect size, for a two-sided test with an alpha-level of 0.05.  

Additional demographic and questionnaire information of included participants is 

reported in Table 1. All procedures were in accordance with the local ethical guidelines 

approved by the local ethics committee (CMO protocol NL47166.091.13) and in line with the 

Helsinki Declaration of 1975. The study was also registered with the Dutch National Trial 

register (trialregister.nl, number NTR4653). Data and code for the study are freely available 

at https://osf.io/62tkh. 

 

2.2  Study sessions and pharmacological intervention 

A within-subjects, placebo-controlled, double-blind, cross-over design was employed. 

Participants visited the institute twice for study sessions of around 4.5 hours. The sessions 

started approximately at the same time of the day (maximal deviation: 45 minutes), with an 

interval of one week to 2 months between testing days. After signing an informed consent 

form, session 1 started with a medical screening (~20 minutes) to check for exclusion 

criteria (Supplemental Material 1). We administered a digit span test (forward and 

backward; Wechsler, Coalson, & Raiford, 2008), Dutch reading test (NLV; Schmand, Bakker, 

Saan, & Louman, 1991) and participants received a single oral dose of methylphenidate 

(MPH; Ritalin®, Novartis, 20 mg) on one and a placebo substance on the other day. The order 

of administration was counterbalanced and double-blind. MPH is known to block 

transporters of both dopamine (DAT) and noradrenaline (NET), thereby preventing 

reuptake of catecholamines (Volkow et al., 2002). For this reason, any intervention effect 

needs to be interpreted as reflecting modulation of catecholamine transmission, and not 
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selectively dopamine or noradrenaline. Plasma concentrations peak after 2 hours with a half-

life of 2-3 hours (Kimko, Cross, & Abernethy, 1999). To test participants at maximal plasma 

levels, participants underwent a cognitive test battery starting 50 minutes after drug intake, 

including the demand selection task (described in §2.3), the paradigm of primary interest for 

our research question. The delay between the administration of MPH or placebo and the start 

of the demand selection task was on average 80.9 (SD = 3.7) minutes. The second testing day 

was identical to the first one, except that participants performed a listening span test instead 

of the medical screening (also ~20 minutes, see §2.4). The cognitive test battery consisted in 

total of six paradigms (Figure 1A). The order of paradigms was constant across sessions and 

participants, such that a Pavlovian-to-instrumental transfer task (cf. Geurts, Huys, den 

Ouden, & Cools, 2013) and a social learning task (cf. Cook, Den Ouden, Heyes, & Cools, 2014) 

preceded the demand selection task on both days, and was followed after a break, by a 

valenced Go/NoGo learning task (Swart et al., 2017), working-memory task (cf. Fallon et al., 

2016), and a probabilistic reversal learning task (cf. den Ouden et al., 2013). 

For safety reasons blood pressure and heart rate were measured three times 

throughout the days (start of testing day, before task battery, after task battery). At the same 

time points, participants’ mood and medical symptoms were assessed using the Positive and 

Negative Affect Scale (PANAS; Watson, Clark, & Tellegen, 1988), the Bond and Lader Visual 

Analogue Scales (calmness, contentedness, alertness; Bond & Lader, 1974) and a medical 

Visual Analogue Scale (symptoms, such as headache or muscle pain; Supplemental Material 

2). Between the two testing days, participants completed self-report questionnaires at home 

(see §2.5).  
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2.3 Demand selection task 

To assess avoidance of cognitive control, we employed the demand selection task developed 

by Kool et al. (2010), programmed using the Psychophysics toolbox (Brainard, 1997; Pelli, 

1997) in Matlab. Stimuli were 16 random colour fractals used as choice cues and coloured 

(yellow or blue) digits ranging from 1 to 10 (excluding 5) (Figure 1B). Stimuli were 

presented on a gray background and responses were made using a pc mouse. 

An example trial sequence is presented in Figure 1C. Participants were shown two 

colour patches as choice cues. After choosing between the two patches, by moving the mouse 

cursor onto one cue, a digit from 1 to 10 (but not 5) appeared at the center of the chosen cue. 

Depending on the colour of the digit, the task of the participants was to either indicate 

whether the digit is odd or even (i.e. parity judgment for yellow digits), or whether the digit 

is smaller or larger than 5 (i.e. magnitude judgment for blue digits). Judgment was made by 

clicking the left or right mouse button. After the response, the cursor returned to the center 

of the screen and the next two choice cues were presented.  

Task demand was manipulated by assigning different task switching probabilities to 

the two choice cues. When choosing one choice cue, the digits switched colours (i.e. task) 

with respect to the previous trial on 90% of trials. When choosing the other cue, the task 

repeated on 90% of trials. The option with higher task switching probability represents the 

more demanding option, based on evidence of task switching requiring extensive cognitive 

control (Monsell, 2003) and reports of lower accuracy in earlier studies using this task (Kool 

et al., 2010). The task switching manipulation was unknown to the participants. Choice 

behaviour (i.e. demand avoidance) and performance on the task switching task (i.e. reaction 

time and accuracy) were the dependent variables of interest.  
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Participants first practiced 40 trials of only magnitude/parity judgments using the 

blue and yellow digits as stimuli. Participants were then instructed on the choice task 

emphasizing that they will choose between two cues repeatedly and the blue or yellow digits 

will appear at the cue location after they have moved the cursor towards the cue. They were 

instructed that they could switch between the cues at any point and when they develop a 

preference for one choice cue, it is fine to keep choosing the same. Instructions were followed 

by 4 practice choice trials to illustrate the paradigm, but using different cue patches to the 

actual task. The task consisted of 600 trials, divided across 8 blocks of 75 trials each. Choices 

and magnitude/parity judgments were not time restricted, i.e. responses were self-paced. 

The visual identity and location of the 2 choice cues were constant within a block, whereas 

every new block introduced new choice cues, located in different positions on the screen. 

The two choice cues were always separated by 180 degrees on an imaginary circle (radius ≈ 

11.5 mm) around the center of the screen. The change in visual identity and location of choice 

cues aimed to prevent motor, location or aesthetic cue preferences confounding the effect of 

interest (see also Kool et al., 2010). We assessed participants’ awareness of the task 

switching manipulation using a debriefing questionnaire on the second testing day after task 

completion. Specifically, we evaluated participants to be aware of the manipulation when 

they responded positive to the question whether they felt that numbers below one of the two 

pictures had a tendency to switch between colours more often while the other picture tended 

to repeat the same colour. 

