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Highlights 

 

In this paper, we propose an interactive ontology matching based on 

Partial Reference Alignment (PRA) to efficiently match the 

heterogeneous ontologies. Our major contributions are as follows: 

(1) A PRA-based ICHEA is proposed to adaptively determine the timing 

of getting user involved, and automatically search for potential 

mappings; 

(2) Three techniques, i.e. partition of the ontologies into similar segment 

pairs, determination of problematic mappings, and automatic 

validation of multiple conflicting mappings, are proposed to reduce 

user workload; 

(3) An asymmetrical profile-based similarity measurement and a mapping 

confidence propagation are proposed to increase the value of user 

involvement, and, at the same time, reduce the negative effect brought 

by erroneous user validations. 

*Highlights (for review)
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Abstract

The technique that enables the user and the automatic ontology matching
tool to cooperate with each other to generate high-quality alignments in a
reasonable amount of time is referred to as the interactive ontology match-
ing. Interactive ontology matching poses a new challenge in a way of how
to efficiently leverage user validation to improve the ontology alignment. To
address this challenge, this paper presents an innovative interactive ontology
matching technique based on Partial Reference Alignment (PRA) to bet-
ter balance between the large workload posed on users and the demand of
improving the quality of ontology alignment. In particular, a PRA-based
Interactive Compact Hybrid Evolutionary Algorithm (ICHEA) is proposed
to reduce user workload, by adaptively determining the timing of involv-
ing users, showing them the most problematic mappings, and helping them
to deal with multiple conflicting mappings simultaneously. Meanwhile, it
increases the value of user involvement by propagating the confidences of
validated mappings, as well as reducing the negative effects brought by the
erroneous user validations. The well-known OAEI 2016’s benchmark track
and interactive track are utilized to test the performance of this approach.
The experimental results on benchmark track show that both the f-measure
and the f-measure per second of this approach outperform those of the OAEI
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participants and three state-of-the-art Evolutionary Algorithm (EA) based
ontology matching techniques. In addition, the experimental results of three
interactive testing cases further show that ICHEA can efficiently determine
high-quality ontology alignments under different cases of user error rates,
and the performance of the approach is generally better than that of state-
of-the-art interactive ontology matching systems.

Keywords: interactive ontology matching, partial ontology alignment,
interactive compact hybrid evolutionary algorithm.

1. Introduction

Although ontology is reckoned as a solution to data heterogeneity on the
Semantic Web, the subjectivity of different ontology designers leads to the
generation of heterogeneous ontologies. In order to support the semantic
inter-operability in many domains through disparate ontologies, it’s neces-
sary to identify the correspondences out of semantically identical entities
inside two heterogeneous ontologies, which is commonly known as ontology
matching [1]. Since manual identification of semantic correspondences is ex-
tremely impractical, especially that the ontologies could contain hundreds
even thousands of entities, many automatic ontology matching tools have
been proposed in recent years. However, due to the complexity in the process
of ontology matching, ontology alignments generated by automatic matching
tools should be validated by users to guarantee the quality [2]. The tech-
nique that enables users and automatic tools to cooperate with each other to
generate a high-quality alignment in a reasonable amount of time is referred
to as interactive ontology matching [3].

The ontology can be described through its architecture graph (the nodes
represent concepts and instances, while the edges stand for the relationship
between them). Solving ontology matching problem is the process of deter-
mining the largest isomorphic subgraph out of the two architecture graphs
of two ontologies to be matched. Since modeling ontology matching is a
complex (nonlinear with many local optimal solutions) and time-consuming
task (large scale), particularly when the number of ontology entities is sig-
nificantly large. Evolutionary Algorithm (EA) could be an efficient approach
to address this problem. Comparing with other evolutionary methods such
as Particle Swarm Optimization (PSO) algorithm [4], Hybrid Evolutionary
Algorithm (HEA) [5, 6] can better balance the global search and local search,
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and work better in reducing the possibility of premature convergence whereas
increasing the convergence speed. Therefore, it is able to solve the problem
of ontology matching in a more efficient way. Actually, HEA-based ontol-
ogy matching techniques perform better in determining ontology alignments
than state-of-the-art ontology matching systems do [7, 8, 9]. However, since
it is necessary to execute the ontology matching within a specific run time,
aparting from the quality of alignments, the execution time and main mem-
ory consumption are essential too. According to [10], if properly designed, a
population-based algorithm with a very small population size can efficiently
solve the large-scale problem. As a result, a new category of EA emerges,
which is the so-called Compact EA (CEA). It employs the search logic of
population-based algorithms without storing or processing the entire popu-
lation. On the contrary, it utilizes probabilistic representatives of the pop-
ulation to perform the optimized process [11]. Thus, CEA-based ontology
matching technique greatly improves the efficiency of traditional EA-based
approaches. In addition, traditional EA-based ontology matching techniques
usually require the domain expert to provide a reference alignment to eval-
uate the quality of the obtained ontology alignments. Since the number
of possible correspondences grows quadratically over the number of entities
inside the ontology, the typical approach is not feasible for large-scale match-
ing tasks. To overcome this drawback, Partial Reference Alignment (PRA),
which is a set of example mappings that can be provided by a domain expert
in a reasonable amount of time, is proposed to replace the reference align-
ment to evaluate the quality of ontology alignment [12, 13]. Nevertheless,
the research on it is still in its infancy.

How to minimize user workload, while on the other hand, maximizing the
value of user involvement is one of the main challenges in interactive ontol-
ogy matching domain [14]. To address this challenge, this paper proposes a
PRA-based Interactive Compact Hybrid Evolutionary Algorithm (ICHEA)
to better balance between user workload and the demand of improving the
quality of ontology alignment. Firstly, the timing of getting user involved
through CHEA is determined adaptively. During each validating process,
the most problematic mappings for validation are presented to the user, and
help him to validate multiple conflicting mappings simultaneously. After
that, we propagate the confidences from validated mappings to their neigh-
borhood, which manages to reduce the negative effects brought by erroneous
user validations. In particular, the major contributions of this work lie in
the following aspects:

3
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• A PRA-based ICHEA is proposed to adaptively determine the timing of
getting user involved, and automatically search for potential mappings;

• Three techniques, i.e. partition of the ontologies into similar segment
pairs, determination of problematic mappings, and automatic valida-
tion of multiple conflicting mappings, are proposed to reduce user work-
load;

• An asymmetrical profile-based similarity measurement and a mapping
confidence propagation are proposed to increase the value of user in-
volvement, and, at the same time, reduce the negative effect brought
by erroneous user validations.

The rest of the paper is structured as follows: Section 2 describes relevant
work of this paper; Section 3 presents the evaluation of PRA-based ontol-
ogy alignment; Section 4 introduces the framework of PRA-based interactive
ontology matching; Section 5 illustrates the automatic ontology matching
process which adaptively determines the timing of involving users; Section
6 demonstrates three techniques to reduce user workload; Section 7 explains
the approach of increasing the value of user involvement; Section 8 sketches
the outline of ICHEA; Section 9 unfolds the studies and analysis of the ex-
periments; last but not least, Section 10 draws the conclusion and forecasts
the future work.

2. Related Work

2.1. Interactive Ontology Matching

The performance of automatic ontology matching techniques is quite lim-
ited, since adopting more advanced alignment techniques brought diminish-
ing returns. The reason is the complexity and intricacy of the ontology
alignment process, as well as that each task has its own uniqueness, dictated
both by the domain and the design of the ontologies. Therefore, automatic
generation of mappings should be regarded only as the first step towards the
final alignment, with the pre-requisite of making user validation an essen-
tial step to guarantee the alignment quality [3]. For this reason, in recent
years, many interactive ontology matching techniques have been proposed to
improve the quality of ontology alignment by exploiting the user’s interven-
tions. Existing interactive ontology matching techniques can be categorized
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according to different phases of involving users, i.e., before, during or after
the automatic matching phase.

AML [15] starts interacting with the user in selecting and repairing phases,
which is after the automatic matching phase. The user’s inputs are employed
to filter the mappings contained in the final alignment. Alin [3] also gets user
involved after the automatic matching phase. It generates an initial set of
candidate mappings between classes based on six string-similarity metrics
and a stable-marriage algorithm. If a candidate mapping generates the max-
imum similarity value for all six metrics, then it is added to the final align-
ment. The rest are sorted by the sum of the metrics, and will be presented
to the user one by one. The candidate mapping will be transferred to the
final alignment, once the user accepts it. Data and object correspondences
related to the accepted mapping are then added to the candidate mapping
list, while all candidate mappings that are part of alignment anti-patterns
with the approved mapping will be removed from the list of candidates. The
process continues until no more candidate mappings remain. Before auto-
matic matching phase, LogMap [16] interacts with users to generate candi-
date mappings, and then it further employs lexical, structure and reasoning-
based techniques to discard some of the mappings. Finally, it requires the
user to validate those mappings that are not clear-cut, and then determines
the final alignment. XMap [17] applies two thresholds to filter candidate
mappings for user validation. One is for mappings that are directly added to
the final alignment; the other is for those presented to the user for validation.
High threshold is set for the latter to minimize the number of requests. The
rejected candidate mappings from the oracle and the requests are mainly in-
correct mappings. The mappings accepted by the user will be moved to the
final alignment. ServOMBI [18] relies on terminological indexing strategy
provided by the ServO Ontology Repository (OR) system [19] to reduce the
search space, and compute an initial set of candidate mappings based on the
terminological description of the ontology entities. After that, it utilizes a
machine learning approach and a modified contextual similarity measure to
determine the ontology alignment. In the post-matching phase, the user is
asked to validate candidate mappings to determine the final alignment.

These state-of-the-art interactive ontology matching techniques depend
exclusively on user interactions before or after the matching to distinguish
their candidate mappings. While our approach mainly focuses on the iter-
atively validating process, where the user gets involved during the iterative
automatic matching process. In each iteration, the alignment generated from
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the previous one is improved in terms of completeness (whether all correct
correspondences have been determined) and soundness (whether all deter-
mined correspondences are correct correspondences), which effectively raises
the quality of the ontology alignment.

