UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

The effect of liquid nitriding on the corrosion resistance of AISI 304 austenitic stainless steel in H2S environments

Li, Longyi; Wang, Jun ; Yan, Jing; Duan, Liang; Li, Xiaoying; Dong, Hanshan

DOI: 10.1007/s11661-018-4920-9

License: Other (please specify with Rights Statement)

Document Version Peer reviewed version

Citation for published version (Harvard):

Li, L, Wang, J, Yan, J, Duan, L, Li, X & Dong, H 2018, 'The effect of liquid nitriding on the corrosion resistance of AISI 304 austenitic stainless steel in H2S environments', *Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science*. https://doi.org/10.1007/s11661-018-4920-9

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This is a post-peer-review, pre-copyedit version of an article published in Metallurgical and Materials Transactions A. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11661-018-4920-9

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

The effect of liquid nitriding on the corrosion resistance of AISI 304 austenitic stainless steel in H₂S environments

Longyi Li ^a, Jun Wang ^{a*}, Jing Yan ^b, Lian Duan ^a, Xiaoying Li ^c, Hanshan Dong ^c

- a College of Manufacturing Science and Engineering, Sichuan University, 610065, Chengdu, PR
 China
- 9 b Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gas Field
 10 Company, 610213, Chengdu, PR China.

c School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15
 2TT, UK

- 14 Abstract: AISI 304 austenitic stainless steel was low-temperature liquid nitrided in a molten salt 15 bath at 703 K for 8 h, which produced a 3-layered structure consisting of a top oxide layer, an 16 intermediate nitrogen-rich layer and a bottom carbon-rich layer. The effect of nitriding on its 17 corrosion resistance was investigated in a H₂S environment. The corrosion rate of the untreated 18 sample is about 3.3 times that of the nitrided sample after H₂S corrosion. Corrosion pits can be 19 clearly observed on the surface of the untreated sample, while the nitrided sample surface 20 remained relatively intact. Both the oxide layer and the nitrogen-rich layer can help reduce the 21 hydrogen permeation, which is beneficial for combating hydrogen embrittlement. The corrosion 22 products mainly consisted of oxides, hydroxides, and sulfates. The nitrided layers can serve as a 23 barrier to corrosion, thus preventing the corrosion of the substrate material. Active nitrogen in the 24 nitrided layer reacts with H ions to form NH4⁺, which effectively prevents further acidification of 25 the local area and inhibits the occurrence of pitting corrosion and the dissolution rate of the metal 26 in the etching hole, thus improving the local corrosion resistance of the stainless steel.
- 27

1

2

3 4

5 6

13

Key words: austenite stainless steels, expand austenite, corrosion resistance, liquid nitriding,
 surface treatment

30

31 **1. Introduction**

Austenite stainless steel is widely used in various industrial fields due to its 32 excellent corrosion resistance and mechanical properties. With the increasing 33 exploitation and processing of high sulfur oil and gas field, H₂S corrosion has become 34 a widespread concern.^[1] H₂S is one of the most dangerous factors causing metal 35 corrosion in acidic oil and gas environments, and electrochemical corrosion will occur 36 on the surface of the pipeline used.^[2] In recent years, many researchers have 37 conducted extensive research on the local corrosion and stress corrosion cracking 38 (SCC) mechanism of stainless steel in H₂S medium. The research was focused on the 39

^{*} Corresponding author. E-mail address: Srwangjun@scu.edu.cn (J. Wang)

structure, properties, formation process and external factors of corrosion products in 40 saturated H₂S systems.^[3-6] Ding et al. investigated the behavior of corrosion and SCC 41 of austenitic stainless steels in high H₂S-CO₂-Cl⁻ environments. ^[7] Their results 42 showed that high H₂S-CO₂ pressure can accelerate anodic dissolution process, 43 deteriorate passive films, and aggravate SCC sensitivity. The corrosion rate of steel in 44 45 wet H₂S is significantly higher than that in dry H₂S environment.^[8] H₂S reacted with metals to form surface metal sulfides, and released hydrogen atoms, which were 46 absorbed by the metal surface and caused hydrogen embrittlement.^[9] Besides, low pH 47 can promote both cathodic and anodic actions on stainless steel and facilitate passive 48 film breakdown.^[7] 49

In addition to the corrosion of H₂S, CO₂ and Cl⁻, saturated natural gas in 50 51 pipelines will have a free liquid phase due to the effect of pressure drop, and a certain amount of solid impurities will be mixed in the pipeline, resulting in three-phase 52 coexistence of gas, solid, and liquid. Erosion-corrosion is faster than corrosion alone 53 and is a more hazardous local corrosion.^[10] When corrosive liquid contains solid 54 particles (such as insoluble salts, sand, drilling fluid, etc.), it is more likely to cause 55 such erosion-corrosion damage. Austenitic stainless steels have a low carbon content 56 57 (mass fraction below 0.03 %), resulting in a low surface hardness and poor wear resistance. The service life of stainless steel pipes under such conditions will be 58 59 seriously reduced, and so it is necessary to improve their surface hardness and strength on the premise of ensuring its good comprehensive performance. 60

It has been reported previously that austenitic stainless steels 61 are thermochemically treated (carburized or nitrided) at low temperatures to form 62 interstitial atoms supersaturated non-deposition layers. [11-12] After the treatment, a 63 layer with a high concentration of nitrogen and/or carbon will be formed on the 64 surface of the treated austenitic stainless steel. This surface layer can effectively 65 improve the hardness, wear resistance, fatigue resistance and corrosion resistance of 66 the material, which is so-called S-phase or expanded austenite.^[12] Low-temperature 67 nitriding has been shown to significantly improve pitting potential. Dong discovered 68 that low temperature nitrided 316 stainless steel showed excellent resistance to pitting 69 of chlorine containing solution, and the increased corrosion resistance of the nitride S 70 phase layer is thought to be due to its high nitrogen content.^[13] The enhancement in 71 corrosion resistance of austenitic stainless steels by nitriding or carbonization 72 treatment may be related to a high surface interstitial atom concentration or a large 73 surface residual compressive stress due to interstitial atoms.^[14] 74

75 Zhang et al. performed Quench-Polish-Quench (QPQ) salt bath compound treatment on GX-8 alloy steel and found that the dense oxide film Fe₃O₄ could 76 significantly reduce the friction coefficient of the material at 573 K, and the corrosion 77 resistance of the material was greatly improved before the oxide film was ruptured.^[15] 78 79 However, the QPQ treatment is a multi-step and hence relatively complicated process. In contrast, low-temperature salt bath nitriding does not require an additional 80 oxidation process to form a surface oxide layer. Hence, the salt bath nitriding process 81 is simpler and the cost of the equipment is lower than the QPQ process. 82

83

The aim of the present paper was to study the effect of low-temperature liquid

bath nitriding on the corrosion resistance of AISI 304 austenitic stainless steel in a H₂S containing environment. Through the H₂S immersion corrosion tests, the corrosion behavior and the corrosion mechanism of low temperature salt bath nitride 304 austenitic stainless steel in H₂S containing environments (such as pipelines for oil and gas applications) were studied. The low-temperature nitriding is expected to be applied to the pipelines used for oil-gas fields, significantly extending their service life in the H₂S corrosion environment.