 

 



 

 

15 
 

 

 

Figure 1 – A Schematic representation of testing days. Medical screening took place on the 

first day, a working memory test (i.e. listening span) on the second day. The remaining of the 

testing days were identical for both days, with methylphenidate (MPH) administration on 

one day and placebo on the other. Drug administration was followed by a task battery. 

Between the testing days, participants completed a series of self-report questionnaires, 

including the BIS-11 impulsiveness inventory. B Example stimuli of the demand selection 

task are presented. Circular colour patches are used as choice cues; the colour of the digits 

indicates which task had to be executed (magnitude versus parity judgment). C Example trial 

sequence of demand selection task. Participants were shown two colour patches as choice 

cues. On every trial, participants chose between the two patches, by moving the mouse 

cursor towards one cue. A digit from 1 to 10 (but not 5) appeared at the target location 

(putative mouse path indicated here by dashed line). Depending on the colour of the digit, 

participants either indicated whether the digit was odd or even (i.e. parity judgment for 

yellow digits), or whether the digit was smaller or larger than 5 (i.e. magnitude judgment for 

blue digits) by clicking the left or right mouse-button. Responses were self-paced. 
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2.4 Listening span task 

The listening span task (Daneman & Carpenter, 1980; Salthouse & Babcock, 1991) was 

administered at the beginning of the second test session to obtain an estimate of participants’ 

working memory capacity, as a putative proxy of baseline dopamine synthesis capacity. 

During this test, participants listened to pre-recorded sentences and were given two tasks: 

They answered simple written multiple-choice questions about the content while 

remembering the last word of each sentence for later recall. The number of sentences on 

each trial (i.e. the span) increased up to 7 over the course of the task. Three series of the same 

span were conducted. The trial was coded as successful if the answers to the multiple choice 

questions were correct and if all last words were remembered and reported in the correct 

order. Based on participants’ performance a listening span was calculated ranging from 0 to 

a maximum of 7. The highest level for which two out of the three series were correctly 

remembered comprised the basic span. Half a point was added if one serie of the following 

span was correctly completed, resulting in the measure of total span. For the listening span 

task, internal consistency has been shown to be adequate (0.70 - 0.90) based on coefficient 

alphas and split-half correlations (Conway et al., 2005; Salthouse & Babcock, 1991). Also 

test-retest correlations were high, approaching 0.70 - 0.80 across different studies varying 

in delay (Conway et al., 2005). Total span and total number of words recalled have both been 

shown to correlate positively with dopamine synthesis capacity (Cools et al., 2008; Landau, 

Lal, Neil, et al., 2009). Previous studies have reported a medium (Landau, Lal, O’Neil, Baker, 

& Jagust, 2009) to large (Cools et al., 2008) effect size for the correlation between listening 

span scores and dopamine synthesis capacity. In addition, listening span scores have been 

shown to predict dopaminergic drug effects (Kimberg et al., 1997; Frank et al., 2006; Cools 
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& D’Esposito, 2011; Kimberg & D’Esposito, 2003; Van der Schaaf et al., 2014).  

 

2.5 Questionnaires 

A series of questionnaires was completed by participants at home between the two test 

sessions. The trait impulsivity questionnaire was key to our research question and will be 

described in more detail below. The other questionnaire data were acquired for exploratory 

purposes, not pursued here, and are presented in Table 1.  

 

Trait impulsivity 

The Barratt Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995) was 

administered to assess participants’ degree of trait impulsivity. The scale is a self-report 

questionnaire, consisting of 30 statements that participants rate on a 4-point Likert scale 

(“never” to “almost always”). Examples are “I buy things on impulse” or “I am future 

oriented”. Scores on this questionnaire can range from 30 to 120. BIS-11 total scores have 

been shown in a large sample (N > 1000) to have good internal consistency following a 

Cohen’s alpha of 0.83 and strong test-retest reliability at one month, evidenced by a 

correlation of 0.83 (Stanford et al., 2009). Scores have been found to be associated with 

dopamine D2/D3 receptor availability in the midbrain, and enhanced dopamine release in 

the striatum (Buckholtz et al., 2010; Kim et al., 2013; Lee et al., 2009; Reeves et al., 2012) and 

has been shown to predict effects of MPH on learning (Clatworthy et al., 2009). This measure 

serves as a second putative proxy of baseline dopamine function for predicting effects of 

MPH. The effect sizes for the correlations between Barratt total scores and D2/D3 receptor 

availability ranged from small (Lee et al., 2009) to large (Buckholtz et al., 2010). 
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 Characteristic Measure Score 

Demographics  Age Years, mean [range] 21.5 [18-28] 

 Gender Men/women (number) 50/50 

Experimental 

information 

Order Placebo first / MPH first 

(number) 

52/48 

 Average delay MPH to task Minutes*  81.2 (3.6) 

Neuropsychological 

assessment 

Verbal intelligence NLV 93.6 (7.8) 

Working memory capacity Listening span: total span  4.8 (1.1) 

Digit span**  

Forward 

Backward 

 

8.3 (1.9) 

7.2 (1.6) 

Self-report 

questionnaires 

Impulsivity BIS-11: total score 61.8 (8.6) 

Need for Cognition NCS  63.3 (10.5) 

Depressive symptoms BDI 3.6 (3.8) 

Behavioral activation BAS: total score 23.4 (4.0) 

Behavioral inhibition BIS 16.3 (3.6) 

Anxiety symptoms STAI 32.6 (6.9) 

Social support MDSPSS: total score 5.9 (0.8) 

Social status BSMSS: total score 47.8 (12.7) 

Social dominance SADQ: social score 4.1 (0.8) 

Aggressive dominance SADQ: aggressive score 2.6 (0.6) 

*2 missing values; ** scores represent an average across two testing days 

 

Table 1 – Demographic and background characteristics of participants included in the 

analysis (n = 100). Questionnaires included the Need for Cognition Scale (NCS; Cacioppo & 

Petty, 1982; Cacioppo, Petty, & Kao, 1984), Beck Depression Inventory (BDI; Beck, Steer, Ball, 

& Ranieri, 1996), Behavioral Inhibition Scale/Behavioral Activation Scale (BIS/BAS; Carver 

& White, 1994), Spielberger Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene, 

Vagg, & Jacobs, 1983), Multidimensional Scale of Perceived Social Support (MDSPSS; Zimet, 

Dahlem, Zimet, & Farley, 1988), Social and Aggressive Dominance Questionnaire (SADQ; 