2.2. Ontology Matching based on Partial Reference Alignment

In recent years, some ontology matching systems have begun to utilize the
PRA to guide the matching process. Lambrix et al. [12] was the first to use
PRA to partition ontologies, and determine the appropriate weights among
various ontology similarity measures. They further presented an ontology
matching framework that uses PRA to generate mapping suggestions for user
validation [20]. Duan et al. [21] utilized the PRA to evaluate the ontology
alignment obtained in an iterative supervised-learning process, which was
also dedicated to determine the optimal weights to combine various ontology
matchers for matching ontology entities. Similarly, Tan et al. [22] used
PRA to implement an ontology alignment recommendation approach, which
firstly used PRA to evaluate the ontology alignments, and then provided
recommendations based on evaluation results. ECOMatch [23] utilized PRA
to fine tune its parameter set, which was then used to match the ontologies.
More recently, Xue et al. [13] proposed a novel PRA constructing approach
based on ontology clustering algorithm, where EA was used to determine the
optimal weights to aggregate different ontology matcher’s alignment.

All of the above methods use PRA as a static input to reduce the search
space of the algorithm or to tune the system’s parameters, while in our work,
during the evolving process, PRA can be updated after each user’s interac-
tion. The updated PRA will better evaluate the quality of the alignment
and guide the search direction of ICHEA, and as a result of which, the per-
formance of the algorithm is improved.

3. Partial Reference Alignment based Ontology Alignment Evalu-
ation

In this study, an ontology O is defined as 5-tuple (C,P, I,Λ,Γ) [7], where
C,P, I,Λ,Γ are referred to the set of classes, properties, instances, axioms
and annotations respectively. In addition, an ontology alignment A between
two ontologies is a correspondence set. Each correspondence is a 4-tuple
(e, e′, n, r), where e and e′ are the entities of two ontologies, n ∈ [0, 1] is a

6
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confidence value holding for the correspondence between e and e′, and r is
the relationship between e and e′, which refers to equivalence in this work.

In Figure 1, there are two simple ontologies O1 and O2, and an alignment
between them. Classes are shown in rectangles with rounded corners, e.g., in
O1, Book is specialization (subclass) of Product, but their relationships are
shown without the latter. It is the same with price being an attribute defined
on the integer domain and creator being a property. Albert Camus: Lachute
is a shared instance. Correspondences are shown as thick arrows that link
an entity from O1 with an entity from O2. They are annotated with the rela-
tionship that is expressed by the correspondence: for example, Person in O1

is less general (⊑) than Human in O2. Assume that an e-commerce company
acquires another one. Technically, this acquisition requires the integration of
their information sources, and hence, of the ontologies of these companies.
The documents or instance data of both companies are stored according to
ontologies O1 and O2, respectively. In this example, these ontologies contain
subsumption statements, property specifications and instance descriptions.
The first step in integrating ontologies is matching, which discovers corre-
spondences, namely candidate entities to be merged or to have subsumption
relationships under an integrated ontology. Once the correspondences be-
tween two ontologies have been discovered, they can be used, for instance,
for generating query expressions that automatically translate instances of
these ontologies under an integrated ontology. For example, the attributes
with labels title in O1 and in O2 are the candidates to be merged, while the
class with label Monograph in O2 should be subsumed by the class Product
in O1.

To evaluate the quality of an alignment and the effectiveness of a match-
ing approach, it is necessary to determine whether all correct correspondences
have been discovered (completeness) and whether all discovered correspon-
dences are correct (soundness). Normally, the alignment is assessed in terms
of two measures, commonly known as precision and recall. Precision (or
soundness) measures the fraction of the selected correspondences that are ac-
tually correct. Recall (or completeness) measures the fraction of the number
of correct mappings discovered against the total number of existing correct
alignments. Maximum precision (no false positive) and maximum recall (no
false negative) refer to the absence of type I and type II errors 1 respectively.

1https://en.wikipedia.org/wiki/Type I and type II errors

7
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Figure 1: Two simple ontologies and an alignment

Although a precision of 1 means that all correspondences found are correct,
it does not imply that all correct ones have been found. Analogously, a recall
of 1 means that all the correct correspondences have been discovered, but it
does not provide the information about the number of falsely identified ones.
Therefore, precision and recall are often balanced against each other by the
so-called f-measure, which is the uniformly weighted harmonic meaning of
recall and precision. Since f-measure can better balance the precision and
recall, it is the most popular indicator that is utilized to measure the quality
of an ontology alignment. Given a Reference Alignment (RA) R, which is
the golden ontology alignment provided by the expert, and an alignment A,
recall, precision and f −measure can be defined as follows [24]:

8
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|R ∩ A|
|A|

(1)

recall =
|R ∩ A|
|R|

(2)

f −measure = 2× precision× recall

precision+ recall
(3)

Although recall, precision and f-measure can reflect the quality of the
resulting alignment, they require domain experts to provide the reference
alignment in advance. However, this perfect matching result is generally
unknown for difficult real-life matching problems, especially for the large-
scale ontology matching task. In this study, the Partial Reference Alignment
(PRA) based metrics are proposed to approximately evaluate the quality of
ontology alignment. PRA is a subset of RA, which can be provided by a
domain expert in a reasonable amount of time. Given an ontology alignment
A and a partial reference alignment PRA, a partial alignment Ap is the
subset of A which contains all elements in A and shares at least one entity
with an element in PRA [13]:

Ap = {(e1, e2, n,=) ∈ A|∃e′1, n′ : (e′1, e2, n
′,=) ∈ PRA}∪

{(e1, e2, n,=) ∈ A|∃e′2, n′ : (e1, e
′
2, n

′,=) ∈ PRA} (4)

Through referring to the definitions of recall, precision and f-measure,
this paper defines recall, precision and f-measure on PRA by replacing R
and A with PRA and Ap respectively in the formulas.

4. Partial Reference Alignment based Interactive Ontology Match-
ing Framework

According to the statement made by the OAEI organizers, automatic
generation of mappings is only the first step towards the final alignment,
so the user interaction in the matching process is essential [25]. Therefore,
this paper presents a PRA-based interactive ontology matching framework,
which is shown in Figure 2.

In this figure, three working phases, i.e., PRA initialization, PRA-based
ICHEA, and segment alignment aggregation and evaluation, are outlined

9
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Figure 2: Outline of the Interactive Compact Hybrid Evolutionary Algorithm based On-
tology Matching Framework

by dotted-line boxes. A dotted-line box with a rectangle inside represents
a working step. A rectangle with a picture indicates the input or output
data (e.g., the ontologies, ontology segments or the evaluation results). Two
black lines in parallel refer to the beginning and end of two parallel executions
respectively. Specifically, the description of three working phases is given as
follows:

• PRA initialization: an ontology partition algorithm is used to parti-
tion two ontologies into several similar segment pairs. Before matching

10
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each segment pair, the high-confidence segment entity mappings are
presented to the user for validation to initialize the PRA of this match-
ing task, i.e., each segment matching task has one particular PRA of
its own. The matching process hereafter only needed to be executed
on much smaller ontology segments, which reduces the search space of
ICHEA and improves its performance;

• PRA-based ICHEA: the PRA-based ICHEA is used to match the on-
tology segments. When the evolving process gets stuck, the algorithm
will get the user involved to guide the algorithm’s search direction by
introducing new correspondences and filtering error ones;

• Segment alignment aggregation and evaluation: all the segment align-
ments are aggregated through a greedy strategy, where among all cor-
responding correspondences from each source ontology entity, the ones
with the highest confidence value are selected to form the final ontology
alignment. The final ontology alignment is further evaluated through
f-measure to compare with the results from other ontology matching
techniques.

5. Compact Hybrid Evolutionary Algorithm

The slow convergence and premature convergence are two main disad-
vantages of classical EAs [26], which make these algorithms incapable of
effectively searching the optimal solution for ontology matching problem.
The Hybrid Evolutionary Algorithm (HEA) is a population-based optimized
algorithm with an evolutionary framework which contains and launches lo-
cal search components in each generation. This marriage between global
and local search is helpful to reduce the possibility of the premature conver-
gence, and increase the convergence speed. However, it could be plagued by
hardware limitations, and be inadequate in terms of efficiency when facing
large-scale tasks. Therefore, the compact version of HEA (CHEA) can be
more efficient to solve the ontology matching problem, which simulates the
behavior of a population-based HEA by employing, instead of a population
of solutions, the probabilistic representation of the population. In addition,
since incorporating human directly into the evolutionary cycle can highly im-
prove the search ability of EA [27], an interactive version of CHEA (ICHEA)
is proposed, which can utilize the user’s knowledge to enhance CHEA’s ex-
ploration and exploitation.

11
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First, the optimal model of ontology matching problem is presented as
follows: 

max f −measurePRA(X)
s.t. X = (x1, x2, · · · , x|O1|)

T

xi ∈ {1, 2, · · · , |O2|}, i = 1, 2, · · · , |O1|
(5)

where |O1| and |O2| refer to the cardinalities of two ontologies O1 and O2

respectively, xi, i = 1, 2, · · · , |O1| is the i-th pair of correspondence, and the
objective is to maximize f-measure on PRA.

Then, three key components of ICHEA are illustrated, i.e., entity and
probability matrix, elitism strategy, and local search.

5.1. Entity and Probability Matrix

An ontology can be described as an architecture graph (the nodes rep-
resent the concepts and instances, and the edges stand for the relationships
between them). Solving the problem of ontology matching is the process
of determining the largest isomorphic subgraph between two architecture
graphs of two heterogeneous ontologies. On this basis, the ontology match-
ing problem can be modeled as a concrete optimization problem with the
real value encoding mechanism. Particularly, given a source ontology seg-
ment segsrc, and a target ontology segmentsegtgt, |segsrc| and |segtgt| respec-
tively represent the cardinality of each of their own entity set. In this work,
an individual’s gene length is equal to |segsrc|, and each gene’s value is in
{−1, 0, 1, · · · , |segtgt|}. An example of an individual’s chromosome represen-
tation is given in Figure 3. In particular, the value of -1 (or 0) means its
matched entity is undetermined (or none).