91

92 2. Experimental

93 2.1 Material

The material used in this experiment was cast 304 stainless steel, taken from the natural gas valve castings supplied by Southwest Natural Gas Research Institute, China. The chemical composition provided by the materials supplier is shown in Table 1. The samples were ground with abrasive papers from 400# down to 1200#, degreased with a mixture of 50 vol% ethanol and 50 vol% acetone, and finally washed with deionized water and dried in atmosphere.

100 101

Table 1 Chemical composition of AISI 304 stainless steel (mass%)								
Element	С	Cr	Ni	Mn	Si	S	Р	Fe
Pct	0.035	18.640	8.010	1.100	0.436	0.020	0.013	Balance

102 2.2 Liquid bath nitriding and H₂S corrosion test

The chemicals used in this experiment for liquid bath nitriding were non-toxic 103 cyanate, chloride and carbonate salts. The nitriding process involved immersing the 104 sample in 703 K molten salt for 8 hours, during which the non-toxic cyanate 105 decomposes into carbon atoms and nitrogen atoms, forming a high chemical potential 106 on the surface of the samples. More details can be found in literature.^[16] This high 107 chemical potential promotes the diffusion of the nitrogen and carbon atoms into the 108 austenitic stainless steel sample, thus forming a large supersaturation of N(C) in its 109 surface. 110

H₂S corrosion tests were conducted in accordance with NACE TM0177-2005
standard using the solution 'A' recommended by NACE TM0177-2005. Both the
untreated and nitrided samples were soaked in this solution for 720 hours.

Before the H₂S corrosion test, the mass of the sample (m) was weighed and 114 recorded. At the end of the test, the corroded sample was taken out, and the corrosion 115 product formed on the surface was removed with an acid stripping solution (500 ml 116 $HCl + 500 \text{ ml } H_2O + 3.5 \text{ g } C_6H_{12}N_4$). The sample was degreased with acetone and 117 then dried in a box. After drying for 24 hours, the sample was taken out for weighing 118 119 (m_t) , and the corrosion rate was calculated based on the weight loss during the test. The uniform corrosion calculated as follows: 120 rate (R_{corr}) is $R_{corr}=8.76\times10^{4}\times(m-m_{t})/(S_{1}\times\rho\times t)$, where S₁ is the total area of the test piece (32 cm²); 121 ρ is the density of the test piece material (7.9 g/cm³); and t is the test time (720 h). 122

123 2.3 Hydrogen permeation test

Hydrogen permeation testing was performed in line with ASTM G148 standard 124 using a type Avanathan-Stachursky double-electrolytic cell produced by Wuhan 125 Corrtest, China.^[17] Three sets of samples were prepared: untreated samples, 126 127 as-nitrided samples and the nitride samples whose surface oxide film was removed by mechanical polishing. The samples used in this test were stainless steel wafer 128 electrodes with a working surface of 1.77 cm² and a thickness of 0.2 mm. The 129 experimental conditions were decided by referring to literature.^[18-19] The experimental 130 solution is 0.5 mol/L sulfuric acid with 1 g/L CH₄N₂S, and the hydrogen charge 131 current is 20 mA/cm² with an anode potential of 300 mV. Before the test solution was 132 133 added, the sample was passivated in a 0.2 mol/L NaOH solution for more than 24 h, in order that the background current density is less than $0.1 \ \mu A/cm^{2}$.^[20] 134

135 The hydrogen diffusion flux $(J\infty)$ is calculated from the anode steady-state current 136 (I_{∞}) and can be expressed as:

137 $J_{\infty} = [21]$

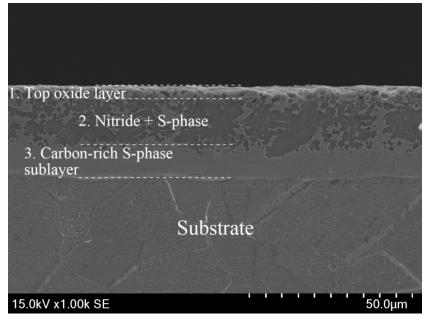
Where: A is the area of the sample in contact with the solution; F is the Faradayconstant.

140 The effective hydrogen diffusion coefficient (D_{eff}) can be calculated using the formula 141 below:

142 $D_{eff} = [22]$

 $C_0 = [22]$

143 Where: t is the thickness of the sample; t_L is the delay time. The delay time is 144 approximately equal to the time taken for the hydrogen charging current density to 145 reach 0.63 times the steady-state anode current density, i.e. the time used for 146 $I_a=0.63I\infty$. The hydrogen concentration C_o at the hydrogen end can be estimated by 147 the following formula:


148

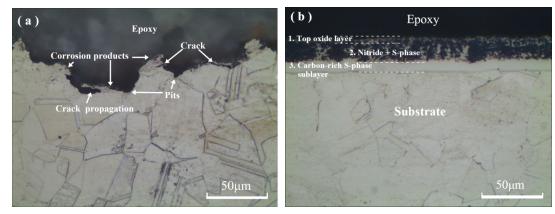
149 2.4 Microstructural characterization

150 The cross section of the sample before and after the H₂S corrosion tests was mechanically polished and chemically etched with an etchant formulated with 50 151 vol% HCl, 25 vol% HNO₃, and 25 vol% H₂O. The OLYMPUS GX51 optical 152 microscope and JSM-7500F scanning electron microscope were used for 153 microstructural analysis. The surface phases were studied using the EMPYREAN 154 X-ray diffractometer (XRD) with a scanning range of 20 to 110 degrees with Cu Ka 155 radiation ($\lambda = 0.15418$ nm). The SHIMADZU-1720 electron probe microanalyzer 156 (EPMA) was used to quantitatively analyze the elemental distribution from the 157 surface to the matrix. X-ray photoelectron spectroscopy (XPS) was used to analyze 158 the surface corrosion products. 159