Kalma, Visser, & Peeters, 1993) and Barratt Simplified Measure of Social Status (BSMSS; 

Barratt, 2006). If not indicated differently, scores represent group averages and the standard 

deviations between brackets. Reported scores are comparable with observations in healthy 

populations in earlier reports. Listening span, e.g. Salthouse & Babcock, 1991; Digit span, e.g. 

van der Schaaf et al., 2014: FW mean = 8.5; BW mean = 7.9; BIS-II, e.g. Buckholtz et al., 2010: 

mean = 59.5, NCS, e.g. Westbrook et al., 2013: mean = 64.5; BDI, e.g. Schulte-Van Maaren et 
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al., 2013: mean = 3.7; BIS/BAS, e.g. Franken, Muris, & Rassin, 2005: mean BIS = 13.8, mean 

BAS = 24.5; STAI, e.g. De Weerd et al., 2001: mean ≈ 34; MDSPSS, e.g. Canty-Mitchell & Zimet, 

2000: mean = 5.5; BSMSS, e.g. Cook et al., 2014: mean = 49.0, 42.6; SADQ, e.g. Cook et al., 

2014: social mean = 4.0, 3.9; aggressive mean = 2.9, 2.7. The verbal IQ estimate (NLV) seems 

low in this sample (relative to e.g. van der Schaaf et al., 2014: mean = 101). However, we 

tested a student population and we expect this value to be low due to the outdated character 

of the test (1991), not accomodating the changes in language use.  

 

2.6 Statistical analyses 

The experiment was set up to assess effects of MPH on, first, demand avoidance (cue choice) 

and, second, the execution of task switching (performance). We assessed demand avoidance 

by analyzing the proportion of participants’ choices of the low demand cue (requiring 10% 

task switching) versus high demand cue (requiring 90% task switching). Execution of task 

switching was assessed by analyzing demand costs, which were calculated by subtracting 

performance (accuracy and (log-transformed) response times (RTs)) on trials on which 

participants chose the low- versus high-demand option. Following our primary questions, 

we assessed the effects of MPH on these measures as a function of two putative proxy 

measures of baseline dopamine function: trait impulsivity, measured with the Barratt 

Impulsiveness Scale, and working memory capacity, measured with the listening span test.  

The data were analyzed with mixed-level models using the lme4 package in R (Bates, 

Mächler, Bolker, & Walker, 2015; R Core Team, 2013). This allowed us to account for within-

subject variability in addition to between-subject variability. Factors drug [MPH vs. placebo] 

and demand [low vs. high] (for performance only) were within-subject factors, and 

impulsivity and listening span scores were between-subject factors. Models included all 

main effects and interactions, except for the interaction between impulsivity and listening 
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span, as our question did not concern this interaction. All models contained a full random 

effects structure (Barr, 2013; Barr, Levy, Scheepers, & Tily, 2013). P-values reported in the 

manuscript that pertain to the regressions were estimated using the “esticon” procedure in 

the “doBy” package which relies on the chi-square distribution (Hojsgaard, 2006). Note that 

the degree of freedom is always 1 for this statistical test, as we compute significance for a 

specific regression coefficient at a time (H0: Λβ = β0 where Λ is a (contrast) matrix probing 

a specific coefficient). Effects were considered statistically significant if the p-value was 

smaller than 0.05. We report R2 for all models using the “r.squaredGLMM” procedure in the 

“MuMIn” package to provide a more intuitive estimate. However, note that there is no broad 

agreement yet about the most appropriate way of R2 estimation for mixed-effects models. 

An overview of the basic models (cue choice, accuracy, RTs) is presented in Supplemental 

Table 1.  

 

Response stickiness 

Surprisingly, participants displayed extremely high rates of response stickiness, as indexed 

by low proportions of switching between the cues (note that within blocks all cues had fixed 

locations). To assess whether the observed choice effects were explained or masked by 

modulation of response stickiness, we constructed a second and third choice model, which 

extended the basic model with a stay-regressor and then adding its interaction with MPH. 

The stay-regressor quantified the degree to which participants’ choices were the same as 

their choice on the previous trial and allowed us to investigate whether reported drug effects 

of interest are significant when accounting for (drug effects on) response stickiness. More 

specifically, the stay regressor quantified, on a trial-by-trial basis, which choice (low demand, 
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coded as 1, versus high demand, coded as -1) participants would make on the current trial if 

they repeat the same choice as one trial before. We conducted model comparisons to assess 

whether the models including response stickiness effects improved our explanation of the 

data relative to the basic choice model. Model comparison was conducted using the anova 

function in R, which assesses whether the reduction in the residual sum of squares is 

statistically significant compared with the simpler model. Results of the winning model will 

be presented.  

To confirm that the MPH-effects on demand avoidance, i.e. our primary choice effect 

of interest, did not reflect MPH-effects on response stickiness, we also checked whether 

MPH-effects on response stickiness correlated with MPH-effects on demand avoidance using 

Spearman correlations (given that the proportion of staying with the same cue violated 

assumptions of normality and contained outliers) in SPSS 21 (IBM Corp., Armonk, N.Y., USA).  

 

Relationship between demand avoidance and task performance  

To assess whether MPH-effects on demand avoidance relate to MPH-effects on task 

performance (accuracy or RTs), we calculated Spearman correlations between the 

proportion of low demand choices and demand costs (for RT and accuracy) and the MPH-

effect on these measures using SPSS 21 (IBM Corp.). To quantify evidence for an absence of 

effects, we also calculated Bayesian correlations between MPH-effects on these various 

variables using JASP software (Version 0.7.5; JASP Team, 2016) with default priors, which 

reflect that each value for the correlation coefficient was equally liekely to be obtained 

(Wagenmakers, Verhagen, & Ly, 2016). 
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RESULTS 

 

3.1 Methylphenidate alters the avoidance of task switching 

Cognitive demand was operationalized by two choice options with opposing task switching 

probabilities (10% vs. 90%). As expected, participants were overall demand avoidant; 

participants chose the cue with low task switching probability more often than the cue with 

the high probability (M = 0.56, SD = 0.13) (Intercept: X2(1) = 20.70, p < 0.001). Demand 

avoidance was evident both during the placebo and MPH session (Figure 2). A minority of 

participants (26%) reported during debriefing that they were aware of the fact that one 

choice cue resulted in more task switches than the other cue. 
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Figure 2 – A Average proportion of low demand choices as a function of trial, averaged per 

participant over 8 blocks, for placebo (grey) and methylphenidate (MPH; red) sessions. Data 

lines represent the group average and shaded area represents standard error of the mean. B 

Histograms of low demand choices in the placebo (top) and MPH (bottom) sessions reveal 

large individual variability in terms of demand avoidance. Frequency represents number of 

participants. The data follows a bell-shaped distribution and tests of deviation from 

normality (Shapiro-Wilk) confirmed that we cannot reject the null hypothesis that the data 

came from a normally distributed population (proportion low demand choices placebo: p = 

0.718, proportion low demand choices MPH: p = 0.324). 

