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ABSTRACT 26 

Machine Learning Techniques (MLTs) offer great power in analysing complex datasets and have not 27 

previously been applied to non-occupational pollutant exposure.  MLT models that can predict personal 28 

exposure to benzene have been developed and compared with a standard model using a linear regression 29 

approach (GLM).  The models were tested against independent datasets obtained from three personal 30 

exposure measurement campaigns.  A Correlation-based Feature Subset (CFS) selection  algorithm 31 

identified a reduced attribute set, with common attributes grouped under the use of paints in homes; 32 

upholstery materials; space heating and environmental tobacco smoke as the attributes suitable to predict 33 

the personal exposure to benzene. Personal exposure was categorised as low, medium and high, and for 34 

big datasets, both the GLM and MLTs show high variability in performance to correctly classify >90%ile 35 

concentrations, but the MLT models have a higher score when accounting for divergence of incorrectly 36 

classified cases. Overall, the MLTs perform at least as well as the GLM and avoid the need to input 37 

microenvironment concentrations.   38 

 39 

Keywords: Benzene; personal exposure; machine learning techniques; general linear model; 40 

dimension reduction 41 

42 
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1. INTRODUCTION  43 

Exposure assessment is an important analytical tool for evaluating the likelihood and extent of actual or 44 

potential exposure of people to pollutants and is an important component of any health risk assessment 45 

and epidemiological study. Exposure to chemicals from environmental and occupational settings can be 46 

characterized in different ways1. Direct methods such as personal monitoring and biomarkers are 47 

considered to be accurate for exposure assessment yet are costly to study big populations. Indirect 48 

information gained through questionnaires and diaries accompanied by environmental monitoring can be 49 

used to develop exposure models. Modelling techniques have greatly improved the assessments and are 50 

likely to be important in future studies since direct measurement of exposure is often too expensive and 51 

time consuming.  52 

 53 

In recent years, exposure assessment to atmospheric pollutants has been conducted mainly either by 54 

deterministic methods, strengthened by geographical information systems and geostatistical techniques2, 55 

or by a statistical approach3.  In the last 20 years statistical approaches have focused on regression 56 

techniques and source apportionment while probabilistic modelling was mainly done by Monte Carlo 57 

analyses and Bayesian statistics. The main criticisms of many exposure assessments have been a reliance 58 

on overly conservative assumptions about exposure, as well as the problem of how to model properly the 59 

highly exposed populations that generally are small in number4,5.  The earlier published work has shown 60 

a limited ability of methods based upon measurement of microenvironment concentrations to provide an 61 

accurate quantitative reconstruction of personal exposure (PE).  This is no doubt due to the variability in 62 

concentrations within a given type of microenvironment and poorly quantified contributions from 63 

sporadic sources.  Since machine learning techniques (MLTs) function without a priori assumptions of 64 

pathways and have great power to extract meaningful patterns and trends from datasets, we have for the 65 

first time applied MLTs to the modelling of non-occupational PE to a key air pollutant, benzene. 66 
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Ideally a PE model should be able to predict the degree of exposure of an individual based on a minimum 67 

number of input attributes.  The model for benzene developed by Delgado-Saborit et al.6 predicted the 68 

PE by integrating the time fraction spent in each microenvironment times the concentration of benzene 69 

in the microenvironment visited, and also accounted for external factors that might affect exposure as 70 

add-on variables, using a linear regression approach. The best model that was able to predict PE with 71 

independence of measurements was based upon certain time-activity attributes.  Other studies conducted 72 

by Heavner et al.7, Austin et al.8, Ilgen et al.9, Yang et al.10, Edwards et al.11, Batterman et al.12, Curren 73 

et al.13, Zuraimi et al.14 and Song et al.15, through source apportionment, have identified sources of 74 

benzene that were consistent with the variables that were introduced in the above-mentioned model. The 75 

model identified the most important non-weather-related variables for benzene exposures, highlighting 76 

the influence of personal activities, use of solvents, and exposure to environmental tobacco smoke (ETS) 77 

on PE levels.  78 

 79 

MLTs are used for several air quality applications, including forecasting of airborne pollutants such as 80 