160 **3. Results**

161 3.1 Characteristics of the nitrided layers

162 163


Fig.1 A typical cross sectional SEM image of nitrided sample

165 Figure 1 shows the cross-sectional photomicrograph of the AISI304 austenitic stainless steel after low-temperature salt bath nitriding treatment. The substrate shows 166 clear grain boundaries after etching with the etchant. The salt bath nitriding produced 167 a 3-layered structure consisting of an oxide top layer, followed by a nitrogen-rich 168 layer and a carbon-rich layer. The atomic nitrogen was formed from the following 169 CNO⁻ dissociation reaction: 4CNO⁻ $\rightarrow 2$ CN⁻ + CO₃²⁻ + CO + [N]. Carburizing is also 170 promoted by the liberation of atomic carbon species according to the following CO 171 dissociation reaction: $CO \rightarrow CO_2 + [C]$. Under the same treatment conditions, the 172 thickness of the nitrided layer is larger than that of the carburized layer. This is mainly 173 174 due to the fact that the atomic radius of N is smaller than that of the C atom, and the energy required for N atoms to enter the lattice is smaller than that for C atoms. Under 175 the same conditions, the nitrogen atoms can diffuse deeper that carbon atoms. 176 Tsujikawa et al. used simultaneous carburizing and nitriding process to obtain a 177 similar layer on the surface of austenitic stainless steel.^[23] Due to the long processing 178 time, certain Cr nitrides appear in the nitrided layer. 179

180 3.2 Corrosion morphology and corrosion rate

181 Nitrided samples and as-received 304 samples were immersed in H_2S solution 182 for 720 h and the cross-sectional micrographs are shown in the Figure 2.

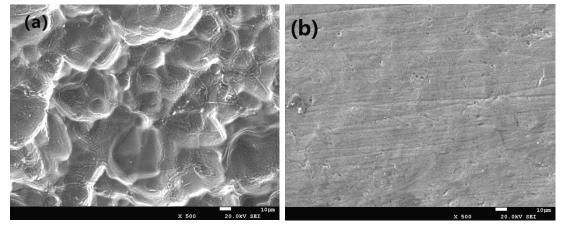

As shown in Figure 2(a), a number of pits and cracks were observed from the cross-section of the untreated sample, which indicates pitting and cracking of the sample. In the process of crack propagation, the width and depth of the crack continuously increased, and the outer layer material eventually spalled off. In contrast, neither pits nor cracks were observed from the cross-section of the nitrided samples after H₂S corrosion test (Fig.2(b)).

Fig.2 Cross-sectional optical micrographs (OM): (a) untreated sample (b) nitrided sample after immersion in H₂S solution for 720h

Figure 3 shows the surface morphology of the untreated and nitrided samples after immersion in H_2S solution for 720h. Many agglomerates were formed on the surface of the untreated sample (Fig.3(a)), which is generally considered to be corrosion product FeS. The surface of the nitrided sample remained intact as evidenced by the existence of the original grinding marks with almost no corrosion product (Fig.3(b)).

199

Fig.3 SEM surface corrosion morphology: (a) untreated sample (b) nitrided sample after immersion in H₂S solution for 720h

As shown in Figure 4, the corrosion rate of the untreated 304 austenitic stainless steel (0.20 mm/a) is approximately 3.3 times that of the nitrided samples (0.06 mm/a). This indicates that the nitriding treatment can significantly improve the corrosion resistance of 304 stainless steel in the H₂S environment.

- 204
- 205
- 206

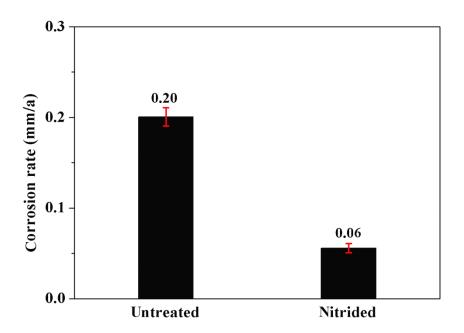


Fig.4 Corrosion rate after H₂S corrosion for 720h

The ionization of H_2S in the solution produced a large amount of H^+ , which led to a significant decrease in the pH of the solution. The ionization reaction can be described as follows: $H_2S = H^+ + HS^-$; $2HS^- = 2H^+ + S^{2-}$. The ionized H^+ is a strong depolarizer that can easily take away electrons from the metal and promote the dissolution reaction of the anode steel to cause metal corrosion. The process of electrochemically etching the cathode and the anode by H_2S is as follows:

216 Cathode: Fe - 2 $e^- \rightarrow Fe^{2+}$;

217 Anode: $2H^+ + 2e^- \rightarrow 2H \rightarrow H_2 \uparrow$.

The anode corrosion product is: $Fe^{2+} + S^{2-} = FeS\downarrow$. Therefore, after the steel is corroded by H₂S, the final product of the anode is FeS. The product usually has a defective structure with poor adhesion to the surface of steel. Hence, it can be easily detached and oxidized, and has a more positive potential. The corrosion product then acts as a cathode and the matrix to form an active microbattery and continues the corrosion of the steel. The process repeated itself and the layer eventually cracked.

225 3.3 XRD analysis

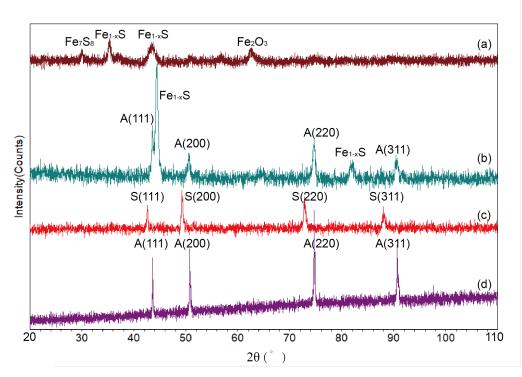
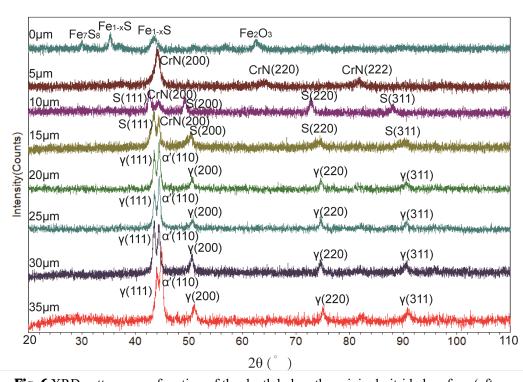
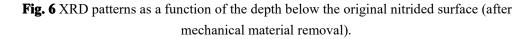
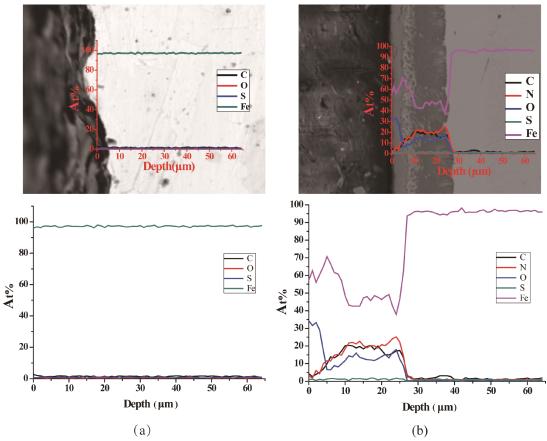