The traditional CEA uses Probability Vector (PV) to represent the pop-
ulation [10], which is designed for continuous optimization problem with
binary-encoding mechanism. In our work, we modeled the ontology match-
ing problem as a concrete optimization problem with the real value encod-
ing mechanism. Therefore, traditional PV is not suitable for our encoding
mechanism. Moreover, Entity Matrix (EM) and Probability Matrix (PM)
are proposed to implement the concrete decimal-encoding mechanism. EM
and PM respectively restore the information of three solutions, i.e. the
elite solution, local best solution and global best solution, and the prob-
abilities of mappings in their corresponding alignments. Elite solution is
currently found the best solution by ICHEA. The local best solution con-
sists of the best correspondences that are found by ICHEA for each segsrc’s

12
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Figure 3: A example of an individual’s chromosome representation

entity. The global best solution consists of the mappings that have been
validated by the user. Formally, EM = [EV1, EV2, · · · , EV|segsrc|] where

the i-th Entity Vector (EV) EVi = (Xelite
i , X localBest

i , XglobalBest
i )T , Xelite

i ,
X localBest

i and XglobalBest
i are respectively elite’s i-th gene’s value, the found

best i-th gene’s value by ICHEA and user validated i-th gene’s value. Ac-
cordingly, PM = [PV1, PV2, · · · , PV|segsrc|] where the i-th Probability Vector

(PV) PVi = (P elite
i , P localBest

i , P globalBest
i )T , P elite

i , P localBest
i and P globalBest

i re-
spectively represent the probabilities of a new individual’s i-th gene value
being the value of Xelite

i , X localBest
i and XglobalBest

i .
In the following part, an example is given about generating a new individ-

ual through EM and PM. GivenEM =

 2 9 8
5 0 8
4 1 −1

, PM =

 0.6 0.1 0.1
0.1 0.7 0.1
0.3 0.2 0.8

,
where P elite

i , P localBest
i and P globalBest

i , i = 1, 2, 3, the interval [0, 1] is divided
into three sub-intervals: [0, P elite

i ), [P elite
i , P elite

i + P localBest
i ) and [P elite

i +
P localBest
i , 1]. For example, P elite

1 = 0.6, P localBest
1 = 0.1 and P globalBest

1 = 0.3
divides the interval [0,1] into three sub-intervals [0, 0.6), [0.6, 0.7) and [0.7,
1]. Sequentially, three random numbers are generated, such as 0.3, 0.6 and
0.4, which is equal to the column number of EM or PM. Since 0.3 ∈ [0, 0.6]
(the first sub-interval), the new generated individual’s first bit value is 2.

13
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Similarly, the second and third bit values are 0 and -1 respectively, i.e., the
first entity in segsrc is matched with second entity in segtgt, and the second
entity in segsrc is matched with none, while the third entity in segsrc is not
determined yet, whose value could be in {0, 1, · · · , |segtgt|}. By repeating the
work of generating different random numbers in the above procedure, various
individuals can be generated.

5.2. Elitism Strategy

In each generation, EM, PM and the best individual found until the
current generation, the so-called elite, will be updated. For the sake of clarity,
the pseudo-code is shown in Algorithm 1. When the value of P elite

i , P localBest
i

or P globalBest
i , i = 1, 2, · · · , |seg1| is smaller than 0 (or larger than 1), we set

it as 0 (or 1).
It is obvious that when all the elements’ values in EM are close to 1 or

0, the individuals generated by EM are of high similarity, and the algorithm
is exploitative. When the elements’ values in EM are around 0.5, however,
the individuals generated by EM are of great difference, and the algorithm
is explorative. Therefore, the larger st is, the faster the values of EM’s el-
ements will approach 1 or 0, and the algorithm will put more emphasis on
exploitation. Otherwise, the emphasis will be on exploration. In order to
balance between the exploitation and exploration, in this work, we empiri-
cally set st = 0.01 to achieve the highest average alignment quality on all
testing cases.

5.3. Local Search

In this paper, the local search strategy dedicates to generate various indi-
viduals to search the vicinity range of elite. To this end, a C×D matrix M is
constructed and used to implement the uniform crossover between elite and
an individual to generate the neighbor. Here, C is the scale of neighbor popu-
lation, i.e., the number of generated neighborhood, andD equals to the length
of an individual. With respect to C, a larger value of it may perform better
exploitation, especially for the multi-modal problem, but it will increase the
computational complexity. Given a source segment Segsrc and a target seg-
ment Segtgt, this work empirically sets C = 5+ ⌈max{|Segsrc|, |Segtgt|}/10⌉,
where |Segsrc| and |Segtgt| are the number of entities in Segsrc and Segtgt,
respectively.

14



Page 16 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

Algorithm 1 Elitism Strategy

Input: new solution solutionnew, elite solution elite, entity matrix EM ,
probability matrix PM , step size st;
Output: Updated EM and PM .

[winner, loser] = compete(solutionnew, elite);
if winner == solutionnew then
for i = 0; i < solutionnew.length; i++ do
if solutionnew

i ! = elitei then
Xelite

i = solutionnew
i ;

P elite
i + st;

P localBest
i − st/2;

P localBest
i − st/2;

end if
if solutionnew

i == X localBest
i or solutionnew

i is better than X localBest
i

then
X localBest

i = solutionnew
i ;

P localBest
i + st;

P elite
i − st/2;

P globalBest
i − st/2;

end if
if solutionnew

i == XgolbalBest
i then

P globalBest
i + st;

P elite
i − st/2;

P localBest
i − st/2;

end if
end for

else
if winner == elite then
for i = 0; i < elite.length; i++ do
if elitei! = solutionnew

i then
P elite
i + st;

P localBest
i − st/2;

P globalBest
i − st/2;

end if
if elitei == solutionnew

i then
P elite
i − st;

P localBest
i + st/2;

P globalBest
i + st/2;

end if
end for

end if
end if
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For the sake of clarity, given a permutation probability pp that is normally
set to 0.5, an M can be constructed to implement the uniform crossover
operation. The pseudo-code of generating M is presented as follows:

//Initialize M
1. for(int i = 0; i < C; i++)
2. for(int j = 0; j < D; j ++)
3. Mij = 0;
4. end for
5. end for

//Permutate M
6. for(int i = 0; i < C; i++)
7. generate j = round(rand(0, D));
8. while (rand(0, 1) < pp)
9. if (j == D)
10. j = 0;
11. end if
12. Mij = 1;
13. j = j + 1;
14. end while
15. end for

M can be obtained by swapping the value in M , i.e., converting the zero
elements in M into one and non-zero elements into zero. On this basis,
the neighbor population of the elite can be generated through the following
formula:

−−−−−−−−−−→
solutionneighbor = M ⊗

−−→
elite+M ⊗

−−−−−→
Solution (6)

where
−−→
elite =


elite
elite
· · ·
elite


C×D

,
−−−−−→
Solution =


solution1

solution2

· · ·
solutionC


C×D

and solutioni,

i = 1, 2, · · · , C, is generated by EM and PM, and the operator cation of
corresponding matrix elements. Then, the best individual is selected from
the neighbor population solutioni

neighbor, i = 1, 2, · · · , C. If it improves the
elite, the process is repeated until no further improvements can be made.

16



Page 18 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

6. Reduce User’s Workload

6.1. Ontology Partition

Partitioning the large-scale ontology into various segments, where the
term “segment” is referred to as a fragment of an ontology, is an efficient
way of reducing the algorithm’s search space and decreasing unnecessary
workload for the user [28]. In this work, an alignment-oriented ontology par-
tition technique is introduced to partition the ontologies into various similar
ontology segment pairs. First of all, the ontology with better reliability is
selected as the source ontology. The reliability of an ontology is measured by
the semantic accuracy, which is computed through the average of the squared
semantic distance between each concept ci and the ontology O’s taxonomic
root node ROOT [29]. In particular, the formula of calculating semantic
accuracy is presented as follows:

semAccuracy(O) =

∑
ci∈C

semDistance(ci, ROOT )2

|C|
(7)

where semDistance(ci, ROOT ) = log2(1+
|Ances(ci)|−1
|Ances(ci)| ) calculates the seman-

tic distance between the concept cci and ROOT . Ances(ci) refers to the set
of taxonomic ancestors of concept ci in the ontology including itself.

The source ontology is partitioned into disjoint segments through an on-
tology partition algorithm which is extended from SCAN [30]. Then, a con-
cept relevance measure based approach is adopted to determine the similar
target ontology segments of each source ontology segment segsrc. Particu-
larly, for each target ontology concept ci, the similarity value simci between
ci and segsrc is calculated by summing up every SMOA(ci, cj) (see also Sec-
tion 7.1). If simci is larger than the threshold, ci will be added to candidate
concept set Ccandidate. If the relevance value of a concept in Ccandidate is big-
ger than the threshold, it will be added to the final target segment. Given a
concept cm ∈ Ccandidate, the relevance value of cm to source ontology segment
can be calculated by the following formula:

relevance(cm) = simcm ×
∑

cn∈Ccandidate

simcn × e−(sPath(cm,cn))2 (8)

where simcm and simcn respectively denote the similarity value of cm and cn
to segsrc, sPath(cm, cn) is the shortest length between their corresponding
vertexes in ontology taxonomy structure.
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After partitioning the ontologies, the matching process only needs to deal
with the similar ontology segments’ matching problem, and all the similarity
values obtained in the process of ontology partitioning are stored in hash
map to avoid repeating calculations in the hereafter matching process. With
respect to the details of the alignment-oriented ontology partition algorithm,
please see also [29]. Finally, for each segment alignment, the mappings with
SMOA value lower than upperThreshold are filtered, and the rest are pre-
sented to user for validation. The mappings that are selected as correct
by the user are utilized to initialize the PRA. Since users cannot validate
too many mappings at a time, upperThreshold should be high enough to
ensure the reasonable volume of suggested mappings and their correctness
to the maximum extent. However, if the value is too large, many truly
correct mappings might be filtered out. Therefore, the suggested range of
upperThreshold is [0.7, 0.9]. Through the preliminary experiment, it is found
that upperThreshold = 0.8 works better.