PM2.5 levels16, PM10 levels17,18,19,20,21,22, SO2, CO and NO and NO2 and O3
19,23, and particle-phase PAH24.  81 

One study uses a MLT to model benzene exposures, but in an occupational setting25. 82 

 83 

In this study, MLT models were trained and tested on benzene PE data that was collected during three 84 

PE campaigns, namely; MATCH26, TEACH27 and EXPOLIS28. The performance of the MLT models in 85 

classifying personal exposures was tested and results are discussed in the light of their usefulness for risk 86 

assessment and epidemiological studies. 87 

 88 

2. METHODOLOGY 89 

2.1 Description of Datasets 90 

Three datasets were employed in training and testing the models using MLTs. These datasets as described 91 
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in detail below were the MATCH, the EXPOLIS and the TEACH databases.  Descriptive statistics appear 92 

in Table S1 and Figure S3. 93 

 94 

The MATCH (Measurement and Modelling of Air Toxics Concentrations for Health Studies) study’s 95 

main objective was to optimize a model of PE based on microenvironment concentrations and 96 

time/activity diaries and to compare the modelled with measured exposures in an independent dataset6. 97 

The subjects for this study, enrolled to measure their PE to a suite of air toxics were recruited based upon 98 

a set of inclusion determinants that affected exposure, namely: location, living in houses with heavy 99 

trafficked roads (termed as first line houses), having a house with an integral garage, and exposure to 100 

ETS26. PE of 100 adult non-smokers living in three UK locations, namely London, West Midlands, and 101 

rural South Wales, to 15 VOCs was measured using an actively pumped sampler carried around by the 102 

subjects for five consecutive 24 hr periods, following their normal lifestyle.  103 

 104 

The EXPOLIS (Air Pollution Exposure Distributions within Adult Urban Populations in Europe) study 105 

focused on adults living in cities in seven European countries (Helsinki, Athens, Basel, Grenoble, Milan, 106 

Prague, Oxford), exposed to air pollutants in their homes, workplaces and other common urban micro-107 

environments27 from 1996-1998. The 401 subjects who participated in this study were chosen according 108 

to certain criteria which are found in the EXPOLIS manual27. This study was based on a single 48 hr 109 

sampling period using a suitcase containing the sampler. 110 

 111 

The TEACH (Toxic Exposure Assessment, a Columbia / Harvard) study was designed to characterize 112 

levels and factors of PE to urban air toxics among high school students in Los Angeles and New York 113 

from 1999-200028. This study involved 87 students who carried a backpack for 48 hr over two different 114 

sampling periods, one in summer and another in winter. 115 

 116 
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In the three studies the number of samples represented either a 24 hr or 48 hr PE sampling. If the subjects 117 

were monitored for several days, each sample is treated separately and not pooled per subject. In the 118 

three studies the subjects filled questionnaires collecting information about subject demographics, 119 

lifestyle, home description, products stored within the house, activities performed, places visited, 120 

ventilation, and ETS presence, as described in detail elsewhere29. The questionnaires were different for 121 

the three studies but most of the information gathered was similar. These questionnaires may be referred 122 

to in Harrison et al.29 for MATCH, Kinney et al.30 for TEACH and Hanninen et al.27 for EXPOLIS. 123 

 124 

2.2 Attribute Selection for dimension reduction 125 

Attribute subset selectors are a collection of algorithms that try to find and remove irrelevant and 126 

redundant attributes31, an exercise termed as dimension reduction that is required in generating robust 127 

PE models requiring a minimal number of attributes. 128 

 129 

Therefore, the initial stage before the model could be built requires dimension reduction, where a number 130 

of variables that affect/predict most of the measured level of benzene exposure for a given compound 131 

were chosen. Dimension reduction attempts to identify and remove those features which increase 132 

computation time, but not model performance. In this study a Correlation-based Feature Subset (CFS) 133 

selection algorithm was used. Further information on this algorithm can be found in the Supporting 134 