 

 

Surprisingly, participants exhibited extremely high rates of response stickiness, as 

indexed by the low number of trials on which participants switched between cues (across 

participants and sessions: M = 5.9%, SD = 17.5%) (Supplemental Figure 1). Five 

participants never switched cues in both test sessions. An additional 17 participants never 

switched cues on one testing day (a further 2 participants switched on every trial). It is 

unclear how this rate of response stickiness compares numerically to the rates in previous 

studies, as this measure was not reported. However, the unexpected high rate of response 

stickiness, in combination with earlier reports of dopaminergic medication effects on 

response stickiness (Rutledge et al., 2009) led us to ask whether our primary effect of 

interest on demand avoidance might reflect or be masked by effects on response stickiness. 

To assess this, we included a stay regressor in the basic choice model (Supplemental Table 

1). Model comparison with the original basic model lacking the stay regressor showed that 

a model including a stay regressor (BIC = 54711, marginal R2GLMM = 0.122) explained 

significantly more variance in choice behaviour than did the basic model (BIC = 150826, 

marginal R2GLMM = 0.004; X2(1) = 96127, p < 0.001). However, the model including both, a stay 
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regressor and a regressor for MPH-effect on staying (BIC = 26607, marginal R2GLMM = 0.639) 

explained even more variance than the model without the interaction term (X 2(8) = 28198, 

p < 0.001). Therefore we report the results of this extended model below. 

Results of this winning model reveal that overall, demand avoidance did not differ 

between drug sessions (Drug: X2(1) < 0.01, p = 0.964). However, we hypothesized that effects 

of MPH on demand avoidance would crucially depend on putative proxies of dopamine 

transmission, namely trait impulsivity (indexed by total Barratt Impulsiveness Scale score), 

and/or working memory capacity (indexed by total listening span). As predicted, MPH-

effects on demand avoidance varied significantly as a function of trait impulsivity (Drug x 

Impulsivity: X2(1) = 5.33, p = 0.021). The direction of this effect was positive with greater 

MPH-induced increases in demand avoidance in more impulsive participants (Figure 3). The 

interaction between working memory capacity and the effect of MPH on demand avoidance 

was only trending towards significance (Drug x Listening span: X2(1) = 2.91, p = 0.088). We 

therefore focus further analyses on trait impulsivity, while reporting further analyses as a 

function of working memory capacity in the Supplemental Results 1.  

In addition, results of the winning model reveal, apart from a main effect of staying 

with the previously chosen option (Stay: X2(1) = 291.16, p < 0.001), that MPH also affected 

staying (Drug x Stay: X2(1) = 7.65, p = 0.006). MPH increased response stickiness relative to 

placebo. Complete statistics of this choice model are presented in Supplemental Table 2.  

To confirm that these effects of MPH on response stickiness could not explain the 

impulsivity-dependent demand avoidance effects, we also investigated whether there was 

any correlation between MPH-effects on the proportion of staying with the same choice cue 

and MPH-effects on demand avoidance. There was no such correlation (low demand choices 
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MPH – PLA & proportion staying MPH – PLA: rs = 0.12, p = 0.240), with Bayesian correlation analysis 

showing substantial evidence for the null effect (BF10= 5.14).  

Finally, the size of our sample allowed us to assess whether the impulsivity-

dependent effects remained present when excluding participants who appeared to use 

explicit choice strategies, i.e. failed to explore the choice options at all, either in one (n = 17) 

or both sessions (n = 5), and those who switched between choice cues on every trial, either 

in one (n = 1) or both sessions (n = 1). We also excluded those participants for whom the 

capsule dissolved (orally or in water) before swallowing (n = 2, one of those was also a sticky 

participant) as well as one participant whose score on the BIS-11 deviated more than 3 

standard deviations from the mean. Analysis of this smaller dataset (n = 74) confirmed the 

effects obtained from the analysis of the larger sample: MPH altered demand avoidance 

significantly as a function of trait impulsivity (Drug x Impulsivity: X2(1) = 5.80, p = 0.016; 

Supplemental Figure 2; Supplemental Table 3). In this cleaner sample of participants who 

explored both choice options on both testing days, we confirmed that these effects were 

present also when running a model without taking into account response stickiness: MPH 

altered demand significantly as a function of trait impulsivity (Drug x Impulsivity: X2(1) = 

5.60, p = 0.018). 

In sum, above control analyses show that observed MPH-effects on demand 

avoidance are robust, also when taking into account MPH-effects on response stickiness or 

excluding problematic participants. Furthermore, a correlation analysis suggests that MPH-

effects on response stickiness and demand avoidance are independent.  
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Figure 3 –Methylphenidate (MPH)-effect on demand avoidance as a function of participants’ 

trait impulsivity (BIS-11) scores. A Line represents model-based estimated coefficients of 

MPH-effect on demand avoidance as a function of (z-scored) trait impulsivity scores. Shaded 

area represents simulated 95% confidential intervals of the coefficients. The inset shows the 

raw data: drug effect for every participant (n = 100) across trials as the difference in the 

proportion of low demand choices (MPH - placebo) as a function of trait impulsivity. B Trial-

by-trial drug effect averaged across 8 blocks, and across participants (n = 100) of low (n = 

49) versus high (n = 48) trait impulsivity groups as a function of trial. 3 participants with 

scores equal to the median are not included. Shaded areas represent standard error of the 

difference. See Supplemental Figure 3 for the impulsivity-dependent effect of MPH as a 

function of trial number for placebo and MPH separately. 

