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SUMMARY 

Computational models and in vivo studies in rodents suggest that the hippocampal 

system oscillates between states optimal for encoding and states optimal for retrieval. 

We here show that in humans, neural signatures of memory reactivation are modulated 

by the phase of a theta oscillation. EEG was recorded while participants were cued to 

recall previously learned word-object associations, and time-resolved pattern classifiers 

were trained to detect neural reactivation of the target objects. Classifier fidelity 

rhythmically fluctuated at 7-8Hz, and was modulated by theta phase across the entire 

recall period. The phase of optimal classification was shifted approximately 180° 

between encoding and retrieval. Inspired by animal work, we then computed “classifier-

locked averages” to analyse how ongoing theta oscillations behaved around the time 

points at which the classifier indicated memory retrieval. We found strong theta (7-8Hz) 

phase consistency approximately 300ms before the time points of maximal neural 

memory reactivation. Our findings provide important evidence that the neural 

signatures of memory retrieval fluctuate and are time-locked to the phase of an ongoing 

theta oscillation.    
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Introduction 

Our episodic memory defines us by storing a record of our past experiences and allowing us 

to consciously access these records. It is widely agreed that the hippocampus and neocortical 

areas work in conjunction during the formation and later retrieval of a memory [1-4]. At 

encoding, the hippocampus is thought to continuously store a sparse and non-overlapping 

index that points to ongoing activity patterns in cortical space. This hippocampal index can 

later be reactivated by a reminder, and lead to the reconstruction of a previously stored 

memory pattern in neocortex [1, 2, 5-8]. Many recent studies have tested these computational 

assumptions by tracking the reinstatement of memory-related brain activity patterns during 

retrieval. The basic premise that content-specific neural patterns are reactivated during 

retrieval has been confirmed using fMRI (for reviews, see [9, 10]) and more recently also 

EEG and MEG [11-17]. However, no study has so far investigated the temporal fluctuations 

of memory-related patterns in human long-term memory, and whether they are systematically 

linked to brain oscillations. 

A major computational challenge for our memory system is to effectively separate the 

information arriving from external sensory sources from the information generated in internal 

circuits. In other words, if the brain constantly pattern completes, how does it make sure that 

the neural coding of this internally (and possibly incorrectly) generated information does not 

interfere with the coding of new, incoming information? One promising explanation suggests 

that this is accomplished by means of neural oscillations. In particular, it has been argued that 

the phase of the hippocampal theta oscillation supports the chunking of mnemonic 

information such that the neural assemblies involved in encoding and retrieval are temporally 

segregrated [18, 19]. In a seminal paper, Pavlides, et al. [20] showed that stimulating a 

hippocampal assembly at one phase of the theta rhythm induced long-term potentiation 
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(LTP), whereas stimulating at the opposite phase induced long-term depression (LTD). This 

finding has since been replicated many times in rodents [21, 22], and implemented in 

computational models of episodic memory and the hippocampus [19, 23-26]. These models 

share the assumption that successful retrieval is most likely at one specific phase of the 

hippocampal theta rhythm, opposing the optimal encoding phase [19, 27]. Memory retrieval 

should be a continuously oscillating process that is locked to the hippocampal theta phase .  

Direct evidence for theta phase modulation in human long-term memory still remains elusive. 

FMRI studies by nature are blind to the sub-second temporal dynamics that could mediate 

memory reinstatement, and electrophysiological studies have so far not investigated rhythmic 

fluctuations in memory reactivation. To our knowledge, only one previous study exists that 

has shown evidence for periodic reactivation, and this was during a working memory task 

[28]. In human long-term memory it is therefore unknown whether neural signatures of 

memory reactivation are locked to a theta rhythm. The present study was aimed at directly 

testing this hypothesis. EEG data was recorded while participants encoded novel word-object 

associations, and were later cued with the words to retrieve the objects. EEG-based pattern 

classifiers were trained to detect memory-related neural patterns during recall with high 

temporal precision. We demonstrate that within each retrieval period, classifier fidelity 

fluctuates at 7-8Hz within each retrieval period, and that this index of memory reactivation is 

locked to a particular phase of the same theta rhythm.  

Results 

Participants retrieve the episodic memories with high accuracy 

The paradigm was a simple word-object associative memory task designed to yield a high 

number of correct trials (Figure 1A). Participants studied associations between action verbs 

and objects in random pairings, and were later cued with the word to retrieve the object. Two 
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measures of memory accuracy confirmed that participants performed the task well. The first 

was a subjective measure where participants indicated, via a button press after cue onset, 

whether and when they recalled the associated object. Participants on average indicated that 

they remembered the object on 94.21% (SD = 5.75%) of the trials. A second, more objective 

measure was accuracy in response to a question about the object’s semantic category 

(animate vs inanimate), which appeared at the end of each retrieval trial, and which 

participants answered correctly on 88.20% (SD = 6.57%) of the trials. These two measures 

were highly correlated (rSpearman = 0.60, p < .05).  Average accuracy for perceptual detail 

(photograph vs line drawing) was 85.31% (SD = 6.45%). 