Information.  135 

 136 

3. GENERAL LINEAR MODELLING TO MODEL PE TO BENZENE 137 

A more common approach to modelling PE is by using a General Linear Model (GLM) which was used 138 

in various studies, such as to model the effect of VOCs exposure during pregnancy to newborn’s birth 139 

weight32, to find the relationship between PE to VOCs and home, work and outdoor concentrations33, to 140 
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evaluate vehicle exposure to certain VOCs including benzene in urban areas34. In this study a GLM was 141 

developed and compared with the MLTs described in Section 4.  142 

 143 

The GLM is a combination of two major model types, namely regression models and analysis of variance 144 

models. For this study, where only one dependent (continuous) variable was available, GLMs were used. 145 

Here, all the attributes were included into the model and the least significant was removed manually one 146 

at a time. This process was repeated until the remaining variables left were all statistically significant 147 

(p<0.05). This was also used in previous exposure studies such as benzene exposure35 and exposure to 148 

ETS36. 149 

 150 

Since benzene concentration is a continuous variable, the Poisson and Binomial distributions are not 151 

suitable to model such data, thus Gaussian, Gamma and Inverse Gaussian distributions were fitted. The 152 

GLMs with the lowest Akaike information criteria and Bayesian information criteria were applied for 153 

the three studies and further details are given in the Supporting Information and Table S2.   154 

 155 

4. MACHINE LEARNING TECHNIQUES TO MODEL PE TO BENZENE 156 

Our earlier research6 was based upon the use of simple additive models in which microenvironment 157 

concentrations were summed in a time-weighted manner, or multiple linear regression approaches in 158 

which key influences upon exposure were identified and added in weighted manner to obtain the best 159 

overall fit to the measured exposures.  Such methods require a priori assumptions as to the most 160 

important factors/sources influencing exposure and assume that total exposure is the linear sum of a range 161 

of weighted contributions.  162 

 163 

 MLTs used in this study are computer-based algorithms which recognise features in datasets which when 164 

combined give a good fit to an outcome variable, in this case the measured PE.  The algorithms learn 165 
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directly from the data and improve their performance as they are provided with more samples.  MLTs 166 

can be either supervised or unsupervised.  In the former case, a known set of input data and output 167 

responses is used to combine input variables in such a way as to predict the outcome using classification 168 

or regression methods.  In the unsupervised learning case, methods such as clustering are used to 169 

recognise patterns in the data without reference to the outputs.   170 

 171 

In several applications predictions have been aided by the application of MLTs37. Algorithms are 172 

generally trained with previously available data and allow predictions in the testing phase38. The success 173 

of an analysis can thus be defined as the ability of such algorithms to predict the correct status of unseen 174 

data. 175 

 176 

In the realm of PE to atmospheric pollutants, accuracy of classification strategies can be affected 177 

negatively with the use of too many features in the classification. This may lead to overfitting, in which 178 

noise or irrelevant features may decrease classification accuracy because of the finite size of the training 179 

samples39. The mining workbench program used for developing the MLT models was the Waikato 180 

Environment for Knowledge Analysis (WEKA)40,41.  Further information on the MLTs used in this 181 

research is given in the Supplementary Information. 182 

 183 

After redundant attributes were removed and a Reduced Attribute Set (RAS) had been selected, for the 184 

datasets available and the application presented the DT, NNGE, KStar, ANN and RF algorithms were 185 

chosen for machine learning using their standard settings in WEKA.  186 

 187 

5.   MODELS AND CLASSIFICATION OF EXPOSURE  188 

Using WEKA the models were trained on a randomly chosen 75% of the dataset and validated using the 189 

remaining 25%. A 10-fold cross validation was also carried out. 190 
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To have a consistent method across the three studies considered rather than one based on various 191 

legislative/directive limits or guideline values that serve for policy making purposes, benzene 192 

concentrations were categorised as Low (L), Medium (M) and High (H) based on 10-90%iles and 30-193 