 

3.2 Avoidance of task switching does not reflect poor performance 

Following every cue choice (10% vs. 90% task switching probability), participants were 

presented with a parity/magnitude judgment task. Overall accuracy was high in this number 

judgment task (M = 0.97, SD = 0.04) and, as expected, participants were sensitive to the task 

switching manipulation. They performed better when the task repeated with respect to the 

previous trial than when they were presented with a task switch, evidenced by higher 
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accuracy (M = 0.01, SD = 0.02) (X2(1) = 20.43, p < 0.001) and faster RTs (M = 0.36, SD = 0.29) 

(X2(1) = 119.70, p < 0.001) (Table 2). The improved performance for task repetitions 

consequently affected performance for the two cue options: Participants performed better 

on trials on which they chose the low demand (10% task switching) relative to high demand 

(90% task switching) cue (accuracy demand cost: X2(1) = 20.93, p < 0.001; RT demand cost: 

X2(1) = 535.73, p < 0.001). We note that participants’ choice of the low versus high 

demanding option determines the degree of exposure to task-switching, so that these 

measures are not independent. Supplementary analyses confirm that RT switch costs are 

larger for low-demand choices, where task-switching occurs less frequently (task-switching 

x demand interaction: X2(1) = 371.8, p < 0.001, Supplemental Results 3).  

Task component Variable Placebo MPH 

 

Demand avoidance 

(i.e. choices) 

Low Demand choice 

(proportion) 

0.56 (0.17) 0.55 (0.18) 

High Demand choice 

(proportion) 

0.44 (0.17) 0.45 (0.18) 

 

 

 

 

 

 

 

 

 

Performance  

Accuracy  

(in proportion correct) 

Task repeat 

Task switch 

Switch cost 

 

Low demand 

High demand 

Demand cost 

0.97 (0.03) 

 

0.97 (0.03) 

0.96 (0.04) 

0.01 (0.02) 

 

0.97 (0.03) 

0.96 (0.04) 

0.01 (0.02) 

0.97 (0.07) 

 

0.97 (0.06) 

0.96 (0.07) 

0.01 (0.02) 

 

0.97 (0.06) 

0.96 (0.07) 

0.01 (0.02) 

Response times  

(in sec) 

Task repeat 

Task switch 

Switch cost 

 

Low demand 

High demand 

Demand cost 

1.06 (0.33) 

 

0.89 (0.24) 

1.25 (0.44) 

0.36 (0.29) 

 

0.90 (0.24) 

1.25 (0.44) 

0.35 (0.28) 

0.99 (0.26) 

 

0.84 (0.21) 

1.16 (0.33) 

0.32 (0.19) 

 

0.86 (0.21) 

1.16 (0.33) 

0.30 (0.20) 
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Table 2 - Mean values (and standard deviations) of choice proportions and performance on 

the magnitude/parity judgment task (i.e. accuracy, response times, switch and demand 

costs) for placebo and methylphenidate sessions. Note that these performance scores 

represent averages, across trials and across participants. Given the multivariate structure of 

our analyses, which quantify within as well as between subject effects, the statistical analyses 

are sensitive to capture small but consistent effects. 

 

 There were no effects of MPH, relative to placebo, on the size of the switch or demand 

costs, when assessed across the group as a whole (Drug x Demand for RTs: X2(1) = 0.75, p = 

0.387, for accuracy: X2(1) = 1.20, p = 0.274; Drug x Switch for RTs: X2(1) = 0.61, p = 0.434, for 

accuracy: X2(1) = 1.91, p = 0.167). In contrast to the altered demand avoidance, the effect of 

MPH on the demand cost did not vary as a function of trait impulsivity (for RTs: Drug x 

Impulsivity x Demand: X2(1) = 0.29, p = 0.590, Figure 4A; for accuracy: Drug x Impulsivity x 

Demand: X2(1) = 0.001, p = 0.968, Figure 4B).  

 Independent of demand and baseline-measures, MPH increased overall accuracy 

(Drug: X2(1) = 8.97, p = 0.003), and trended towards speeding up responses (Drug: X2(1) = 

2.98, p = 0.084). Interestingly, these MPH-induced response time (but not accuracy) changes 

did depend on trait impulsivity (Drug x Impulsivity: X2(1) = 7.28, p = 0.007), with greater 

MPH-induced decreases in response times in more impulsive participants. Complete 

statistics of the basic performance models are presented in Supplemental Table 4. For the 

purpose of consistency with our approach for the choice analyses, we also conducted model 

comparisons for the performance models when including a stickiness regressor. Results of 

the model comparisons are presented in Supplemental Results 2.  

 This pattern of findings suggests that MPH-induced demand avoidance cannot be 

explained by reduced performance under MPH (i.e. avoidance of failure). MPH increased 
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demand avoidance in more impulsive participants despite MPH-induced speeding of 

responding and unaffected accuracy (Drug x Impulsivity: X2(1) < 0.01, p = 0.747), also not as 

a function of demand (Figure 4B). 

Although the reported findings above suggest that performance cannot explain the 

MPH-induced demand avoidance, we further assessed the potential association with a direct 

correlation. In other words, we tested whether participants who avoided demand more, did 

so because the task had become more difficult for them. More specifically, we computed 

correlations between demand costs (accuracy and RT) and demand avoidance. In line with 

our reasoning above, the MPH-effect on demand costs (demand cost MPH - PLA) did not 

correlate with the drug effect on demand avoidance (low demand MPH - PLA) and even provided 

evidence, though weak, for the absence of the correlation (accuracy: rs = 0.14, p = 0.167, BF01 

= 4.80; RT: rs = -0.10, p = 0.330, BF01 = 2.60).   

In sum, analyses of performance data and correlations between performance and 

demand avoidance provide evidence that observed MPH-effects on demand avoidance are 

unlikely to be explained by performance changes. This suggests that while the actual 

performance of the task did not change, this demand was evaluated differently (indexed by 

degree of demand avoidance). Bayesian analyses provided evidence for independence of the 

MPH-effects on demand avoidance and performance. 
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Figure 4 - Drug effects on performance costs between high and low demand choices. Data 

points represent methylphenidate (MPH) effects on average demand cost (MPH - placebo) 

for each participant (n = 100) for A response times (in seconds) as a function of trait 

impulsivity (BIS-11) and B accuracy (in proportion correct) as a function of trait impulsivity 

(BIS-11). Shaded areas represent standard errors of the mean. Both effects are not 

statistically significant. 
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DISCUSSION 

In this study, we investigated whether prolonging catecholamine transmission alters choices 

about whether or not to recruit cognitive control (i.e. demand avoidance). Specifically, we 

hypothesized that challenging the catecholamine system would alter the avoidance of 

cognitive demand. We tested this hypothesis by assessing the effects of acute administration 

of oral MPH (20mg), a potent blocker of catecholamine transporters, on task switching 

avoidance using a demand selection task (Kool et al., 2010). A large sample of young healthy 

participants (n = 100) was tested to expose individual differences in the response to such 

catecholaminergic drugs (Cools & D’Esposito, 2011). Given the well-established observation 

that drug effects vary across individuals as a function of baseline levels of dopamine, we 

obtained indices of trait impulsivity and working memory capacity, both previously 

associated with dopamine transmission (Cools et al. 2008; Landau et al., 2009; Buckholtz et 

al., 2010; Dalley et al., 2007; Lee et al., 2009; Kim et al., 2013; Reeves et al., 2012). As 

predicted, MPH altered the avoidance of task switching, without changing the execution of 

task switching itself. Notably, this effect was isolated when taking into account trait 

impulsivity.  