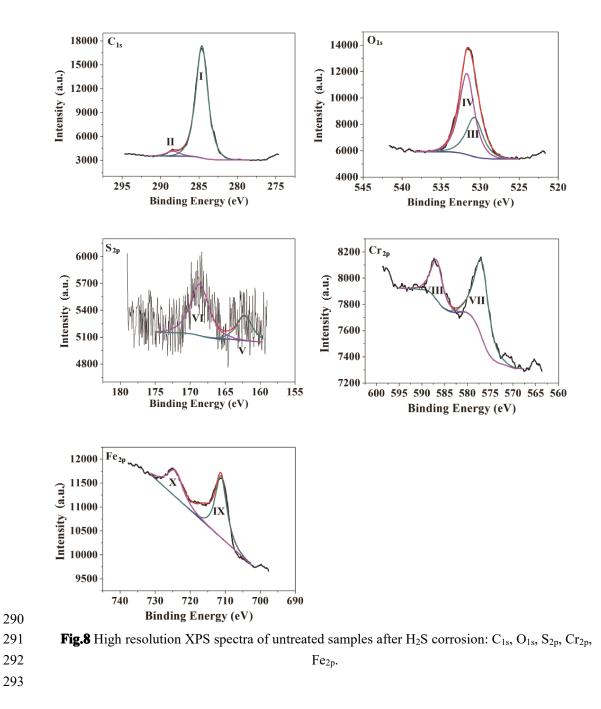
Fig.5 XRD patterns for different samples: (a) nitrided sample after corrosion test, (b) untreated
 sample after corrosion test, (c) as-nitrided sample and (d) untreated sample before corrosion test



Untreated and nitrided samples were characterized by XRD to identify the 233 phases produced as a consequence of H₂S corrosion process; the diffraction patterns 234 of the samples are shown in Figure 5. It can be seen from Figure 5 that the untreated 235 sample shows typical peaks for austenite (Fig.5(d)); the nitrided sample clearly shows 236 S1(111), S2(200), S3(220) and S4(311) peaks. This indicates that the S-phase layer 237 238 has been successfully produced during nitriding. The N or C atoms dissolved in austenite caused the expansion of the original face-centered cubic lattice of austenite 239 (i.e. expanded austenite) and the left-shift of these peaks.^[24] As shown in Figure 5(b), 240 the corrosion product formed on the untreated sample is Fe_{1-x}S, which shows two 241 peaks, one near $\gamma(111)$ and the other between $\gamma(200)$ and $\gamma(311)$. Clear austenite 242 characteristic peaks can still be observed on the XRD diffraction pattern of the 243 244 untreated sample after H₂S corrosion. The corrosion products of the nitrided samples 245 were mainly Fe₇S₈, Fe_{1-x}S, and Fe₂O₃. Compared with the untreated samples, the characteristic peaks of the expanded austenite could not be observed. This implies that 246 the nitrogen concentrations in the $\approx 5 \,\mu m$ thick layer below the specimen surface that 247 is sampled by the X-rays would be reduced during the H₂S corrosion test. 248

The XRD patterns obtained at different depths below the original surfaces are 249 250 shown in Figure 6. In the depth of 5 µm, the nitrided sample exhibits three main diffraction peaks of CrN, which was formed as a consequence of the temperature of 251 252 the treatment, the chromium-rich alloy AISI 304, and the high nitrogen content. When the nitrogen content gradually decreased with the depth, the intensity and the number 253 of CrN peaks reduced accordingly. Normally, when the AISI 304 stainless steel is 254 nitride at 703 K or below, the nitrided layer should be free of nitrides. However, the 255 as-cast 304 stainless steel used in this research may not be well annealed after cold 256 rolling, and a large amount of deformed martensite (α) was left in the matrix, as 257 evidenced by the clear α' peak detected from the substrate (Fig. 6). This resulted in 258 rapid nitrogen diffusion and precipitation of CrN. At the depth of 10 and 15 µm, 259 distinct peaks of S phase and a weak CrN peak can be detected. Then, the 260 α' -martensite phase was detected from the depth 20 μ m down to the substrate, which 261 is also contributed by the strain-induced martensite formed during the laver-by-laver 262 mechanical polishing process. Starting from the depth of 20µm, as the interstitial atom 263 concentration gradually decreased, the lattice distortion also gradually decreased, and 264 it is better to call it γ -phase instead of S-phase. The content of interstitial atoms (C or 265 N) continuously decreased with the depth and the diffraction angle of the γ -phase 266 gradually returned to normal values. 267

268 3.4 EPMA analysis



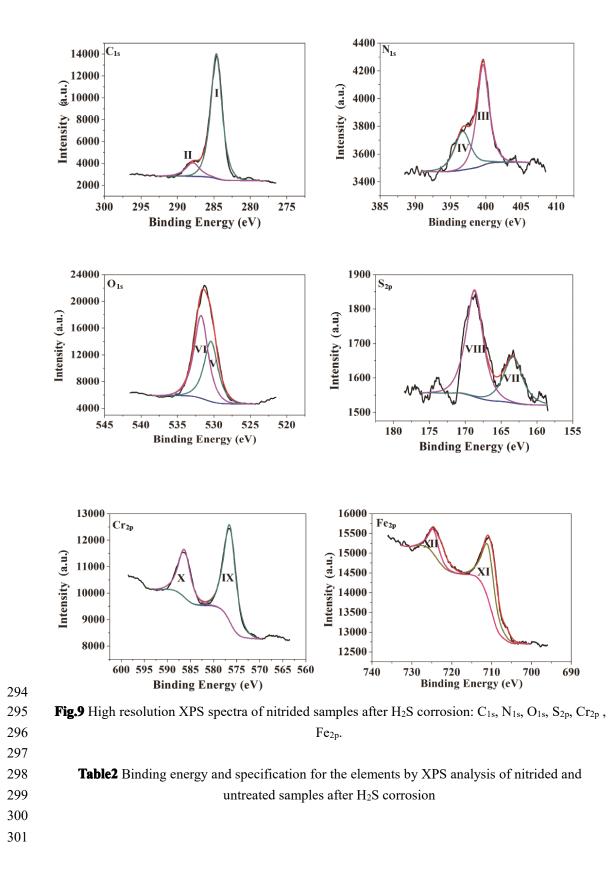

270 271 272

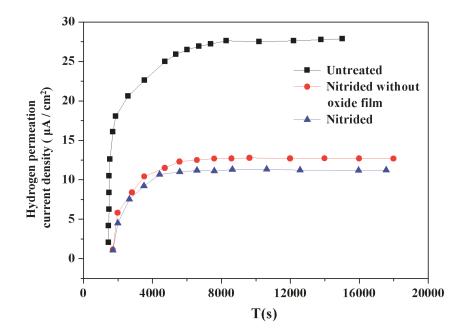
Fig.7 EPMA results of untreated (a) and nitrided samples (b) after immersion corrosion test in Solution A for 720h