70%iles and 30-90%iles as summarised in Table 1 in order to evaluate the robustness of the different 194 

models used in correctly classifying the PE range.  195 

 196 

The five MLTs and the GLM were run using the RAS for the testing dataset (25% of the unseen dataset) 197 

based on the classification bins defined in Table 1.  198 

 199 

Table 1: The bin limit values for benzene (in µg m−3) determined by the 10%ile and 90%ile, 30%ile and 200 

70%ile and the 30%ile and 90%ile percentiles. 201 

 202 

 Low (L) Medium (M) High (H) 

 

Study 
10%ile 30%ile 10-90%ile 30-70%ile 30-90%ile 70%ile 90%ile 

MATCH < 0.7 < 1.0 0.7 –  3.5 1.0 – 2.0 1.0 –  3.5 > 2.0 > 3.5 

EXPOLIS < 0.8 < 2.4 0.8 – 13.0 2.4 – 6.0 2.4 – 13.0 > 6.0 > 13.0 

TEACH < 1.8 < 2.8 1.8 –  7.3 2.8 – 4.8 2.8 –  7.3 > 4.8 > 7.3 

 203 

6. RESULTS 204 

6.1 Testing Attribute Selection and Accuracy of Classification 205 

ACFS algorithm was used to remove irrelevant and redundant variables from a Full Attribute Set (FAS). 206 

A RAS for each study was obtained and the important attributes identified by CFS were compared with 207 

similar attributes identified in other studies and are summarized in Table 2. 208 

Table 2: Reduced number of attributes (RAS) using the CFS algorithm, which are able to predict the 209 

continuous benzene concentration for (a) MATCH, (b) EXPOLIS, (c) TEACH. 210 

 211 

(a)                                                          MATCH 

Variable Reference supporting variable 

Gardening products used  

Visited hospital Delgado-Saborit et al.6 

Visited petrol station Wallace42 

Using subway Delgado-Saborit et al.6 
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Being in presence of someone painting Delgado-Saborit et al.6 

Rubber-backed nylon carpets laid in house  

Keeping car in garage Batterman et al.12 

Storing paints in garage Delgado-Saborit et al.6 

Time spent at constant ETS Heavner et al.7 

Gas and other heating used Delgado-Saborit et al.6 

Urban location Delgado-Saborit et al.6 

 212 

(b)                                                         EXPOLIS 

Variable Reference supporting variable 

Visited gas station Wallace42 

Used chemicals and glues Wallace42 

Having carpets other than wall to wall  

Having double glazing windows & chipboard  

Room height  

Having water damage  

Keeping pets in the house  

Smoking in the house Edwards et al.11 

Amount of heavy traffic passing in front of 

home 

Wallace42 

Using district heating   

Use gas for cooking  

 213 

(c)                                                          TEACH 

Variable Reference supporting variable 

Smoking Edwards et al.11 

Having a door leading to garage Batterman et al.43 

Having a diesel car in garage Batterman et al.43 

Having curtains, Upholstering furniture, 

double glazing 

 

Plaster, chipboards or paper walls  

Painted walls Song et al.15 

Season  

Glue was used Wallace42 

City Delgado-Saborit et al.6 

Fireplace or a stove was used for heating  

Water damage  

 214 

In order to assess the performance of the MLTs, these were run using the FAS and the RAS from the 215 

three studies, where the RAS was obtained by CFS as explained above. Table S3 summarizes the overall 216 
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accuracy obtained for predicting PE to benzene when using the FAS and the RAS for classification.   217 

 218 

The overall performance of the MLTs in a 10-fold cross validation and a 25% testing dataset using a 75% 219 

training dataset for classification determined by 10 and 90 percentiles using the RAS are presented in 220 

Tables S4 and S5 respectively.  The accuracy for the MLTs was calculated via a confusion matrix 221 

available in WEKA that was generated in order to compare the various models used in trying to predict 222 