 

General demand avoidance effects 

On average and across sessions, participants chose the low demand option more often than 

the high demand option, which indicates that our paradigm was sensitive to our construct of 

interest, i.e. demand avoidance, consistent with prior studies using this or very similar 

paradigms (Kool et al., 2010; Kool, McGuire, Wang, & Botvinick, 2013; McGuire & Botvinick, 

2010). Moreover, as previous, demand avoidance was observed despite most participants 
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reporting not to be aware of the demand manipulation. Thus we replicate previous 

observations that anticipated cognitive demand contributes to decision-making, so that 

decisions are made, partly, in order to minimize demands for exertion or work, a principle 

sometimes referred to as the law of less work (see also Botvinick, 2007; Westbrook et al., 

2013). However, the average proportion of low demand choices was somewhat lower in our 

study compared with previous work (e.g. Kool et al 2010; see results section; but Gold et al., 

2015). It is possible that this reflects the fact that our participants exhibited very high rates 

of response stickiness (see Response Stickiness), perhaps due to a relatively reduced 

engagement with or enhanced avoidance of performing the choice task itself. 

 

Methylphenidate alters demand avoidance in a baseline-dependent manner 

Our key finding was that MPH affects demand avoidance, but that these effects varied as a 

function of trait impulsivity, with greater MPH-induced increases in demand avoidance in 

more, relative to less, impulsive participants. Much progress has been made recently in our 

understanding of the (psychological, neurochemical, and neural) mechanisms of our 

motivation to avoid cognitive demand (e.g. Chong et al., 2017; Cools, 2016; Shenhav et al., 

2017; Westbrook & Braver, 2016). Here, we focus on the psychological and chemical 

neuromodulatory mechanisms of demand avoidance.  

Most generally, the motivational control of goal-directed behaviour is well 

established to depend on the learning of the value and cost of our actions (Dickinson & 

Balleine, 1994). Factors that have been suggested to contribute to the motivational control 

of specifically our cognitive actions include the learning of time (opportunity) costs (Boureau 

et al., 2015; Kurzban et al., 2013; Otto, Daw, & Otto, 2017), of intrinsic effort costs related to 
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conflict (Cavanagh et al., 2014; Kool et al., 2013), of error likelihood or performance failure 

(Dunn & Risko, submitted) and/or a combination of these factors (Dunn, Lutes, & Risko, 

2016; Shenhav et al., 2017).  

We began to address the psychological mechanism underlying our effect on demand 

avoidance by asking whether it can be attributed to indirect effects on performance costs 

(error or RT). This is unlikely in the current dataset, for the following reasons. First, there 

was evidence for an absence of correlations between MPH-induced demand avoidance and 

MPH-induced performance effects (i.e. demand costs in error rates and RTs) across 

participants. Second, demand costs were not modulated by MPH. Finally, in more- relative to 

less-impulsive participants, MPH increased demand avoidance, but actually improved task 

performance in terms of response speed. Thus the MPH-induced changes in demand 

avoidance are unlikely to reflect indirect effects of modulation of (perceived) performance 

failure.  

Instead, we hypothesize that MPH might alter demand avoidance via modulating an 

intrinsic, or opportunity cost of effort. This hypothesis concurs generally with recent work 

showing that the effect of demand, manipulated by response conflict, on reward versus 

punishment learning varies with pharmacological dopamine receptor stimulation as well as 

individual genetic variation in dopamine transmission (Cavanagh et al., 2014). It might be 

noted that the present study was not set up (and, given high response stickiness rates, did 

not allow us) to disentangle the degree to which the MPH-effect on demand avoidance 

reflects learning (or choice) based on reward (effort relief) or punishment (effort cost).  

In the case of learning about simple states and/or actions, it has previously been 

shown that increases in dopamine potentiate the impact of benefits (reward) on learning 
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and choice, while undermining the impact of punishment (and other costs) on learning and 

choice (Collins & Frank, 2014; Cools et al., 2009). Critically, as is the case in the present study, 

evidence indicates that there is large individual variability in the direction and extent of the 

effects of dopaminergic drugs on the learning and choice. Here, MPH indeed reduces demand 

avoidance in less, relative to more impulsive participants, perhaps by increasing the value 

and/or reducing the cost of the high demanding option. With regard to the finding that MPH 

enhanced demand avoidance in the high impulsive participants, we put forward two possible 

neurochemical accounts. One possibility is that in these high-impulsive participants, MPH 

potentiated the demand cost by eliciting supraoptimal levels of dopamine. Trait impulsivity 

has been shown to be accompanied by enhanced baseline levels of striatal dopamine release 

and low (but perhaps more sensitive) presynaptic dopamine D2 receptor availability in the 

midbrain (Buckholtz et al., 2010). Indeed, MPH has previously been argued to act 

presynaptically by triggering a self-regulatory mechanism, thus leading to a net reduction in 

dopamine release in high-dopamine subjects (Grace, 2001; Seeman & Madras, 2002). Based 

on further empirical evidence for an ‘inverted U’-shaped relationship between dopamine and 

reward- versus punishment-based learning (Cools et al., 2009; Cools & D’Esposito, 2011), we 

therefore hypothesize that MPH might have increased demand avoidance in the high-

impulsive subjects by detrimentally overdosing striatal dopamine levels that were already 

high in these subjects (Buckholtz et al., 2010; see also Clatworthy et al., 2009), thereby 

paradoxically reducing the (subjective) value of mental effort. This hypothesis is currently 

under study in an ongoing project where effects of MPH are assessed in cognitive effort 

discounting. 
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An alternative possibility is that a greater MPH effect on demand avoidance in the 

high-impulsive subjects represent greater MPH-induced increases in striatal dopamine, 

thereby potentiating the impact of mental effort relief (i.e. reward) on learning and choice. 