6.2. Candidate Mapping Determination and Conflict Mapping Validation

When ICHEA gets stuck, i.e., the elite keeps unchanged for ϵ generations,
the user needs to guide the search direction of the algorithm by removing the
wrong correspondences, and adding mappings that are not detected, as well
as updating the PRA. The details are as follows:

• ask the user to validate the correspondences in EV Set = {EVi ∈
EM |Eelite

i = −1 ∧ XglobalBest
i = −1}. Set P elite

i − θ/2, P localBest
i −

θ/2, P globalBest
i + θ. If the user judges X localBest

i ’s corresponding map-
ping as correct, set XglobalBest

i = X localBest
i ;

• ask the user to validate the correspondences in EV Set = {EVi, EVj ∈
EM |XglobalBest

i = −1 ∧XglobalBest
j = −1 ∧Xelite

i = Xelite
j }. If the user

judges Xelite
i as correct, set XglobalBest

i = Xelite
i , P elite

i − θ/2, P localBest
i −

θ/2, P globalBest
i + θ. For the rest EVs in EV Set, set Xelite with corre-

sponding similarity value lower than lowerThreshold as -1 , and P elite−
θ/2, P localBest−θ/2, P globalBest+θ. Otherwise, if none is correct, for each
EV in EV Set, set Xelite with corresponding similarity value lower than
lowerThreshold as -1, and P elite − θ)/2, P localBest − θ/2, P globalBest + θ;

In the first step, the user is required to add new correspondences in terms of
improving solution’s completeness. In the second step, negative correspon-
dences are removed to increase the soundness of the solution. By presenting
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the problematic correspondences to the user in the first step, this approach
can reduce the number of candidate correspondences while helping ICHEA
search for better solutions. In addition, it is unnecessary for a user to vali-
date all the conflicting correspondences, because given the golden alignment
is one to one, if the user validates one correspondence as true, the other cor-
respondences related to this concept in this correspondence will be rejected.
Therefore, in the second step, this method presents several conflicting map-
pings simultaneously to the user. When the user selects one mapping as
correct, the rest will be automatically rejected, which further reduces user
workload and improves the validating efficiency.

7. Increase User Involvement’s Value

Propagating user validation is an effective approach to increase the value
of user involvement. However, the validation process is a difficult cognitive
task, which requires tremendous patience and expert understanding of the
ontology domain, terminology, and semantics [31]. On one hand, the user
is generally expected to make fewer errors than automated systems. On
the other hand, there are risks to take user’s inputs for granted, since the
user could make mistakes during the validating process. Therefore, in this
work, only the correspondences which are judged to be positive by both the
similarity measure and the user will be used for the propagation. In the
following, the asymmetrical profile-based similarity measure is presented for
measuring the ontology entity similarity, and the propagating approach is
described, which can increase the value of user validation under various user
error rate cases.

7.1. Asymmetrical Profile-based Similarity Measure

The foundation of ontology matching technique is the similarity measure
of ontology entities [32], which is the function that calculates the degree to
which entities are similar to one another. In this work, an asymmetrical
profile-based similarity measure is proposed to calculate the entities’ sim-
ilarity values. To be specific, firstly, a profile for each ontology entity is
constructed by collecting the label, comment, and property labels from it-
self, and all its direct descendants. Then, given two entities e1 and e2 and
their corresponding profiles p1 and p2, the similarity value of p1 and p2 can
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be calculated by the following two asymmetrical measures:

sim1(p1, p2) =
|p1

∩
p2|

|p1|
(9)

sim2(p1, p2) =
|p1

∩
p2|

|p2|
(10)

where |p1| and |p2| are the cardinality of the profile p1 and p2 respectively,
|p1

∩
p2| is the number of identical elements in p1 and p2.

On this basis, the similarity of e1 and e2 is calculated through the follow-
ing formula:

sim(e1, e2) =

{
sim1(p1,p2)+sim2(p1,p2)

2
, if |sim1(p1, p2)− sim2(p1, p2)| ≤ δ

0, otherwise
(11)

In this study, δ is the threshold to measure the extent of the semantic equiv-
alence between sim1(p1, p2) and sim2(p1, p2). When the similarity value be-
tween two profile elements is above the threshold, they are identified as se-
mantically similar. Generally, δ should be set relatively small to reflect that
there are little differences between sim1(e1, e2) and sim2(e1, e2), i.e., e1 and
e2 are semantically equivalent. However, if δ is too small, many semantically
equivalent terms will be lost. Therefore, the suggested range of δ is [0.01,
0.15]. In this work, to obtain a suitable δ, a pre-experiment is conducted on
the bench-mark by varying the value of δ in its suggested range, and found
the semantic equivalence performed better when δ = 0.1.

The similarity value of two profile elements is calculated by SMOA [33],
which is the most performing syntax measure for the ontology matching prob-
lem, and a linguistic measure, which calculates a synonymy-based distance
through an electronic lexical database WordNet [34]. Given two words w1

and w2, their similarity sim(w1, w2) is calculated according to the following
formula:

sim(w1, w2) =

{
1, if two words are synonymous
SMOA(w1, w2), otherwise

(12)

Particularly, SMOA distance between two strings s1 and s2 can be defined as
SMOA(s1, s2) = Comm(s1, s2)−Diff(s1, s2)+WinklerImpr(s1, s2), where
Comm(s1, s2) stands for the commonality between s1 and s2, Diff(s1, s2)
for the difference, andWinklerImpr(s1, s2) for the improvement of the result
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from using the method introduced by Winkler [35]. During the automatic
matching process, the asymmetrical profile-based similarity measure is used
to measure the correspondence’s confidence. During the user validating pro-
cess, only the correspondence that is judged as correct by the user and also
has high similarity value could propagate its confidence to the neighborhood,
which mitigates the negative impacts brought by the human error.

7.2. User Validation Propagation

When the scale of the ontology is large, validating the selected correspon-
dences only is far from sufficient. Therefore, the value of user involvement
must be increased by propagating the user validations to determine other
potential matchings between two ontologies. Based on the intuition that
elements of two distinct ontologies will be similar when their adjacent ele-
ments are similar, and the observation that a correct alignment should not
be inconsistent with ontology’s concept hierarchies, which is organized by the
“is-a” properties [36], ICHEA propagates each value that has been validated
by the user and is also of high similarity to its source entity’s ancestors’ cor-
respondences. For each user validated mapping with a similarity value bigger
than upperThreshold, e.g., XglobalBest

i , ICHEA will automatically check all
the i-th source entity’s ancestors. Assuming the j-th source entity is one
of its ancestor, if XglobalBest

j is -1 and the k-th target entity is the ances-

tor of XglobalBest
i -th target entity and their similarity value should be larger

than upperThreshold, the value of XglobalBest
j will then be updated as k and

P elite
j −st/2, P localBest

j −st/2 and P glocalBest
i +st; whenXglobalBest

j -th target en-

tity is the ancestor of XglobalBest
i -th target entity, P elite

j −st/2, P localBest
j −st/2

and P glocalBest
i + st; when XglobalBest

j -th target entity is not the ancestor of

XglobalBest
i -th target entity, P elite

j + st/2, P localBest
j + st/2 and P glocalBest

i − st.
Since validation process is a difficult cognitive task, it is risky to take the

user’s inputs for granted, which may lead to the propagation of errors. To
mitigate the negative effects brought by propagating wrong user validations,
in this approach, only those correspondences with high similarity values can
be used to propagate their confidence. In addition, the matching probability
is utilized instead of similarity value to determine the ontology alignment,
i.e. our propagation algorithm does not alter the similarity value but the
correspondence’s confidence of holding true. Thus, under EA’s survival of
the fittest, ICHEA can effectively decrease the negative effects brought by
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erroneous user validation and improve the quality of the alignment under 0.3
error rate case.

8. Outline of Partial Reference Alignment based Interactive Com-
pact Hybrid Evolutionary Algorithm

The working flow of ICHEA is given in Figure 4. First, all the control
parameters of ICHEA are set up, please see also Section 5.1. After that, we
randomly selected the number in {0, 1, ..., |segtgt|} to initialize EM’s element

Xelite
i and X localBest

i , and set XglobalBest
i = −1, i = 1, 2, · · · , |segsrc|. Then, we

initialized PM by setting P elite
i = 0.25, P localBest

i = 0.25, XglobalBest
i = 0.5, i =

1, 2, · · · , |segsrc|, which make the algorithm focus on the exploration at the
beginning. At last, we generate an individual by EM and PM to initialize
the elite. During each generation of ICHEA, a new individual is generated
through EM and PM to compare with the current elite in terms of their fit-
ness values. EM, PM and elite are updated based on the better solution, with
the aim to move the EM and PM toward the better solution. Then, the local
search process on elite is executed to update EM, PM and elite. If ICHEA
got stuck, i.e., the elite kept unchanged for ϵ generations, the user validation
process will be activated to update the EM and PM, and then the algorithm
went to the next generation. Otherwise, the algorithm will directly go to
the next generation. When the termination condition is met, the algorithm
stopped. In this work, all the segment matching processes are executed in
parallel. After segment alignments are obtained, they are aggregated into a
final ontology alignment through a greedy strategy. Among the correspond-
ing correspondences of each source ontology entity, we selected the one with
the highest confidence value to form the final ontology alignment. Finally,
the quality of final ontology alignment is evaluated with f-measure.