PE (Supporting Information, Table S6).  The matrix, for each model used, summarizes the correctly 223 

classified instances and also indicates in which category the model wrongly classified instances when 224 

compared to the corresponding measured instances. The degree of accuracy of the models can then be 225 

determined by calculating the percentage of instances correctly classified and attributed to the correct 226 

concentration range bin. Table S7 compares the performance of the MLTs with the GLM in correctly 227 

classifying the exposure classes. 228 

 229 

If these models are to be used for epidemiology or risk assessment applications, the need for correct 230 

classification of the PE in different exposure categories varies according to the choice of the percentile 231 

ranges chosen in this paper (10-90, 30-70 and 30-90%iles). A point ranking system (Table 3) has been 232 

devised for the abovementioned applications and applied to the confusion matrix (Table S6) in order to 233 

identify which model scores best in classifying the modelled concentrations in the correct classification 234 

categories (L, M and H) as the corresponding measured concentrations. Table 4 shows the total ranking 235 

of each model based on the point ranking system summarised in Table 3.  236 

 237 

The scoring scheme for epidemiology applications penalised extreme misclassification highly (i.e. H to 238 

L and L to H), and lesser misclassification less harshly with incorrect prediction of M as L or H losing 239 

more points than the reverse error.  The rationale was that epidemiology depends heavily upon a gradient 240 

of exposures in which the H and L are most important in defining the distribution. 241 
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Table 3:  Point ranking system devised for our models if they are to be used in epidemiology and risk 242 

assessment applications to predict benzene correctly in three studies. 243 

 244 

Epidemiology applications 

Accuracy of Classification Ranking Points 

Correct classification No. of instances  (+1 point) 

Incorrect classification (H as L or L as H) No. of instances  (−3 points) 

Incorrect classification (M as H or as L) No. of instances  (−2 points) 

Incorrect classification (L or H as M) No. of instances  (−1 point) 

Risk Assessment applications 

Accuracy of Classification Ranking Points 

Correct classification No. of instances  (+1 point) 

Incorrect classification (H as L) No. of instances  (−5 points) 

Incorrect classification (H as M) No. of instances  (−4 points) 

Incorrect classification (L as H) No. of instances  (−3 points) 

Incorrect classification (M as H or L) No. of instances  (−2 points) 

Incorrect classification (L as M) No. of instances  (−1 point) 

 245 
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 246 

Table 4: Ranking of the different models’ performance to predict benzene correctly in three studies. Numbers in bold indicate the models 247 

which ranked highest in correctly classifying instances in L, M and H exposure categories.   248 

 249 

APPLICATION MODEL 
Study 

MATCH EXPOLIS TEACH 

    10-90%iles 30-70%iles 30-90%iles 10-90%iles 30-70%iles 30-90%iles 10-90%iles 30-70%iles 30-90%iles 

Epidemiology DT 55 −15 7 56 −16 20 20 −12 2 

  RF 61 −10 19 55 6 20 20 −30 5 

  ANN 56 −5 17 44 −21 3 14 −18 −4 

  NNGE 56 −32 −3 44 −52 −21 14 −20 4 

  KStar 61 −9 18 46 −23 −5 4 −36 −21 

  GLM 61 −1 34 41 1 8 32 24 26 

            

Risk Assessment DT 43 −60 −5 35 −61 −1 8 −34 −10 

  RF 49 −46 7 45 −22 5 8 −58 −7 

  ANN 50 −43 11 26 −57 −15 2 −41 −13 

  NNGE 50 −84 −9 29 −72 −32 2 −49 −4 

  KStar 49 −65 12 31 −61 −17 −4 −66 −28 

  GLM 52 −37 25 20 −11 −13 32 21 26 

 250 

 251 
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The scoring system for risk assessment applications penalised extreme misclassification at the higher end 252 

highly (i.e. H to L), with a decreasing degree of penalization as follows: incorrect prediction of H as M 253 

> incorrect classification from the lower end to the higher end, followed by incorrect prediction of M as 254 

L or H.  Classifying incorrectly L cases in the M bin was the least harshly penalised.  255 