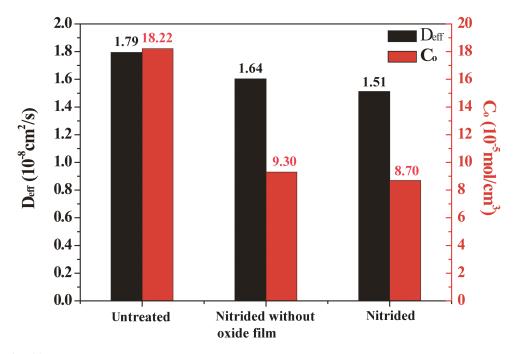
Figure 7 shows the EPMA results of the untreated and low temperature nitrided 273 samples after immersion corrosion test. It can be seen by comparing Figure 7(b) with 274 (a) that oxygen concentration increased significantly in the nitrided layer due to the 275 276 oxygen atoms introduced during the nitriding process. It can be also seen that there is an oxygen plateau near the surface, which is overlapped with the grey surface layer 277 showed in the top graph of Figure 7(b). This indicates the formation of an oxide layer 278 during the salt bath nitriding process. The concentration of nitrogen was increased due 279 to the formation of supersaturated austenite, which improves corrosion resistance. 280 However, the nitrogen content decreased slightly near the surface, which may be 281 caused by the consumption of nitrogen atoms. Combined with the results of XPS 282 analysis, it is known that this is due to the reaction of reactive nitrogen in the nitride 283 layer with H⁺ in the H₂S solution to form NH₄⁺. For the untreated sample, the iron 284 concentration sharply declined on the surface, which means the destruction of the 285 passivation film, thus jeopardizing the corrosion resistance of the untreated sample 286 leading to the appearance of a large number of corrosion pits on the surface (Fig.2(a)). 287 288

289 3.5 XPS analysis

Element		BE(eV)	peak	at%	
untreated			-		
С	1s	284.6	Adventitious/C, I	19.79	
	1s	288.3	Adventitious, II	1.89	
0	1s	530.7	Cr ₂ O ₃ , III	15.46	
	1s	531.7	FeOOH , IV	28.91	
S	2p	162.2	FeS_2, V	3.78	
	2p _{3/2}	168.6	SO4 ²⁻ , VI	9.40	
Cr	2p _{3/2}	576.8	Cr ₂ O ₃ , VII	3.90	
	2p _{1/2}	586.8	Cr(OH) ₃ , VIII	1.66	
Fe	2p _{3/2}	711.2	Fe ₂ O ₃ , IX	9.65	
	$2p_{1/2}$	724.3	FeOOH , X	5.56	
nitrided					
С	1s	284.6	Adventitious/C, I	45.04	
	1s	288.3	Adventitious, II	6.07	
N	1s	396.7	CrN , III	0.98	
	1s	399.6	$\rm NH_{4^+}, \rm IV$	1.89	
0	1s	530.7	Cr_2O_3 , V	16.78	
	1s	531.7	FeOOH , VI	23.16	
S	2p _{1/2}	163.5	FeS ₂ , VII	0.10	
	2p _{3/2}	168.6	SO4 ²⁻ , VIII	0.20	
Cr	2p _{3/2}	576.5	Cr ₂ O ₃ , IX	2.58	
	2p _{1/2}	586.3	Cr ₂ O ₃ , X	1.27	
Fe	2p _{3/2}	710.8	Fe ₂ O ₃ , XI	1.42	
	2p _{1/2}	724.3	FeOOH , XII	0.51	

Elemental contributions analyses have been performed for carbon, nitrogen, oxygen, sulfur, chromium and iron on the H_2S corrosion tested surface of untreated and as-nitrided samples and the results are reported in Figure 8 and Figure 9, respectively. The parameters and corresponding atomic contents are detailed in Table 2.


Oxygen (O_{1s}) contribution in both untreated and nitrided sample appears as two 308 visible although entangling peaks: one for oxides at 530.7 eV and one for hydroxides 309 at 531.7 eV.^[25] XPS analysis results showed that the corrosion products formed on the 310 untreated and nitrided samples were approximately the same, mainly Fe₂O₃, FeOOH. 311 The corrosion products detected by XRD are mainly sulfides, whilst the corrosion 312 products detected by XPS are mainly oxides. This is because the detection depth of 313 the two techniques is different: the detection depth of XRD is usually in the micron 314 range, but the XPS detection is in the nanoscale. Therefore, it can be considered that 315 the corrosion product is layered with the oxide content enriched in the outer layer and 316 the sulfide content in the inner layer. 317


The characteristic peaks of Cr in nitrided and untreated samples are mainly Cr_2O_3 and a small amount of $Cr(OH)_3$. Chromium accumulated in the corrosion product film to form a stable amorphous Cr (OH)₃, which makes the film more stable. At the same time, the corrosion product film mainly containing $Cr(OH)_3$ has a certain cation selective permeability. It can effectively prevent the anion from penetrating the corrosion product film to the metal surface and reduce the corrosion rate of the material.^[26] Since $Cr(OH)_3$ is amorphous,^[27] it does not be detected by XRD.

For the S_{2p} fit spectrum, 162.2 eV and 163.5 eV can be considered as the peak of 325 326 $FeS_{1.15}$, which is consistent with the previous analysis. 168.6 eV can be considered as a characteristic peak of sulfate, such as FeSO₄, Fe₂(SO₄)₃, etc. The presence of 327 sulfates was not expected to be formed in H₂S electrolyte due to the absence of 328 oxygen in solution, which could be the consequence of sulfide oxidation during the air 329 exposition between the end of aging in the H₂S solution and the XPS measurements. 330 For the nitrided samples, 396.7 eV can be regarded as a characteristic peak of CrN in 331 N_{1s} fit spectrum. 399.6 eV can be regarded as a characteristic peak of NH_{4^+} , indicating 332 that the active nitrogen of the nitrided layer reacts with H⁺ in the H₂S solution, 333 consumes H⁺, lowers the pH and protects the metal. The experimental result is 334 consistent with our previous finding.^[28] 335

It can be found from Table 2 that after the H_2S corrosion, the S content (13.27 at%) 336 and Fe content (12.51 at%) of the untreated sample are significantly larger than that of 337 338 the nitrided sample (0.3 at% S and 1.93 at% Fe). On the one hand, it is shown that nitriding can prevent the formation of corrosion products on the surface of the sample, 339 340 and on the other hand, it also indicates that the corrosion product is difficult to deposit on the surface of the sample. The literature indicates that under certain conditions, the 341 corrosion product film has no protective effect on the substrate and may even lead to 342 an increase in the corrosion rate.^[29-31] Since the nitrided layer reduced the production 343 of corrosion products, further corrosion of the sample can be prevented. 344

345 3.6 Hydrogen permeation analysis

350 351

Fig .11 Diffusion coefficients and hydrogen atom concentrations curve of the sample under different conditions.