This concurs with the prior finding that MPH potentiated reward versus punishment 

learning to a greater degree in subjects with higher working memory capacity, putatively 

corresponding with higher baseline levels of dopamine (Swart et al., 2017; van der Schaaf et 

al., 2013). This open question is currently under study. 

Critically, there are different reasons for caution when speculating about the 

mechanism by which MPH potentiates demand avoidance in high impulsive individuals. 

First, there is discrepancy with regard to the direction of the association between trait 

impulsivity and dopamine function (Buckholtz et al., 2010; Dalley et al., 2007; Kim et al., 

2013; Lee et al., 2009; Reeves et al., 2012). Second, the direction of the link between 

dopamine and cognitive demand avoidance is unclear. Extrapolation of the physical demand 

avoidance literature and of neurocomputational models of dopamine in the basal ganglia, 

such as the OPAL model (Collins & Frank, 2014), suggests a positive link, such that 

prolonging (striatal) dopamine would enhance the benefit and reduce the cost of control. 

However, there are also indications for a negative link between dopamine and cognitive 

motivation, with patients with Parkinson’s disease (OFF medication) exhibiting enhanced 

rather than reduced cognitive motivation (Aarts et al., 2012).  

 

Modulation of demand avoidance by dopamine versus noradrenaline 

MPH prolongs catecholamine transmission in a nonspecific manner by targeting both 

dopamine and noradrenaline transporters (Kuczenski & Segal, 2001; Scheel-Krüger, 1971). 
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Therefore, a key remaining open question is whether the effects of MPH, reported here, 

reflect modulation of dopamine or noradrenaline. We hypothesize, in part based on the work 

by Cavanagh et al. (2014), reviewed above, that our effect of MPH on demand avoidance 

reflects modulation of striatal dopamine. This concurs with a recent study reporting striatal 

dopamine increases after administration of a low-dose of MPH (Kodama et al., 2017) and 

also with our previous finding that the effects of MPH on reward- versus punishment-

learning resembled that of the selective dopamine receptor agent sulpiride, which has 

selective affinity for D2 receptors that are particularly abundant in the striatum (Janssen et 

al., 2015; van der Schaaf et al., 2014). Moreover, it is generally consistent with prior work, 

demonstrating a key role for (striatal) dopamine in physical effort-based choice (Buckholtz 

et al., 2010; Hosking et al., 2015; Salamone et al., 2016; Wardle, Treadway, Mayo, Zald, & de 

Wit, 2011), although a recent study failed to observe modulation by the selective dopamine 

antagonists eticlopride and SCH23390 of the willingness to exert cognitive effort (Hosking 

et al., 2015). Finally, the dopamine hypothesis coincides with our finding that the effect of 

MPH depended on trait impulsivity, which implicates drug-induced dopamine release 

(Buckholtz et al., 2010) and changes in D2/D3 receptor availability (Buckholtz et al., 2010; 

Dalley et al., 2007; Lee et al., 2009; Kim et al., 2013; Reeves et al., 2012).  

 Future studies are needed to test the hypothesis that MPH alters demand avoidance 

via affecting dopamine rather than noradrenaline transmission, for example using a MPH 

administration design in which participants are pretreated with a selective dopamine 

receptor antagonist prior to receiving MPH or in which effects of MPH are compared with 

those of atomoxetine, which leaves unaltered striatal dopamine transmission. This is 

especially pertinent because of the well-established link between the locus coeruleus–
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norepinephrine system and mental fatigue (Berridge & Waterhouse, 2003) and the 

implication of this system in task-related decision processes and optimization of task 

performance (Aston-Jones & Cohen, 2005). According to the classic adaptive gain theory of 

locus coeruleus function, task engagement is modulated by activity of the locus coeruleus, 

which favors either exploitation (task engagement) or exploration (task disengagement) 

depending on a tonic or phasic mode of action (Aston-Jones & Cohen, 2005). In line with this, 

pupil diameter, a measure that has been associated with locus coeruleus activity (Varazzani, 

San-Galli, Gilardeau, & Bouret, 2015), correlated with lapses of attention in a sustained 

attention task (Van den Brink, Murphy, & Nieuwenhuis, 2016), with participant’s tendency 

to explore in a gambling task (Jepma & Nieuwenhuis, 2011), with decisions to disengage 

from a (discrimination) task (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010) and with 

mental fatigue (Hopstaken, van der Linden, Bakker, & Kompier, 2015). One way in which the 

locus coeruleus-noradrenaline system might alter task engagement is by encoding surprise 

due to outcome uncertainty (Preuschoff, ’t Hart, & Einhäuser, 2011), or by modulating 

participants’ confidence in their own performance. Recent empirical evidence indeed 

indicates that blocking noradrenaline selectively, by propranolol, increases participants’ 

confidence in good performance on a dot-motion task relative to placebo (Hauser et al., 

2017). In addition, the injection of clonidine, a selective noradrenergic agonist which reduces 

central noradrenaline levels, has been sown to reduce choice volatility in a cost/benefit 

decision task in monkeys (Jahn et al., 2017). Monkeys were inclined to make the same 

decision when faced with the same type of choice. In our data, we observe the same pattern 

evidenced by enhanced response stickiness, however after prolonging catecholamine 

transmission. Future studies should assess a putative contribution of noradrenaline in the 
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estimation of confidence in performance and choice volatility and thereby the role of 

noradrenaline in the avoidance of effortful cognitive control. 

 

Methylphenidate does not alter the execution of task switching 

Unlike MPH-effects on demand avoidance, there were no effects of MPH on the actual 

performance of the task, as indexed by performance costs in accuracy or response times. 

Taking into account trait impulsivity did not reveal such an effect of MPH on demand (or 

switch) costs either. This contrasts with previous work, which showed an amphetamine-

induced improvement of task switching (Samanez-Larkin & Buckholtz, 2013). This 

discrepancy might reflect the fact that the current paradigm was not optimized for 

measuring (rapid) task switching. In our paradigm, the number judgement trials were 

separated by the choice events, thus likely reducing sequential effects like task switching, as 

subjects needed to switch already between the number judgment task and choices. In 

addition, the frequency of task-switches varied between participants and sessions, as this 

depended on their previous choices of the low or high demand option. As a result, the 

paradigm is likely less sensitive to subtle effects of chemical neuromodulatory effects than 

were the rapidly paced task switching paradigms used previously (Samanez-Larkin & 

Buckholtz, 2013).  