 256 

The rationale was related to one of the aims of risk assessment, which is to identify those cases exposed 257 

to high concentrations of benzene that would require subsequent actions to reduce their exposure. 258 

However, if the model fails to identify the highly exposed subjects (e.g. H case classified as M or L), 259 

these cases will continue to be exposed to high concentrations of benzene without acknowledging the 260 

need of exposure reduction actions. Equally if a subject is not exposed to benzene, but the model 261 

classifies the case as a high exposed subject, this will trigger actions to reduce his/her exposure, which 262 

might incur an economic cost and/or disruption of the subject activities in order to reduce the benzene 263 

exposure that initially are not required. 264 

 265 

Table 4 shows that overall, the GLM performs better than the MLTs.  For MATCH, KStar, RF and GLM 266 

would be more suitable for epidemiology applications for the 10-90%iles categorisation, while the GLM 267 

performs better for the 30-90%ile categorisation. However, for risk assessment applications, if the 10-268 

90%iles categorisation is used all MLTs perform approximately in the same way as the GLM, whilst the 269 

latter model would be more suitable while for the 30-90%iles categorisation.  For EXPOLIS, irrespective 270 

of categorisation, RF and DT would be more suitable for epidemiology applications, while RF would be 271 

more suitable for risk assessment applications. For TEACH the situation is clearer, for any exposure 272 

categorisation and for both epidemiology applications and risk assessment applications the GLM 273 

outperformed any MLT in predicting PE. For small datasets such as TEACH it appears none of the MLTs 274 

seem satisfactory.  For the more demanding 30-70%ile dataset, the GLM consistently outperforms the 275 

MLTs.  276 
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The percentages of correctly classified instances per exposure category, for each study considered are 277 

presented in Supporting Information Table S7. One can note that for predicting H exposures, the GLM 278 

is better than MLTs when the dataset is small. When using a 30-70%ile classification (see Table S7), for 279 

TEACH, DT and ANN perform equally well as the GLM.  For larger datasets like EXPOLIS, using any 280 

exposure categorisation, GLM outperforms MLT correctly classifying 87-100% of the instances. For 281 

MATCH for predicting H exposures, using any categorisation, ANN, NNGE, KStar and the GLM can 282 

correctly predict 63% of the instances.  If a 30-70%ile categorisation is used, the GLM outperforms all 283 

MLTs 284 

    285 

To supplement the prediction based on a 75%-25% split (Table S4), a 10-fold cross validation was 286 

performed with the three datasets, whose results are presented in Table S5. If one views the overall 287 

performance of the MLTs for the 10-90%ile and the 30-90%ile classification using the RAS, they are 288 

somewhat similar to those obtained in Table S4. The Kappa statistic, the Mean Absolute Error (MAE) 289 

and the Root Mean Square Error (RMSE) in Tables S4 and S5 indicate there is a greater variance in the 290 

individual errors in the dataset. However, if one focuses on the prediction of the H exposure using the 291 

10-90%ile categorisation, based on the area under the Receiver Operating Curve (ROC) and the F-292 

Measure presented in Table S4, RF shows the better performance for the three studies. KStar performs 293 

equally well in MATCH. For TEACH, the MLTs perform similarly with RF appears to be the best 294 

candidate for small datasets. From Tables S4 and S5, in EXPOLIS, the best MLT to predict H exposures 295 

using a 30-90 categorisation would be RF, for MATCH they would be KStar and RF while for TEACH, 296 

although the performance of MLTs is not appreciable, ANN and RF still appear to perform better. 297 