ICHEA represents the population as a probability distribution over the
solution set, and simulates the behavior of the traditional EA with uniform
crossover. In this way, it processes each gene independently, and requires
less memory than the traditional EA does. The local refinement strategy is
introduced into the traditional EA’s evolutionary process, which allows to
increase the convergence speed, and reduce the runtime needed. Moreover,
the introduced user validation process leverages user’s insights to the solution,
to guide the algorithm’s search, and improve the search ability of EA and
the solution’s quality.
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Figure 4: Outline of the PRA-based Interactive Compact Hybrid Evolutionary Algorithm

9. Experimental Studies and Analysis

In this experiment, the well-known OAEL 2016 benchmark track and in-
teractive track are exploited to test the performance of ICHEA. Benchmark
track 2 consisted of 50 test cases. Each test case has a bibliographic seed
ontology, a variant of the seed ontology and a reference alignment. In this ex-
periment, we use the downloadable datasets from the OAEI 2016 official web

2http://oaei.ontologymatching.org/tests

23



Page 25 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

Table 1: The Overview of the Parameter Settings in ICHEA

Symbol Meaning Value
ϵ the upper threshold that elite keeps unchanged 20
θ user’s trust extent 0.5
st step size 0.01
C elite’s neighborhood scale 5 + ⌈max{|Segsrc|, |Segtgt|}/10⌉
gen maximum generation 300

site for testing purpose. Interactive track 3 consists of three datasets in the
OAEI 2016, i.e., Anatomy 4, Conference 5 and Large Biomedical Ontologies
(Large Bio) 6. In this track, an oracle is used to simulate the domain expert’s
behaviors, which mitigates the negative effect brought by different levels of
expertise and human biases, and minimizes the user’s consumption of time
in each validating process. As a result, the effectiveness of each system in
exploiting user validation can be better evaluated. The Anatomy dataset con-
sists of two ontologies, i.e., the Adult Mouse Anatomy (AMA) ontology and
a part of the National Cancer Institute Thesaurus (NCI) that describes the
human anatomy. The Conference dataset covers 16 ontologies that describe
the domain of conference organization. We only use the test case where the
reference alignment is available. Large Bio consists of 6 tasks in different sizes
ranging from tens to hundreds of even thousands of classes, aiming to find
out alignments among Foundational Model of Anatomy (FMA), SNOMED
CT, and National Cancer Institute Thesaurus (NCI).

9.1. Experiment Setup

The configuration of ICHEA is given in Table 1.
In addition, in order to compare with the participants of OAEI, Con-

ference and Anatomy tracks are run on a server with 3.46 GHz (6 cores)
with 8GB RAM. In the meantime, Large Bio track is run with an Intel
Core i7-4600U CPU @ 2.10GHz x 4 with 15GB RAM being allocated. The
experiment allows ICHEA to request an oracle, i.e., ICHEA presents a cor-

3http://oaei.ontologymatching.org/2016/interactive/index.html
4http://oaei.ontologymatching.org/2016/anatomy/index.html
5http://oaei.ontologymatching.org/2016/conference/index.html
6http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
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respondence to the oracle, which then tells the algorithm whether the cor-
respondence is right or wrong. Besides, the oracle with variable error rates
is considered to reflect a more realistic scenario where a user can not al-
ways provide correct answers. Three different error rates are tested in the
experiment, which are 0.1, 0.2 and 0.3 respectively. These error rates are ran-
domly introduced into the reference alignment with given rates. The results
of ICHEA are the average of thirty independent runs.

The configuration of ICHEA in our work follows below principles:

• ϵ is the threshold that ICHEA used to determine the timing of getting
user involved. If ϵ is too big, the matching process would become a
solely automatic matching process, and the obtained results would be
closed to CHEA-based approach. If ϵ is too small, the user needs to
invalidate the alignment frequently, which would greatly increase their
workload. Moreover, the erroneous user validation will be difficult to be
removed by the automatic evolving process. Therefore, the suggested
range of ϵ is [15, 35]. In the preliminary experiment, we found that the
results obtained with ϵ = 20 are acceptable for various heterogeneous
problems in all testing datasets.

• θ is utilized to update PM based on user validation. If θ is close to 1,
users’ erroneous validations would be difficult to be removed. Moreover,
with the rise of user error rate, the quality of obtained alignments will
drop sharply. If θ is close to 0, users’ validations would have a tiny effect
on the search direction of algorithm, and the obtained results would be
close to CHEA-based approach. Therefore, the suggested range of θ is
[40, 60]. In the preliminary experiment, we found that θ = 0.5 worked
better.

• st is utilized to update PM based on the comparison between the elite
and newly generated solution. If st is too big, the probabilities of all
mappings would quickly become 1 or 0, which probably leads to pre-
mature converge. If st is too small, ICHEA would become a stochastic
algorithm. Therefore, the suggested range of crossover probability is
[0.05, 0.15]. In the preliminary experiment, we found that the results
obtained with st = 0.1 are the best in all testing datasets.

• The elite’s neighborhood scale and maximum generation for termina-
tion depend on the scale of the problem, the suggested ranges for them
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are [⌈max{|Segsrc|, |Segtgt|}/10⌉, 10+⌈max{|Segsrc|, |Segtgt|}/10⌉] and
[200, 500], respectively. Since the problem scale is not that severe
when matching segment pair, we set the elite’s neighborhood scale and
maximum generation asC = 5 + ⌈max{|Segsrc|, |Segtgt|}/10⌉ and 300,
respectively.

Table 3 shows the mean values of all testing cases in benchmark track,
which are respectively obtained by OAEI’s participants, three state-of-the-
art EA-based ontology matching techniques, and ICHEA. Tables 4, 6 and
7 demonstrate the results obtained by OAEI’s participants and ICHEA on
interactive Anatomy, Conference and Large Bio track, respectively. The
symbols r, p and f in these tables stand for recall, precision and f-measure,
respectively. F-measure per second in Table 3 is calculated by dividing f-
measure by runtime, which is used by OAEI 2016 to measure the efficiency
of the ontology matcher [37]. The symbols f , r and p represent the non-
interactive version of those ontology matching technique’s f-measure, recall
and precision. Since the effectiveness with which systems exploit the user
validation can not only be evaluated by f-measure, recall and precision, but
also the number of requests asked [3], the total requests and the runtime of
each ontology matching methods are presented. Finally, Table 9 and Table 8
give the statistical comparisons among ICHEA and other ontology matchers.

9.2. Experimental Result and Analysis

9.2.1. Benchmark Track

The benchmark track consists of a set of small scale ontologies which are
built around a seed ontology, which contains 33 named classes, 24 object
properties, 40 data properties, 56 named individuals and 20 anonymous in-
dividuals, and it variations, which are artificially generated, and focus on
the characterization of the behavior of the tools rather than having them
compete on real-life problems. They are organized in three groups: sim-
ple tests (1XX) compares the reference ontology with itself; systematic tests
(2XX) are obtained by discarding/modifying features, which include names
of entities, comments, the specialization hierarchy, instances, properties and
classes, from the reference ontology; real-life ontologies (3XX) are found on
the web. Table 2 illustrates a brief description of OAEI 2016’s benchmark
track.

A preliminary test is firstly carried out to compare the performance over
time among three state-of-the-art EA-based ontology matching techniques,
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Table 2: Brief description on benchmark track. 1XX, 2XX and 3XX stands for the test
case whose ID beginning with the prefix digit 1, 2 and 3, respectively

ID Description
1XX The ontologies under alignment are the same or the first one is the OWL Lite restriction of the second one
2XX The ontologies under alignment have different lexical, linguistic or structure features
3XX The ontologies under alignment are real world cases

Figure 5: The performance over time among three state-of-the-art EA-based ontology
matching techniques and ICHEA

i.e., GA-based [38], MA-based [7], and PSO-based [39] ontology matching
approaches. The results are shown in Figure 5. The graphics plot on y axis
are the f-measure values computed for the alignments provided by different
algorithms, and the x axis represents the run time. Figures depict that our
proposal is able to determine a high-quality alignment in a short time.

In Table 3, the automatic ontology matching techniques used by OAEI
2016’s participants is employed to compare with ICHEA in terms of the
quality of alignments. In particular, AgreementMakerLight (AML) [15] is
an automated ontology matching system primarily depending on element-
level matching and the use of external resources as background knowledge.
Its matching workflow consists of three sequential steps: applying differ-
ent matching processes (such as background knowledge matching, structural
matching and property matching), greedy selection algorithm based map-
ping selection, and heuristic repair algorithm based alignment repair to en-
sure that the final alignment is coherent. CroMatcher [40] uses the weighted
aggregation method to automatically determine the aggregating weight of
several basic matchers, and the iterative final alignment method to deter-
mine the final ontology alignment by selecting appropriate correspondences
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from the aggregated matching results. Lily [41] first constructs a seman-
tic subgraph for each ontology entity for the similarity computation. Then,
the text matching and structure matching techniques are combined to deter-
mine the most similar entities. Finally, a mapping debugging technique is
utilized to detect and correct the mapping errors to improve the quality of
the final alignment. LogMap family [16] consists of three matching systems,
i.e., LogMap, LogMapLt and LogMap-Bio .LogMapLt is a lightweight vari-
ant of LogMap, which only applies string matching techniques. LogMapBio
includes an extension to use a mediating biological ontology as the exter-
nal resource. LogMap first utilizes the lexical information of each entity to
initialize a mapping set of manageable size. Afterwards, it utilizes sophisti-
cated reasoning (such as logic-based extraction, propositional reasoning and
axiom tracking) and repairs techniques to maximize the ontology alignment’s
logical consistency: (1) the mappings should not lead to unsatisfying classes
in the integrated ontology, and (2) the mappings should link entities that
have similar neighborhood. XMap [17] uses three different layers to per-
form the ontology matching process, i.e., a terminological layer, a structural
layer and an alignment layer. In particular, the terminological layer utilizes
the similarity measure based on UMLS [42] and WordNet to determine the
similarity value between the entity names. The structural layer computes
the similarity between the concepts by taking into account the taxonomic
hierarchy, and calculates the similarity using the information of the internal
structure of concepts, i.e., their properties, types and cardinality restrictions.
The alignment layer aims to provide the final similarity matrix between the
concepts taking into account the influence of the number of properties and
the value of similarity that properties bring to the final similarity between
them. The output values of each layer serve as the input to the upper one.
Each layer provides an improvement to the computation of the similarity
between concepts. Pheno family [43] consists of three matching systems, i.e.,
PhenoMM, PhenoMF and PhenoMP, which rely on different versions of the
PhenomeNET [44] ontology with variable complexity. They first use Phe-
nomeNET ontology based reasoning technique to identify the alignment be-
tween ontologies, and then generate the additional mappings through AML.