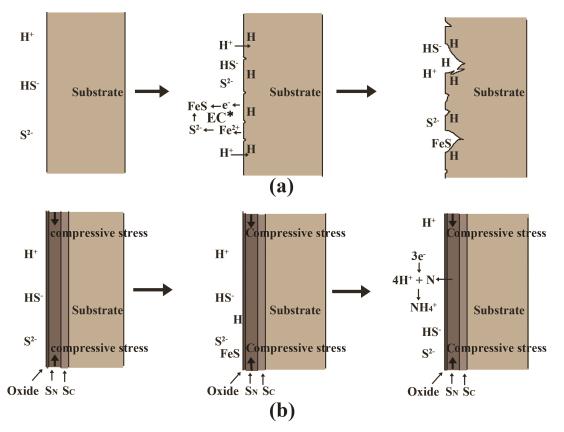
Hydrogen permeation occurring on the surface of pipe steel is one of the main 352 risks of steel failure, and the intensity of which can be reflected in the hydrogen 353 permeation current. [32] Zhang et al. investigated the effect of the cathodic current 354 density (i) on the permeation of hydrogen through X80 pipeline steels using an 355 electrochemical permeation technique and they provided an equation to describe the 356 relationship between concentration of hydrogen (C_0) and cathodic current density (i), 357 this equation indicated that C₀ increased with i. ^[33] The hydrogen permeation current 358 density curves of different samples are shown in Figure 10. It can be seen that the 359 anodic steady-state current density of untreated samples is significantly greater than 360 that of as-nitrided samples and nitrided & oxide film removed samples. In addition, 361

the untreated sample took a longer period to reach the steady state anode current 362 density than the as-nitrided samples and the nitrided & oxide film removed samples. 363 Figure 11 shows the hydrogen diffusion coefficient D_{eff} and hydrogen concentration 364 C_o for different materials states. The results show that the hydrogen concentration in 365 the untreated sample $(18.22 \times 10^{-5} \text{ mol/cm}^2)$ is significantly higher than that of the 366 as-nitrided sample $(9.30 \times 10^{-5} \text{ mol/cm}^2)$ and the nitrided & oxide film removed 367 samples $(8.70 \times 10^{-5} \text{ mol/cm}^2)$. The reason for this may be that the nitrided layer could 368 trap a large amount of hydrogen, thus resulting in a substantial reduction of hydrogen 369 absorption by the substrate.^[34] The hydrogen diffusion coefficient $(1.79 \times 10^{-8} \text{ cm}^2/\text{s})$ of 370 the untreated sample is larger than that of the as-nitrided sample $(1.64 \times 10^{-8} \text{ cm}^2/\text{s})$ and 371 nitride & oxide film removed sample $(1.51 \times 10^{-8} \text{ cm}^2/\text{s})$, indicating the nitrided layer 372 and oxide layer can reduce the diffusion coefficient of hydrogen. 373

4. Discussion

4.1 The effect of the nitrided layer on hydrogen permeation

When the sample is soaked in the H_2S containing solution for a long time, H_2S 376 reacts with the surface of the steel to produce hydrogen, which then enters the steel 377 matrix, building up pressure that leads to embrittlement.^[35] Research has shown that 378 379 supersaturated interstitials cause large lattice expansion while the non-nitrided bulk material constrains this expansion, causing the nitrided layer to have very high 380 residual compressive stresses.^[36] Therefore, the residual compressive stress helps to 381 relieve the tensile stress caused by the H atoms, thus preventing hydrogen 382 embrittlement. However, when the sample is in a stress corrosion environment and the 383 applied tensile stress increases to a certain extent, the residual compressive stress of 384 385 the S-phase layer may be cancelled out and hydrogen-induced cracking can occur.^[28] From the results of electrochemical hydrogen permeation experiment (Fig.10 and Fig 386 11), it can be seen that both the nitrided layer and the oxide layer help reduce the 387 diffusion coefficient of hydrogen and the amount of hydrogen atoms entering the 388 material, thus shorting the time required for the anode current to reach equilibrium. 389 The possible reason is that the nitriding layer can trap a large amount of hydrogen, 390 resulting in a substantial reduction of hydrogen absorption by the substrate.^[34] as 391 shown in Figure 11. 392


Research has shown that electrochemical H-charging of pulsed plasma nitrided austenite resulted in a softening effect within the compound layer (S-phase).^[37] The hydrogen in the lattice acts as a solution softening agent and the softening or hardening effect of the hydrogen is dependent on the nitrogen concentration and the dislocation density of the material. As can be seen from Figure 7, the nitrogen concentration exceeds 20 at%. When hydrogen ions enter the nitrided layer with a very high interstitial atom content, it softens and prevents hydrogen embrittlement.

400 4.2 The effect of the nitriding on H_2S corrosion

Figure 12 schematically shows the H₂S corrosion model for untreated and nitrided 401 specimens. As shown in Figure 12(a), acidic H₂S solution hydrolyzes H⁺, HS⁻, S²⁻, 402 which reacts on the surface of the steel to produce Fe^{2+} . When acidic chemical 403 corrosion occurs, the inherent protective film on the pipe surface is destroyed, causing 404 the corrosive medium to enter the interior of the metal crystal and generating 405 electrochemical corrosion. Electrochemical corrosion forms an etched primary cell. 406 The anode process is a dissolution reaction of the metal, and the cathode undergoes a 407 408 hydrogen depolarization reaction. Anodic sulphide corrosion products deposit on the metal surface, which is poorly protective and in fact promotes the corrosion of the 409 stainless steel substrate. Monnot et al. highlighted the role of corrosion products on 410 the failure mechanism of martensitic stainless steels in sour media.^[38] Corrosion 411 product formed under this condition has a high level of porosity and is prone to 412 spalling due to cracks and defects throughout the amorphous structure. In fact, H₂S 413 diffuses on the surface of the etching film and penetrates along the porous structure, 414 and reacts at the metal/film interface. The metal sulphide is formed to release the 415 hydrogen previously bound to the sulfur that can be absorbed by the alloy. Corrosion 416

product films therefore correspond to a rich hydrogen reservoir near the metal surface
that can trigger and maintain hydrogen uptake. The data in Table 2 show that nitriding
treatment can effectively reduce the generation of corrosion products, thereby
alleviating hydrogen embrittlement and corrosion.