 298 

While the majority of the MLTs predict only exposure category, two of the MLTs (KStar and ANN) and 299 

the GLM were able to predict also continuous data. The R2 value and the Predicted vs Measured gradient 300 

are shown in Table 5. DT, NNGE and RF are not included as they do not give R2 values for direct 301 
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comparison with the GLM. This table indicates that the performance of the model is not determined 302 

solely by the R2 value; in fact, the predicted: measured ratio indicates that the GLM perform better in 303 

predicting a PE value closer to the measured values when compared to the MLTs, at least in the studies 304 

considered.   305 

 306 

Table 5: Predicting continuous data results for benzene. 307 

 308 

Study Model Predicted : Measured Ratio R2 

 KStar 0.669 0.321 

MATCH ANN 0.728 0.410 

 GLM 1.004 0.390 

 KStar 0.651 0.302 

EXPOLIS ANN 0.237 0.004 

 GLM 1.021 0.240 

 KStar 0.031 0.001 

TEACH ANN 1.579 0.472 

 GLM 1.000 0.970 

 309 

7.  DISCUSSION 310 

This study presents several PE models developed using different MLTs using benzene PE data collected 311 

during three independent PE campaigns, namely; MATCH26, and EXPOLIS27 and TEACH28.  The first 312 

step in the model development was to select those attributes that explain most of the variability of 313 

benzene exposures. A process known as CFS removed the redundant attributes in the data and allowed 314 

for more interpretable data.  315 

 316 

The models were trained on the RAS and were able to predict the classification of a participant to a PE 317 

level based on just a few attributes in a similar fashion than using the FAS (as shown in Table S2). This 318 

meant that CFS was able to remove the non-predictive attributes in the data. Thus only a few (most 319 

predictive) attributes are needed to make an accurate prediction of the PE levels.  Based on Table 2, the 320 

predictive attributes common to all three PE campaigns could be grouped under the use of paints in 321 
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homes; upholstery materials; space heating and ETS. Although the paper focused on the results for 322 

benzene as a VOC marker and as a known human carcinogen44, the models are expected to give similar 323 

results for the other VOCs, although some differences are seen6. 324 

 325 

To assess the usefulness and practicality of the MLT models to predict and correctly classify PE to 326 

benzene to be used in epidemiological studies, the performance of the models developed using MLTs 327 

was analysed. For that purpose, different PE categories determined using percentiles, namely: High (> 328 

90%ile), Medium (10-90%ile), and Low (< 10%ile); High (> 90%ile), Medium (30-90%ile), and Low 329 

(< 30%ile), and High (> 70%%ile), Medium (30-70%ile) and Low (< 30%ile) were compared.  330 

 331 

MLTs were applied for the first time in PE modelling of benzene in comparison to linear regression 332 

approaches, producing interesting results in the validation exercise where the test dataset was very small.  333 

Nevertheless, further validation of the MLTs performance is required with larger datasets and for air 334 

toxics that show different behaviour than benzene associated with their chemical composition, reactivity, 335 

vapour pressure and indoor/outdoor dynamics.  One earlier study45 has predicted occupational exposure 336 

to benzene in filling station workers using an ANN approach, and describing it as a promising technique. 337 

 338 

All the MLT models used for this study proved to perform fairly well with better performance in the 339 

Medium exposure ranges rather than in the Lower and Higher exposure ranges, whilst the GLM was 340 

more predictive in the High exposure range. However, one should note that the low accuracies obtained 341 

in the Low exposure range arose from the fact that the whole dataset was highly skewed to the lower 342 

concentrations (Figure S2). Therefore, an even distribution of participants between all exposure level 343 

classes would allow the models to estimate both the higher and lower exposure levels more accurately 344 

as discussed hereunder.   345 

 346 
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Comparing the high exposure levels in MATCH, when the exposure category split is based on the 10-347 

90%iles or the 30-90%iles, (refer to Supporting Information, Table S7) ANN, NNGE and KStar perform 348 

equally as the GLM in correctly classifying a maximum of 63% of the measured instances. On the other 349 

hand, for EXPOLIS, the GLM fared much better than the abovementioned MLTs in correctly classifying 350 

all high exposure instances. For TEACH in the 30-90%iles category ANN, NNGE and KStar were able 351 

to classify only 33% of the measured instances whilst the GLM predicted all the measured instances. 352 

However, when considering all the exposure categories and the number of cases correctly and incorrectly 353 

classified, the overall performance of the models was very poor (Table 4), according to the proposed 354 

rankings, making a large number of errors, which are penalised by the ranking proposed. Table 4 further 355 

indicates that for appreciably large datasets, such as EXPOLIS, for both Epidemiology and Risk 356 