We can see that CroMatcher and Lily are two top matching systems
among OEAI participants with 0.89 f-measure, whose precisions are very
high (0.96 and 0.97 respectively). AML, XMap and LogMap family can not
return with very good alignments. The Pheno family reverted with huge but
poor alignments. Concerning three EA-based ontology matching techniques,
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Table 3: Comparison between OAEI 2016’s participants, three state-of-the art EA-based
ontology matching techniques and ICHEA on benchmark track. The numbers are the
mean values of all testing cases, and r, p and f in the table stand for recall, precision and
f-measure, respectively.

Matching System r p f Runtime (sec) f-measure per second
AML 0.24 1.00 0.38 120 3.17 ×e−3

CroMatch 0.83 0.96 0.89 1100 8.09 ×e−4

Lily 0.83 0.97 0.89 2211 4.03 ×e−4

LogMap 0.39 0.93 0.55 194 2.84 ×e−3

LogMapLt 0.50 0.43 0.46 96 4.79 ×e−3

PhenoMF 0.01 0.03 0.01 1632 6.13 ×e−6

PhenoMM 0.01 0.03 0.01 1743 5.74 ×e−6

PhenoMP 0.01 0.02 0.01 1833 5.31 ×e−6

XMap 0.40 0.95 0.56 123 4.55 ×e−3

LogMapBio 0.24 0.48 0.32 54439 5.88 ×e−6

GA 0.76 0.68 0.71 240 2.99 ×e−3

PSO 0.66 0.72 0.68 224 3.07 ×e−3

MA 0.78 0.81 0.79 182 4.36 ×e−3

ICHEA 0.82 0.98 0.90 152 5.99 ×e−3
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Table 4: Comparison between OAEI 2016’s participants and ICHEA on interactive
anatomy track. The symbols r, p and f in the table stand for recall, precision and f-
measure, respectively, and f , r and p respectively stand for the system’s non-interactive
version’s f-measure, recall and precision.
Error Rate ALin AML LogMap XMap ICHEA

0.0 f (r, p) 0.50 (0.33, 0.98) 0.94 (0.93, 0.95) 0.87 (0.84, 0.91) 0.89 (0.86, 0.92) 0.82 (0.80, 0.84)
f (r, p) 0.85 (0.74, 0.99) 0.95 (0.94, 0.96) 0.90 (0.84, 0.98) 0.89 (0.86, 0.92) 0.95 (0.94,0.95)

Total Requests 803 241 590 35 262
Mean Improvement per Request 0.04% 0.004% 0.005% 0.00% 0.05%

Runtime (sec) 505 48 27 49 25
0.1 f (r, p) 0.80 (0.70, 0.94) 0.94 (0.94, 0.95) 0.89 (0.83, 0.96) 0.89 (0.86, 0.92) 0.94 (0.93,0.94)

Total Requests 769 273 612 35 280
Mean Improvement per Request 0.04% 0.00% 0.003% 0.00% 0.05%

Runtime (sec) 489 50 24 46 25
0.2 f (r, p) 0.76 (0.66, 0.90) 0.94 (0.94, 0.93) 0.87 (0.81, 0.94) 0.89 (0.86, 0.92) 0.94 (0.93,0.94)

Total Requests 750 300 645 35 264
Mean Improvement per Request 0.03% 0.00% 0.00% 0.00% 0.05%

Runtime (sec) 481 48 24 47 24
0.3 f (r, p) 0.72 (0.61, 0.86) 0.93 (0.92, 0.95) 0.87 (0.81, 0.93) 0.89 (0.86, 0.92) 0.93 (0.93,0.92)

Total Requests 740 308 650 35 257
Mean Improvement per Request 0.03% -0.03% 0.00% 0.00% 0.04%

Runtime (sec) 472 47 24 47 26

because of the introduction of the local search strategy, the results clarify that
MA outperforms GA and PSO. In this track, the quality of ICHEA is higher
than what all of OAEI 2016’s participants do, as well as that of EA-based
techniques, in terms of f-measure and f-measure per second. In particular,
the precision of ICHEA is the highest, which shows the effectiveness of the
asymmetrical profile-based similarity measure and the exploitation of user
validation. Therefore, ICHEA is able to efficiently determine the high-quality
small-scale ontology alignment.

9.2.2. Interactive Anatomy Track

The anatomy track is a large ontology matching task about matching
the Adult mouse anatomy (2744 classes) and a part of the NCI Thesaurus
(3304 classes) which describes the human anatomy. Adult mouse anatomy
is a structured controlled vocabulary describing the anatomical structure of
the adult mouse, whereas NCI depicts the human anatomy for the purpose
of cancer research.

Table 4 presents the results for the anatomy dataset under four different
error rate cases. When systems are evaluated with an all-known oracle (i.e.,
0.0 error rate case), ICHEA obtains the highest f-measure. In particular,
comparing with CHEA, ICHEA shows balanced improvements on both recall
and precision, by 17.50% and 13.09%. This means that in ICHEA, user
validation is beneficial, by introducing the new non-trivial mappings and
filtering the trivial ones. In addition, 0.05% mean improvement per request
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in ICHEA is also higher than that of other systems, with the runtime of 25
seconds being the lowest. In summary, ICHEA makes effective exploitation
of the oracle to achieve the great improvement in terms of efficiency.

When introducing the error to the oracle’s answers, each ontology match-
ing technique’s performance starts to decrease. However, in the 0.1, 0.2 and
0.3 cases respectively, ICHEA only loses 1% , 1% and 2% in f-measure. With
respect to XMap, since its requests are mainly about the judgment of incor-
rect mappings in the post-process phase, its performance does not change at
all with the increase of the error rate. However, ICHEA requires the user
to judge both correct and incorrect mappings, in the meantime, adding new
mappings in the matching process, meaning it relies more on the user vali-
dation. In addition, the mean improvement per request of ICHEA is higher
than that of the other matching systems, which also shows that it can better
make use of the user’s interactions. Comparing with CHEA’s results, the er-
ror rate of 0.3 in user validation still proves the benefits of ICHEA in terms
of 13.41% improvement on f-measure. Moreover, the average runtime needed
by ICHEA is also lower than that needed by most of OAEI participants. In
conclusion, ICHEA is able to efficiently utilize the user interaction to achieve
the best quality of alignment.

9.2.3. Interactive Conference Track

The goal of this track is to find alignments within a collection of ontologies
describing the domain of organising conferences, which contains 16 ontologies
in the domain of conference organization and the total number of testing cases
is 120. In addition, these ontologies differ in their numbers of classes and
properties, in expressivity, but also in underlying resources. Table 5 shows a
brief description of OAEI 2016’s conference track.

Table 6 demonstrates the average results on interactive conference track
by OAEI 2016’s participants and ICHEA. It can be seen that when sys-
tems are evaluated with an all-known oracle, ICHEA outperforms the other
systems in terms of f-measure. Meanwhile, the improvement on CHEA is ap-
proximately 62%, which is much higher than that of other OAEI participants.
In addition, the recall and precision improvements are also outstanding, with
a percentage of 68% and 57% respectively. The comparison also shows that
the substantial improvement of ICHEA is more supported by gains in preci-
sion. With respect to improvement per request, its output is 0.16%, which
is also higher than that of the other matching systems. In addition, it takes
only 21 seconds for ICHEA to determine the alignment, which ranks first
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Ontology’s Name Number of Classes Number of Datatype Properties Number of Object Properties
Ekaw 74 0 33
Sofsem 60 18 46
Sigkdd 49 11 17
Iasted 140 3 38
Micro 32 9 17

Confious 57 5 52
Pcs Tool 23 14 24
OpenConf 62 21 24
ConfTool 38 23 13
Crs Tool 14 2 15
Cmt Tool 36 10 49
Cocus 55 0 35

Paperdyne 47 21 61
Edas 104 20 30

MyReview 39 17 49
Linklings 37 16 31

Table 6: Comparison between OAEI 2016’s participants and ICHEA on interactive confer-
ence track. The symbols r, p and f in the table stand for recall, precision and f-measure,
respectively, and f , r and p respectively stand for the system’s non-interactive version’s
f-measure, recall and precision.
Error Rate ALin AML LogMap XMap ICHEA

0.0 f (r, p) 0.40 (0.25, 0.88) 0.73 (0.65, 0.84) 0.68 (0.59, 0.81) 0.68 (0.57, 0.83) 0.52 (0.50, 0.54)
f (r, p) 0.83 (0.73, 0.95) 0.79 (0.71, 0.91) 0.72 (0.61, 0.88) 0.68 (0.57, 0.83) 0.84 (0.84, 0.85)

Total Requests 326 271 142 4 194
Mean Improvement per Request 0.10% 0.02% 0.03% 0.00% 0.16%

Runtime (sec) 101 29 26 21 20
0.1 f (r, p) 0.72 (0.67, 0.79) 0.76 (0.70, 0.84) 0.70 (0.60, 0.84) 0.68 (0.57, 0.83) 0.80 (0.79, 0.82)

Total Requests 315 285 140 4 192
Mean Improvement per Request 0.10% 0.01% 0.01% 0.00% 0.14%

Runtime (sec) 101 30 26 22 20
0.2 f (r, p) 0.64 (0.61, 0.67) 0.72 (0.68, 0.76) 0.68 (0.58, 0.82) 0.68 (0.57, 0.83) 0.74 (0.71, 0.76)

Total Requests 303 290 143 4 212
Mean Improvement per Request 0.08% -0.003% 0.00% 0.00% 0.10%

Runtime (sec) 100 33 26 21 24
0.3 f (r, p) 0.56 (0.56, 0.57) 0.68 (0.65, 0.71) 0.67 (0.58, 0.80) 0.68 (0.57, 0.83) 0.71 (0.68, 0.75)

Total Requests 303 284 144 4 224
Mean Improvement per Request 0.05% -0.02% -0.007% 0.00% 0.08%

Runtime (sec) 99 30 26 22 25
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among all the matching systems. From above, ICHEA requires only a small
number of requests to the oracle to achieve the great improvement on the
efficiency.