Across high and low demand trials, MPH speeded responding in high- versus low-

impulsive participants, consistent with dopamine’s well-established role in nonspecific 

behavioural activation and invigoration of responding (Niv et al., 2007; Robbins & Everitt, 

2007). Importantly, the overall speeding of responses was not accompanied by an 
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impulsivity-dependent decrease in accuracy, speaking against a shift in the speed-accuracy 

tradeoff or more sloppy responding and putatively in favour of cognitive enhancement.  

In line with various reports on MPH’s potential to enhance cognition after single, low-

dose administration (Berridge & Arnsten, 2015; Linssen et al., 2014; Spencer, Devilbiss, & 

Berridge, 2015), in this study MPH improved overall accuracy of responding on the task 

switching task, irrespective of demand or baseline measures. 

 

Response stickiness 

We were surprised about the high levels of response stickiness in the choice task. The high 

degree of response stickiness is unlikely to reflect a lack of task understanding, because we 

assured after practice blocks that instructions were clear by giving them the opportunity to 

ask questions and letting participants repeat the instructions. More critically, we observe 

significant demand avoidance across participants and extremely high accuracy scores on the 

task-switching task on both testing days. Nevertheless, regardless of its origin, we carefully 

scrutinized our data to assess the possibility that MPH-effects on stickiness reflect or mask 

our MPH-effect of interest on demand avoidance. For example, an increase in stickiness 

might have resulted in a failure to explore and to assign high or low effort costs to the two 

options. This is particularly pertinent, because we observed in the current data that MPH 

increased response stickiness across participants, and that a logistic regression model which 

included (MPH-effects on) response stickiness explained more variance than did a model 

without response stickiness. Moreover, consistent with our effect, prior work has shown that 

dopaminergic medication in Parkinson’s disease increased response stickiness during a 

reinforcement learning task (Rutledge et al., 2009; see also Beeler, 2012; Beeler, Faust, 
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Turkson, Ye, & Zhuang, 2016). In fact, it is highly unlikely that the impulsivity-dependent 

effect of MPH on avoidance reflects modulation of response stickiness. First, the logistic 

regression model which controlled for response stickiness revealed significant effects of 

MPH on demand avoidance as a function of impulsivity, even when variability in stickiness 

was removed. Second, there was substantial evidence for an absence of a correlation 

between the effect of MPH on demand avoidance and that on response stickiness. Third, 

supplementary analyses revealed that the same effect remained significant after excluding 

participants who failed to explore the choice cues. Together, these supplementary control 

analyses strengthened our confidence in the dependence of the MPH-effect on trait 

impulsivity, generally consistent with previous results showing greater effects of MPH on 

learning in high versus low-impulsive participants (Clatworthy et al., 2009). 

 

Implications  

The measure of trait impulsivity was primarily included in this study for its established 

relation with baseline dopamine transmission. However, impulsivity is also a clinically 

relevant dimensional trait implicated in multiple psychiatric disorders, such as (drug) 

addiction or ADHD. One direct implication of our findings is that while MPH may enhance 

(task-nonspecific) performance in high-impulsive participants (e.g. by altering response 

speed), consistent with its performance enhancing effect in ADHD, it may also reduce their 

motivation for (i.e. value-based learning about) cognitive control. This effect on the 

avoidance of control might seem paradoxical, given that MPH has been shown to i) remedy 

cognitive control problems in ADHD patients, who are characterized by high levels of 

impulsivity (Aron et al., 2003; Cepeda et al., 2000; Coghill et al., 2013; Faraone & Buitelaar, 
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2010; Leonard et al., 2004; Mehta, Goodyer, & Sahakian, 2004b), ii) to improve performance 

on attention tasks in high-impulsive rats (Puumala et al., 1996; Robbins, 2002) and iii) to 

enhance task switching in healthy volunteers (Samanez-Larkin & Buckholtz, 2013). 

However, none of these studies examined the motivation or willingness to recruit or avoid 

cognitive control. The present results indicate that any cognition and performance 

enhancing effects of MPH might be accompanied by an (undermining) effect of MPH on the 

motivation to exert cognitive control.  

A second implication of the present findings is that the cognitive control effects of 

disorders that implicate the catecholamine system, such as ADHD or Parkinson’s disease 

might (in part) be consequences of changes in the motivation to avoid cognitive control, 

rather than reflecting changes in the ability to execute control per se (Schneider, 2007). This 

generally concurs with a characterization of ADHD and Parkinson’s disorder as disorders of 

the will.  

Finally, in line with recent work by Kool and colleagues (2017), our results raise the 

hypothesis that previously established effects of dopamine on the reliance on cognitively 

effortful (e.g. model-based versus model-free) behavioural control strategies (Deserno, 

Huys, Boehme, Buchert, & Heinze, 2015; Wunderlich, Smittenaar, & Dolan, 2012) reflect 

partly modulation of cost-benefit decision-making rather than ability to execute such 

strategies. 

 

Conclusion 

We demonstrate that prolonging catecholamine transmission by MPH administration 

altered the avoidance of cognitive demand in healthy volunteers. These effects were isolated 
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by taking into account individual differences in trait impulsivity. Control analyses support 

our conclusion that reported MPH-effects on demand avoidance are likely results of a 

modulation of value-based decision-making and not an indirect consequence of modulation 

of task performance.  

 

Context 

The study setup is based on earlier work in our group and the field as a whole. It builds on 

two key-findings: we have established that (1) catecholaminergic drugs can alter 

performance in various domains, such as working memory (Fallon et al., 2016), reversal 

learning (van der Schaaf et al., 2013) and selective attention (Ter Huurne et al., 2015) and 

that (2) individual differences in dopaminergic drug effects likely reflect variability in 

baseline dopamine levels (Cools et al., 2004; Cools & D’Esposito, 2011).  

In parallel, evidence from recent theoretical and modeling work indicates that 

cognitive control recruitment is not purely limited by our ability to execute cognitive control, 

but is also a function of value-based learning and decision-making, similar to a willingness 

to invest principle (e.g. Cools, 2016; Shenhav et al., 2017; Westbrook & Braver, 2016), which 

was hypothesized to be sensitive to changes in the catecholamine system. The aim of this 

study was therefore to test for the first time in humans whether cognitive control 

recruitment, or the avoidance thereof, was altered by a catecholamine challenge, further 

emphasizing the relevance of quantifying motivational in addition to performance aspects of 

cognition. 
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