Assessment applications, the MLTs ranked better with DT and RF appearing to be preferred in that order, 357 

except when challenged with the 30-70%ile dataset. For smaller datasets, such as TEACH, the GLM 358 

performed better, independently of the percentile classification used.  However, when a 30-90%iles or 359 

30-70%iles classification was used, the accuracy of all models (MLTs and GLM) in correctly classifying 360 

cases decreased (Table 4) making a large number of classification errors.  361 

 362 

The main goal of the regression model is to predict the assigned class (L, M or H) from the corresponding 363 

attributes. It is important to stress the fact that when the Low category classification was changed from 364 

the 10%ile to 30%ile, the number of samples in each category changed. In particular, this implied a larger 365 

number of samples in the L bin. Since 75% and 25% of the samples from the entire dataset were randomly 366 

selected for the training and testing of the models, the probability of picking a data point from the L class 367 

increased, the probability of selecting a M sample decreased, while the probability of picking instances 368 

from the H bin remained constant.  369 

 370 
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The performance of the MLTs is dependent on how training instances are distributed into the three 371 

exposure categories and how the samples are randomly selected. Since sample selection is carried out 372 

before each test run, the number of samples in each category (and hence the results shown in the 373 

confusion matrices) can be different. Hence, in machine learning we cannot presume that the 374 

performance on the H bin will remain the same (Table S6).  375 

 376 

Two of the MLTs considered, namely KStar and ANN were also able to predict continuous data, as the 377 

GLM does. From Table 5 it could be noted that interpreting the performance of the models, solely by 378 

comparing R2 can give an erroneous picture of the behaviour of the models.  In this study, when 379 

predicting continuous data, GLM performed better than MLTs. However, it can be concluded that for 380 

cases where the dataset contains some missing values (such as in EXPOLIS), the KStar was found to be 381 

an appreciably acceptable technique whereas for the cases where the dataset is quite small (such as 382 

TEACH), the ANN seemed to have a comparable performance of a GLM. It was noted that GLM does 383 

not seem to perform well for data which have very high or very low variance (such as tested for toluene 384 

and 1,3-butadiene respectively but not discussed in this paper); an issue that is not crucial for the 385 

robustness of the MLTs. 386 

 387 

For the first time to our knowledge MLTs have been used to predict the PE of a person to air toxics such 388 

as VOCs, in particular benzene, in this study.  They appear to perform at least as well as the frequently 389 

used GLM method and have the advantage of not requiring microenvironment concentration 390 

measurements.  In our earlier paper6, the dominant source of exposure to VOC including benzene were 391 

road traffic, solvent use and ETS.  This study identified important influences as use of paints in homes, 392 

upholstery materials, space heating and ETS, and hence activity/lifestyles questionnaires should focus 393 

on these sources additionally.  The relative importance of each of these sources is likely to have changed 394 
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since the exposure studies used in this research were conducted, but they are still likely to influence 395 

exposure heavily.   396 

 397 
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TABLE LEGENDS 586 

 587 

Table 1:  The bin limit values for benzene (in µg m−3) determined by the 10%ile and 90%ile, 30%ile 588 

and 70%ile and the 30%ile and 90%ile percentiles. 589 

 590 

Table 2:  Reduced number of attributes (RAS) using the CFS algorithm, which are able to predict the 591 

continuous benzene concentration for (a) MATCH, (b) EXPOLIS, (c) TEACH. 592 

 593 

Table 3:   Point ranking system devised for our models if they are to be used in epidemiology and risk 594 

assessment applications to predict benzene correctly in three studies. 595 

 596 

Table 4:  Ranking of the different models’ performance to predict benzene correctly in three studies. 597 

Numbers in bold indicate the models which ranked highest in correctly classifying 598 

instances in L, M and H exposure categories.   599 

 600 

Table 5:  Predicting continuous data results for benzene. 601 

 602 
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 604 