When error rates are introduced, with the error rates of 0.1, 0.2 and 0.3,
the loss in f-measure from ICHEA are 4.76%, 11.9% and 15.47% respectively,
which are better than those of OAEI’s participants and CHEA. In particular,
under the error rate of 0.3, both recall and precision of ICHEA are higher
than CHEA’s results, which means that even when the user error rate is 0.3,
ICHEA can still improve the quality through user validation. Due to the
utilization of analyzing multiple conflicting mappings, ICHEA is proved to
be helpful in achieving higher mean improvements per request than other
systems do. Moreover, the average runtime for ICHEA under all three cases
is the lowest among all the other OAEI participants. Therefore, compared to
state-of-the-art ontology matching systems, ICHEA determines the highest
quality of alignment under different user error rate cases, with lower runtime
and a relatively smaller number of requests.

9.2.4. Interactive Large Bio Track

Large Bio track aims to find alignments between the large and seman-
tically rich biomedical ontologies FMA, SNOMED CT, and NCI, which
contains 78,989, 306,591 and 66,724 classes, respectively. The track has
been split into three matching problems: FMA-NCI, FMA-SNOMED and
SNOMED-NCI, and each matching problem in three tasks involving differ-
ent fragments of the input ontologies.

As is depicted in Table 7, with an all-knowing oracle, ICHEA improves the
performance of the non-interactive version by 15.78% in terms of f-measure,
while that of LogMap is 3.2%, AML is 2.6%, and ServOMBI is 1.4%. Addi-
tionally, while AML shows its improvement in terms of recall, LogMap has
the strength in precision, and ServOMBI improved essentially only on preci-
sion, the improvement of ICHEA is supported by the gains from both recall
and precision. In conclusion, ICHEA’s alignment quality is better than all
other systems and CHEA, while requesting the shortest runtime.

The introduction of user errors poses different influences on different sys-
tems. In ICHEA, the average performance dropped by 4.92% under the three
cases, AML 3%, and LogMap 5.70%, while ServOMBI decreases by 16.6%.
On top of that, the f-measure of ICHEA is higher than those of all other
OAEI participants and CHEA under each circumstance. With the increase
of user errors, the number of requests from ICHEA to the oracle increased
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Table 7: Comparison between OAEI 2015’s participants and ICHEA on interactive large
bio track. The symbols r, p and f in the table stand for recall, precision and f-measure,
respectively, and f , r and p respectively stand for the system’s non-interactive version’s
f-measure, recall and precision.
Error Rate AML LogMap ServOMBI ICHEA

0.0 f (r, p) 0.81 (0.75, 0.90) 0.79 (0.71, 0.90) 0.83 (0.75, 0.96) 0.76 (0.75, 0.78)
f (r, p) 0.85 (0.77, 0.94) 0.82 (0.72, 0.97) 0.84 (0.73, 1.00) 0.88 (0.85, 0.91)

Total Requests 10217 27436 21416 912
Mean Improvement per Request 2.54×e−6 1.17×e−6 6.53×e−7 1.31×e−4

Runtime (sec) 2877 3803 726 663
0.1 f (r, p) 0.83 (0.76, 0.93) 0.79 (0.70, 0.93) 0.79 (0.66, 0.99) 0.86 (0.84, 0.89)

Total Requests 10217 28890 22920 982
Mean Improvement per Request 4.89×e−7 -5.54×e−7 -4.10×e−6 1.01×e−4

Runtime (sec) 2913 3963 695 647
0.2 f (r, p) 0.82 (0.75, 0.91) 0.77 (0.68, 0.91) 0.73 (0.59, 0.98) 0.84 (0.81, 0.86)

Total Requests 10217 30426 23968 1280
Mean Improvement per Request 4.89×e−7 -5.25×e−7 -3.92×e−6 6.25×e−5

Runtime (sec) 2930 3912 713 616
0.3 f (r, p) 0.81 (0.74, 0.90) 0.76 (0.68, 0.89) 0.68 (0.52, 0.98) 0.81 (0.78, 0.84)

Total Requests 10217 31504 25580 1262
Mean Improvement per Request 0.00 -7.94×e−7 -5.94×e−6 3.96×e−5

Runtime (sec) 2959 3874 618 748

too. Even though, mean improvements per request of ICHEA are still higher
than that of other systems under all three error rate cases. ICHEA is the
only one who still outperforms its non-interactive version under the case with
an error rate of 0.3. Apart from that, the runtime needed by ICHEA is less
than other matching systems. Therefore, for large-scale ontology matching
problem, ICHEA also efficiently makes use of user validation to obtain high-
quality ontology alignment.

9.3. Statistical Comparison

In this section, the statistical comparison among ICHEA and other on-
tology matchers is presented. The values shown in Table 8 on interactive
tracks are the mean values under various user error rates. The comparison is
formally carried out by means of a multiple comparison procedure which con-
sists of two steps. In the first step, a statistical technique, i.e. the Friedman’s
test [45], is used to determine whether there are any differences among the
results provided by various approaches. Secondly, if differences are detected
in Step 1, a post-hoc test, i.e. Holm’s test [46], is carried out to determine
which method outperforms the others.

Friedman’s test is a non-parametric statistical procedure which aims to
detect the existence of significant differences among the behaviors of two or
more algorithms. In particular, under the null-hypothesis, it states that all
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Table 8: Friedman’s test on the alignment’s quality. Each value represents the f-measure,
and the number in round parentheses is the corresponding computed rank.
Matching System Benchmark Anatomy Conference Large Bio Average

AML 0.38 (10) 0.94 (1.5) 0.73 (2) 0.82 (2) 0.71 (3.87)
CroMatch 0.89 (2.5) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.22 (8.62)

Lily 0.89 (2.5) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.22 (8.62)
LogMap 0.55 (8) 0.88 (4) 0.69 (3) 0.78 (3) 0.72 (4.50)
LogMapLt 0.46 (9) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.11 (10.25)
PhenoMF 0.01 (13) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.002 (11.25)
PhenoMM 0.01 (13) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.002 (11.25)
PhenoMP 0.01 (13) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.002 (11.25)
XMap 0.56 (7) 0.89 (3) 0.00 (10.5) 0.00 (10.5) 0.36 (7.75)

LogMapBio 0.32 (11) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.08 (10.75)
ALin 0.00 (15.5) 0.78 (5) 0.68 (4) 0.00 (10.5) 0.36 (8.75)

ServOMBI 0.00 (15.5) 0.00 (11) 0.00 (10.5) 0.76 (4) 0.19 (10.25)
GA 0.71 (5) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.17 (9.25)
PSO 0.68 (6) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.17 (9.50)
MA 0.79 (4) 0.00 (11) 0.00 (10.5) 0.00 (10.5) 0.19 (9.00)

ICHEA 0.90 (1) 0.94 (1.5) 0.77 (1) 0.84 (1) 0.86 (1.12)

algorithms are equivalent, which means a rejection of this hypothesis implies
the existence of differences among the performance of all studied algorithms
[47]. In order to reject the null hypothesis, the computed value X 2

r must
be equal to or greater than the tabled critical chisquare value at a specified
level of significance [48]. In our experiment, a level of significance α = 0.05
is chosen. Since 16 approaches are compared in our case, our analysis had to
consider the critical value X 2

0.05 for 15 degrees of freedom which is equal to
24.996.

In Table 6, the Friedman’s test shows that the computed X 2
r value is

141.06, which is greater than its associated critical value X 2
0.05 = 24.996.

Therefore, the null hypothesis is rejected, which implies that there is a signif-
icant difference among these proposals. Consequently, a post-hoc statistical
analysis is needed to conduct pairwise comparisons in order to detect con-
crete differences among compared algorithms. Holm’s test works on a family
of hypotheses where each one is related to a comparison between the control
method and one of the remaining algorithms. The computed z value is used
to find the corresponding probability from the table of the normal distri-
bution (the so-called p-value), which is then compared with an appropriate
level of significance α. In order to perform its evaluation, Holm’s method
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Table 9: Holm’s test on the alignment’s quality.

i approach z value unadjusted p−value α
k−i

, α = 0.05

15 AML 3.87 0.040 0.050
14 LogMap 4.50 0.010 0.025
13 XMap 7.75 8.50 ×e−7 0.016
12 CroMatch 8.62 2.69 ×e−8 0.012
11 Lily 8.62 2.69 ×e−8 0.010
10 ALin 8.75 1.51 ×e−8 0.008
9 MA 9.00 4.35 ×e−9 0.007
8 GA 9.25 1.63 ×e−9 0.006
7 PSO 9.50 4.97 ×e−10 0.005
6 LogMapLt 10.25 1.20 ×e−11 0.005
5 ServOMBI 10.25 1.20 ×e−11 0.004
4 LogMapBio 10.75 8.67 ×e−13 0.004
3 PhenoMF 11.25 5.48 ×e−14 0.003
2 PhenoMM 11.25 5.48 ×e−14 0.003
1 PhenoMP 11.25 5.48 ×e−14 0.003

sequentially checks the hypotheses ordered by their significance. In details,
given the number of compared algorithms k, it orders the p-values by denot-
ing them as p1, p2, · · · , pk−1 so that p1 ≤ p2 ≤ · · · ≤ pk−1. Then, it compares
each pi with

α
k−i

starting from the most significant p. If p1 is below α
k−1

, the
corresponding hypothesis is rejected and we are allowed to compare p2 with
α

k−2
. If the second hypothesis is rejected, the test proceeds with the third,

and so on. As soon as a certain null hypothesis cannot be rejected, all the
remaining hypotheses are retained as well.