421

Note:* stands for electrochemical corrosion.

422 423

Fig.12 H₂S corrosion model of (a) untreated sample and (b) nitrided sample

424

The oxide layer can effectively prevent the corrosion of acidic H₂S as 425 schematically shown in Figure 12(b). Granda-Gutiérrez et al. found that 426 post-oxidation following nitriding treatment increased the time to SSC rupture of 427 stainless steel by a factor of 10 because the dense oxide film on the surface after the 428 treatment significantly improved the resistance to H₂S corrosion cracking of the 429 stainless steel.^[39] This is partially because the nitride layer reduced the generation of 430 corrosion products (Table 2) and partially because it also prevented hydrogen atoms 431 (Fig.11) from entering the substrate, thereby preventing electrochemical corrosion. 432

Nitrogen can effectively improve the local corrosion resistance of stainless steel,^[40] and some hypotheses have been put forward to explain this behavior: (1) high concentration of nitrogen atoms on the surface of stainless steel stabilizes passive film and inhibits dissolution;^[41-43] (2)formation of NO_3^- (nitrate) ions leads to increased pitting resistance;^[44] (3) stabilization effect of nitrogen on austenite.^[45] For the nitrided samples produced in this research, there are a large amount of active nitrogen

atoms in the surface of the sample after low temperature nitriding due to the high 439 level of chromium, nickel, molybdenum in the matrix material. The fitted spectra of 440 N1s from the nitriding samples after being soaked in H₂S solution are shown in Figure 441 9. H⁺ reacts with the nitrogen atom via the reaction: $N + 4H^+ = NH_4^+$. This consumed 442 the H⁺ in the solution prevented the pH of the metal surface from decreasing, and 443 444 thereby increased the corrosion resistance of the alloy, which is consistent with the EPMA results in Figure7. At the same time, the active nitrogen atoms can accelerate 445 the formation of passivation film and affect the repassivation kinetics, so that the 446 passivation film can grow stably and increase the density of the passivation film.^[46] 447

448 **5. Conclusions**

Low-temperature liquid nitrided samples have better corrosion resistance than untreated samples in H_2S environment. The corrosion rate of the untreated sample is about 3.6 times that of the nitriding sample; clear corrosion pits can be observed on the surface of the untreated sample, while the treated sample surface remains almost intact. Due to the presence of oxide layers, despite precipitation of CrN in the nitriding layer, the corrosion resistance of the sample after the nitriding treatment in the H_2S environment is still significantly improved by the treatment.

The corrosion products are mainly consisted of oxides, hydroxides, and sulfates. The nitrided layer reduces the production of corrosion products; further corrosion of the sample is thus prevented. Both oxide layer and nitrided layer can reduce the diffusion coefficient of hydrogen and the amount of hydrogen atoms entering the material, which is beneficial to improving the resistance to hydrogen embrittlement. Nitriding layer is supersaturated with active nitrogen atoms, which combine with H⁺ to avoid surface pH reduction, thus decelerating H₂S corrosion.

463 Acknowledgement

The authors are very grateful to the grants provided by National Natural Science
Foundation of China (No. 51471112 and 51611130204), Science and Technology
Planning Project of Sichuan (No.2016GZ0173) and the Newton Mobility Grant from
Royal Society, UK (IE151027).

468

469 **References**

- 470 1. K. Komai, Int. J. Fatigue., 1998, vol. 20, pp. 145-154.
- 471 2. M. L. Medvedeva and V. V. Gur'Yanov, Prot. Met., 2002, vol. 38, pp. 284-288.
- 472 3. D. W. Shoesmith, P. Taylor, M. G. Bailey and D. G. Owen, *Cheminform*, 1980, vol. 11, pp.
 473 1007-1015.
- 474 4. H. Yang, J. Chen, C. Cao, D. Cao and X. Jiang, *J. Chin. Soc. Corros . Rrot.*, 2001, vol. 21, pp.
 475 321-327.
- 476 5. H. Wang, P. Zhou, S. Huang, C. Yu, Int. J. Electrochem. Sci., 2016, vol. 11, pp. 1293-1309.
- 477 6. J. Fliethmann, H. Schlerkmann and W. Schwenk, *Corros. Sci.*, 1992, vol. 24, p. 746.
- 478 7. J. Ding, Z. Lei, M. Lu, J. Xue and Z. Wen, *J. Mater. Sci. Technol.*, 2013, vol. 48, pp. 3708-3715.
- 479 8. S. K. Putatunda, Mat. Sci. Eng. R., 1986, vol. 82, pp. L7-L11.

- 480 9. W.T. Tsai and S.L. Chou, *Corros. Sci.*, 2000, vol. 42, pp. 1741-1762.
- 481 10. L. F. Li, Z. Q. Huang and X. M. Liu, Adv. Mater., 2012, vol. 485, pp. 393-396.
- 482 11. A. Heuer and S. Collins, *Metall. Mater. Trans. A.*, 2009, vol. 40, pp. 1767-1767.
- 483 12. G. M. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal and A. H. Heuer, *Acta. Mater.*, 2006,
 484 vol. 54, pp. 1597-1606.
- 485 13. X. Y. Li and H. Dong, *Met. Sci. J.*, 2003, vol. 19, pp. 1427-1434.
- 486 14. S.J.B.Kurza, S.R.Mekaa, N.Schellb, W.Eckerc, J.Keckesd, E.J.Mittemeijerae, Acta. Mater., 2015,
- 487 vol. 87,pp.100-110.
- 488 15. L. Zhang, C. Ren, Q. Yu, J. Zhang, S. Sun, Q. Ren, Y. Lian, X. Chen and W. Gao, *Surf. Coat.*489 *Technol.*, 2017, vol. 315, pp. 95-104.
- 490 16. J. Wang, Y. Lin, J. Yan, D. Zeng, R. Huang and Z. Hu, *Isij Int.*, 2012, vol. 52, pp. 1118-1123.
- 491 17. M. A. V. Devanathan, Z. Stachurski, Proc. Royal. Soc. Lond, 1962, vol. 270(1340), pp. 90-102
- 492 18. S. Shen, X. Li, P. Zhang, Y. Nan, G. Yang: Mater. Sci. Eng. A 2017, vol. 703, pp: 413-421
- 493 19. H. Hu, K. Li, W. Wu, G.X.Chen, W.J.Chen: J. Xi'an Jiaotong Univ. 2016, vol. 50(07). 89-95.
- 494 20. C. Zhou, S. Zheng, C. Chen and G. Lu, *Corros. Sci.*, 2013, vol. 67, pp. 184-192.
- 495 21. R.A. Carneiro, R. C. Ratnapuli and V. D. F. C. Lins, *Mat. Sci. Eng. A.*, 2003, vol. 357, pp.
- 496 104-110.
- 497 22. C. F. Dong, Z. Y. Liu, X. G. Li and Y. F. Cheng, *Int. J. Hydrogen. Energ.*, 2009, vol. 34, pp.
 498 9879-9884.
- 499 23. M. Tsujikawa, N. Yamauchi, N. Ueda, T. Sone and Y. Hirose, *Surf. Coat. Technol.*, 2005, vol. 193,
 500 pp. 309-313.
- 501 24. W. Shi, X. Y. Li and H. Dong, *Wear.*, 2001, vol. 250, pp. 544-552.
- 502 25. M. Mantel and J. P. Wightman, *Surf. Interface. Anal.*, 1994, vol. 21, pp. 595-605.
- 503 26. C. F. Chen, W. F. Chang, Z. H. Zhang, M. X. Lu and D. B. Sun, *Corrosion -Houston Tx-* 2005, vol.
 504 61, pp. 594-601.
- 505 27. J. Sun, C. Sun, X. Lin, X. Cheng and H. Liu, *Materials.*, 2016, vol. 9, p. 200.
- 506 28. X. Zhang, J. Wang, H. Fan, J. Yan, L. Duan, T. Gu, G. Xian, L. Sun and D. Wang, *Metall. Mater.* 507 *Trans. A.*, 2018, vol. 49, pp. 356-367.
- 508 29. D. R Morris, L. P Sampaleanu and D. N Veysey, *J. Electrochem. Soc.*, 1980, vol. 127, pp.
 509 1228-1235.
- 510 30. F. H. Meyer, O. L. Riggs, R. L. Mcglasson and J. D. Sudbury, *Corrosion -Houston Tx-* 1958, vol.
 511 14, pp. 109-115.
- 512 31. J. S. Smith and J. D. A. Miller, *Brit. Corros. J.*, 2013, vol. 10, pp. 136-143.
- 513 32. C. Zhou, X. Chen, Z. Wang, S. Zheng, X. Li, L. Zhang, Corros. Sci. 2014, vol. 89, pp: 30-37
- 514 33. L. Zhang, W. Cao, K. Lu, Z. Wang, Y. Xing, Int. J. Hydrogen Ener, 2017, vol. 42(5), pp:
 515 3389-3398.
- 516 34. T. Zakroczymski, J. Flis, N. Lukomski and J. Mankowski, *Acta.Mater.*, 2001, vol. 49, pp.
 517 1929-1938.
- 518 35. Z. Y. Liu, C. F. Dong, X. G. Li, Q. Zhi and Y. F. Cheng, *J. Mater. Sci.*, 2009, vol. 44, pp.
- 519 4228-4234.
- 520 36. A. H. Heuer, F. Ernst, H. Kahn, A. Avishai, G. M. Michal, D. J. Pitchure and R. E. Ricker, Scripta
- 521 *Mater.*, 2007, vol. 56, pp. 1067-1070.
- 522 37. M. Asgari, A. Barnoush, R. Johnsen and R. Hoel, Corros. Sci., 2012, vol. 62, pp. 51-60.
- 523 38. M. Monnot, R.P. Nogueira, V. Roche, G. Berthomé, E. Chauveau, R. Estevez, M. Mantel, Appl.

- 524 Surf. Sci., 2017, 394:132-141.
- 525 39. E. E. Granda-Gutiérrez, J. C. Díaz-Guillén, J. A. Díaz-Guillén, M. A. González, F.
- 526 García-Vázquez and R. Muñóz, J. Mater. Eng. Perform., 2014, vol. 23, pp. 4148-4153.
- 40. P. G. Esteban, L. Bolzoni, E. M. Ruiznavas and E. Gordo, *Power. Metall.*, 2011, vol. volume 54,
 pp. 242-252(11).
- 529 41. Y. C. Lu, R. Bandy, C. R. Clayton and R. C. Newman, *Cheminform.*, 1983, vol. 14, pp.
- 530 1774-1776.
- 531 42. H. Baba, T. Kodama and Y. Katada, *Corros. Sci.*, 2002, vol. 44, pp. 2393-2407.
- 532 43. C.O. A. Olsson, *Corros. Sci.*, 1995, vol. 37, pp. 467-479.
- 533 44. H. P. Leckie, *J. electrochem. soc.*, 1966, vol. 113, pp. 1262-1267.
- 534 45. J. W. Simmons, Mat. Sci. Eng. A., 1996, vol. 207, pp. 159-169.
- 535 46. P. R. Levey and A. R. V.Bennekom, *Corrosion.*, 1995, vol. 51, pp. 911-921.

536	Fig.1 A typical cross sectional SEM image of nitrided sample						
537							
538	Fig.2 Cross-sectional optical micrographs (OM): (a) untreated sample (b) nitrided						
539	sample after immersion in H ₂ S solution for 720h						
540 541	Fig 3 SEM surface correction morphology: (a) untroated sample (b) nitrided sample						
542	Fig.3 SEM surface corrosion morphology: (a) untreated sample (b) nitrided sample after immersion in H ₂ S solution for 720h						
	Fig.4 Corrosion rate after H ₂ S corrosion for 720h						
543							
544	Fig.5 XRD patterns for different samples: (a) nitrided sample after corrosion test, (b)						
545 546	untreated sample after corrosion test, (c) as-nitrided sample and (d) untreated sample before corrosion test						
547	Fig. 6 XRD patterns as a function of the depth below the original nitrided surface						
548	(after mechanical material removal).						
549	Fig.7 EPMA results of untreated (a) and nitrided samples (b) after immersion						
550	corrosion test in Solution A for 720h						
	Fig.8 High resolution XPS spectra of untreated samples after H ₂ S corrosion: C1s, O1s, S2p, Cr2p, Fe2p.						
	Fig.9 High resolution XPS spectra of nitrided samples after H_2S corrosion: C1s, N1s, O1s, S2p, Cr2p, Fe2p.						
551 552	Fig.10 Hydrogen permeation current density curves of samples under different conditions.						
	Fig.11 Diffusion coefficients and hydrogen atom concentrations curve of the sample under different conditions.						
	Fig.12 H_2S corrosion model of (a) untreated sample and (b) nitrided sample						
	Table 1 Chemical composition of AISI 304 stainless steel (mass%)						
	Table 2 Binding energy and specification for the elements by XPS analysis of nitridedand untreated samples after H2S corrosion						