Holm’s test works by setting a control algorithm, and comparing it with
the remaining ones. Normally, the algorithm which obtains the lowest value
of ranking in the Friedman’s test will be chosen as the control algorithm. In
this experiment, as is shown in Table 8, ICHEA is characterized by the lowest
value of ranking. Under the circumstance of α = 0.05 in this experiment, the
results of Holm’s test are shown in Table 9. Data analysis of Table 9 depicts
that our proposal statistically outperforms other approaches on f-measure at
5% significance level.
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9.4. Lessons Learned and Discussion
In ICHEA, the user gets involved in the evolving process of the algo-

rithm. In the meantime, user validation is efficiently utilized to update the
PRA and guide the searching direction for the algorithm. In particular,
the user is asked for feedbacks on some iterations during the matching pro-
cess. In each iteration, the alignment from the previous iteration is further
improved, which enhances the quality of the ontology alignment in a more
effective way. On average, the evolutionary process gets stuck (when user
gets involved) for 5 times in Benchmark track, 8 times in Conference track,
19 times in Anatomy track, and 41 times, in Large Bio track during the
segment pair matching process. Comparing with other interactive ontology
matching systems, which got user involved before the matching process (to
fine tune the system parameters) or after the matching process (to filter
the final alignment), ICHEA benefited more from users’ knowledge. Last
but not least, the proposed asymmetrical profile-based similarity measure
and mapping confidence propagation not only increased the value of user
involvements but also reduced the negative effects brought by the erroneous
user validations, which further ensured the efficiency of ICHEA. Therefore,
ICHEA can more efficiently determine high-quality ontology alignment than
other state-of-the-art interactive ontology matching systems.

ICHEA combines the mechanisms of a classic EA with competitive learn-
ing, which achieves better and faster results than classic EA does. The unique
competitive learning helps ICHEA to achieve good results in terms of both
solution quality and runtime, which turns out to be effective in determining
the optimal solution. Moreover, it does not require all the mechanisms of an
EA, but only a few steps in the algorithm, which are small and simple. It fur-
ther introduces user involvement (global search) and local refinements (local
search), which allows a high level of diversity in solutions, thus reducing the
possibility of the premature convergence. It also increases the convergence
speed via the local search which in fact, greatly improves the quality of the so-
lution and enables the solution to approach the optimal solution more quickly.
In scenarios of complex optimization, the performance of state-of-the-art
evolutionary computation techniques, such as GA, MA and PSO, depends
largely on the adequate setting of parameters like the probabilities of cross
and mutation, size of the population and rate of generational reproduction.
Their performance is poor when the designed operators can not guarantee the
correct movements of the populations in the search space. Comparing with
state-of-the-art evolutionary computation techniques, ICHEA works upon
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the probabilistic modeling of promising solutions, which makes it easier to
predict the movements of the populations in the search space, as well as to
avoid the need for many parameters. In addition, huge memory consump-
tion seriously limits the application of population-based algorithm. In this
experiment, population-based algorithms consumed about 150 gigabytes on
average to determine the alignments for small-scale ontology matching tasks
in Benchmark. Due to memory overflow, they can not effectively deter-
mine the alignments for large-scale ontology matching tasks in Conference,
Anatomy and Large Bio tracks. However, due to the ontology partition,
compact encoding mechanism and efficient user involvement, ICHEA can ef-
ficiently deal with various large-scale ontology matching tasks. To conclude,
ICHEA outperforms other EA-based approaches in terms of both quality of
alignments and computation efficiency.

10. Conclusion and Future Work

Nowadays, how to efficiently make use of the user validation to improve
the ontology alignment still retains a challenge in the interactive ontology
matching domain. To address this challenge, we present a PRA-based in-
teractive ontology matching technique, which gets the user involved into a
PRA-based iterative automatic-matching process to balance between user
workload and the demand of improving the quality of ontology alignment.
Particularly, ICHEA proposes to adaptively determine the timing of getting
the user involved, and present the user with the most problematic mappings
for validation, and help him to validate multiple conflicting mappings simul-
taneously. Meanwhile, it propagates the user validations to maximize their
value and decrease the negative effect brought by erroneous user validations.
The well-known OAEI 2016’s benchmark track and interactive track are uti-
lized to test ICHEA’s performance. Results of the experiment on benchmark
track show that both the f-measure and the f-measure provided per second
of ICHEA outperform those of all the OAEI participants and three state-of-
the-art EA-based ontology matching techniques. In addition, results of the
experiment on three interactive testing cases further show that ICHEA can
efficiently determine high-quality ontology alignments under different error
rate cases, and the performance of ICHEA in general is better than that of
state-of-the-art interactive ontology matching systems.

This paper utilizes the oracle to simulate the human expert’s behaviors in
the experiment. However, in real applications, manual validations by human
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experts need to be done within a limited time frame, where errors are prone
to occur, because of different levels of expertise, misinterpretations, human
biases, etc. Therefore, in the future, new techniques will be investigated
to help human experts to make correct decisions in the manually validating
process more efficiently. To achieve this, the first step is to add a graphical
user interface, which aims to solve the problem like how to visually present
the ontology mappings and ontology information, and enable easy retrieve
to release the user from memorizing information. Basically, the interactions
done by the user in this work is either to accept or reject a certain mapping
suggestion. It may also happen that a mapping is not suggested but is needed
according to the user. In this case, additional functionalities are proposed to
manually add on a mapping. Moreover, it is also interesting to explore how
to alert the user when contradicting validations are made, or preventively
remove mappings that lead to logical conflicts. Last but not least, other evo-
lutionary methodology can be tried, such as Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [49], to implement an automatic matching
procedure to further improve the performance.
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[16] E. Jiménez-Ruiz, B. C. Grau, V. Cross, LogMap family participation in
the OAEI 2016, Ontology Matching (2016) 185–189.

[17] D. Warith, Eddine, K. Mohamed, Tarek, Y. Sadok, BEN, XMap: results
for OAEI 2016, Ontology Matching (2016) 222–226.

[18] N. Kheder, G. Diallo, ServOMBI at OAEI 2015, in: OM, 200–207, 2015.

[19] G. Diallo, Efficient building of local repository of distributed ontologies,
in: Signal-Image Technology and Internet-Based Systems (SITIS), 2011
Seventh International Conference on, IEEE, 159–166, 2011.

[20] P. Lambrix, R. Kaliyaperumal, A session-based approach for aligning
large ontologies, in: Extended Semantic Web Conference, Springer, 46–
60, 2013.

[21] S. Duan, A. Fokoue, K. Srinivas, One size does not fit all: Customizing
ontology alignment using user feedback, in: International Semantic Web
Conference, Springer, 177–192, 2010.

[22] H. Tan, P. Lambrix, A method for recommending ontology alignment
strategies, in: The Semantic Web, Springer, 494–507, 2007.

[23] D. Ritze, H. Paulheim, Towards an automatic parameterization of ontol-
ogy matching tools based on example mappings, in: Proceedings of the
6th International Conference on Ontology Matching, vol. 814, CEUR-
WS. org, 37–48, 2011.

[24] C. J. V. Rijsberge, Information Retrieval, University of Glasgow, But-
terworth, London, 1975.

[25] J. Euzenat, C. Meilicke, H. Stuckenschmidt, P. Shvaiko, C. Trojahn,
Ontology alignment evaluation initiative: six years of experience, in:
Journal on data semantics XV, Springer, 158–192, 2011.

41



Page 43 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

[26] G. Acampora, V. Loia, A. Vitiello, Enhancing ontology alignment
through a memetic aggregation of similarity measures, Information Sci-
ences 250 (2013) 1–20.

[27] P. Bentley, D. Corne, Creative evolutionary systems, Morgan Kaufmann,
2002.

[28] E. Rahm, Towards large-scale schema and ontology matching, Schema
Matching and Mapping (2011) 3–27.

[29] X. Xue, S.-C. Chu, An Alignment-Oriented Segmenting Approach for
Optimizing Large Scale Ontology Alignments, Journal of Internet Tech-
nology 17 (7) (2016) 1373–1382.

[30] N. Yuruk, X. X. M. Mete, T. A. J. Schweiger, AHSCAN: Agglomerative
hierarchical structural clustering algorithm for networks, in: Interna-
tional Conference on Advances in Social Network Analysis and Mining,
Athens, Greece, 72–77, 2009.

[31] M. S. Falconer, F. N. Noy, Interactive techniques to support ontology
matching, in: Schema Matching and Mapping, Springer, 29–51, 2011.

[32] A. Maedche, S. Staab, Measuring Similarity between Ontologies, in:
Proceedings of the 14th International Conference on Knowledge Engi-
neering and Knowledge Management, Ischia Island, Italy, 251–263, 2002.

[33] G. Stoilos, G. Stamou, S. Kollias, A string metric for ontology alignment,
in: Proceedings of 4th International Semantic Web Conference (ISWC
2005), Galway, Ireland, 623–637, 2005.

[34] G. A. Miller, WordNet: A lexical database for English, Communications
of the ACM 38 (11) (1995) 39–41.

[35] W. Winkler, The state record linkage and current research problems,
Tech. Rep. RR99-04, Statistics of Income Division, Washington DC,
USA, 1999.

[36] P. Wang, Y. Zhou, B. Xu, Matching large ontologies based on reduc-
tion anchors, in: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, 2343–2348, 2011.

42



Page 44 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

[37] M. Achichi, M. Cheatham, Z. Dragisic, J. Euzenat, D. Faria, A. Fer-
rara, G. Flouris, I. Fundulaki, I. Harrow, V. Ivanova, et al., Results
of the ontology alignment evaluation initiative 2016, in: OM: Ontology
Matching, No commercial editor., 73–129, 2016.

[38] J. Martinez-Gil, E. Alba, J. F. A. Montes, Optimizing ontology align-
ments by using genetic algorithms, in: Proceedings of the First Interna-
tional Conference on Nature Inspired Reasoning for the Semantic Web-
Volume 419, CEUR-WS. org, 1–15, 2008.

[39] J. Bock, J. Hettenhausen, Discrete particle swarm optimisation for on-
tology alignment, Information Sciences 192 (2012) 152–173.
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