Reaction times for the first button press when retrieving animate (Mean = 3.03 secs, SD = .95 

secs, min = 1.28 secs, max = 6.01 secs) and inanimate (Mean = 2.96 secs, SD = .77 secs, min 

= 1.47 secs, max = 4.24 secs) objects did not differ significantly, t(1,23) = .57, p = .58. The 

time window used for classification (-200ms to 1500ms around the cue) thus only minimally 

overlapped with the button press window. 

 

Power spectrum of classifier shows strongest effects in lower frequencies  

Our primary goal was to test whether the neural signatures of memory retrieval wax and 

wane in a theta oscillatory rhythm. Our neural index of memory retrieval was obtained from a 

linear discriminant analysis (LDA) trained to detect evidence for the reactivation of the 

correct object category (animate vs. inanimate) during retrieval (Figure 1B, see methods for 

details). The LDA was trained and tested independently per participant at each retrieval time 

point starting with the onset of the word cue, using a leave-one-out procedure. The input into 

the LDA was a feature vector containing the signal amplitudes from all 128 EEG channels at 

a given time point. The major output of interest was the fidelity (distance, or d-) values 
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available for each trial and time point. These values represent the distance from the 

hyperplane that optimally separates the two classes of retrieved objects (animate vs 

inanimate), and their timecourses served as our time-resolved, parametric index of memory 

reactivation. For the purpose of this study, the LDA was trained and tested during cued recall 

in order to isolate a purely retrieval-based signature or memory retrieval, which could then 

(below) be compared with a purely encoding-based index of memory classification. 

Additional analyses using classifiers trained on encoding and tested at retrieval are reported 

in the supplementary materials (Figure S1 and S4).   

We first asked whether evidence could be found for an oscillation in these time-resolved 

indices of memory reactivation (Figure 2A-B). Fidelity timecourses from the recall task were 

averaged across trials per participant and subjected to a Fourier Transformation. If memory 

reactivation fluctuates in a theta rhythm, the resulting power spectra will show a selective 

increase in a band-limited lower (theta) frequency band. We compared the power spectra 

obtained from the real classifier outputs with a bootstrapped baseline [29], the latter using the 

d-value outputs from classifiers that were trained and tested on the same EEG trials but with 

randomly shuffled category labels (see Method section). This procedure controls for spurious 

power peaks that are driven by the frequency characteristics of the raw data (e.g. a dominant 

oscillation in the single trials). Significant power differences between the real and shuffled 

data were found in frequency bins at 7-9Hz and 13Hz, all exceeding the 95
th

 percentile of the 

empirical null distribution (Figure 2C). Power at 7-9Hz was significantly higher (t(1,23) = 

1.9425, p = .03) when including only correctly retrieved trials that when including all trials, 

suggesting a relationship of the classifier fluctuation to memory success [30]. An alternative 

method with more stringent criteria to determine the presence of oscillations [31] confirmed 

that oscillatory power in the classifier time series was increased above baseline in the 7-9Hz 

frequency range (Figure 2D). Moreover, a similar power spectrum was found when the 
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classifier was trained on encoding and tested on retrieval (Figure S4.) The frequency 

characteristics of the classifier fidelity time courses thus suggest a rhythmic fluctuation in 

memory reactivation that was most consistent in the 7-9Hz frequency range.  

Phase-amplitude coupling reveals oscillating patterns at retrieval for 8Hz 

Our next two analyses were aimed at specifically testing for coupling between neural 

reactivation (i.e., classifier timeseries) and the phase of hippocampal theta-band oscillations. 

For this purpose, the raw EEG trials were projected into source space using an LCMV 

beamforming algorithm [32, 33], and a hippocampal mask was used to extract the 8Hz phase 

of the hippocampal virtual channels for each trial and time point. We computed a phase 

modulation index (MI) [35] reflecting the strength of coupling between the hippocampal 8Hz 

phase and the amplitude of the classifier output. Classifier fidelity as a function of 

hippocampal theta phase is plotted in Figure 2E (green line). This analysis revealed a 

significant modulation index (M = .0071, SD = .0042; baseline: M = .0056, SD = .0006), 

t(1,23) = 1.8191, p < .05, one-sided t-test, indicating that fidelity of the retrieval classifier 

was modulated by the phase of the hippocampal 8Hz oscillation (Figure 2E).  

We next directly compared the theta phase at which classifier fidelity was maximal during 

encoding and retrieval. All basic analysis steps were repeated for the encoding EEG data, 

where an LDA discriminating animate from inanimate objects was trained and tested at each 

time point from 200ms before until 1500ms after object onset. The full time generalization 

matrices showing classifier performance for encoding and retrieval can be found in Figure 

S1. The 8Hz phase at encoding was then extracted from hippocampal virtual channels to 

calculate the phase modulation index. Classifier fidelity as a function of hippocampal theta 

phase during encoding is shown in Figure 2E (grey line). A significant phase modulation was 

found also for encoding (M = .0068, SD = .0029; baseline: M = .0052, SD = .0007), t(1,23) = 
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2.7494, p < .05, one-sided t-test). In order to directly compare the encoding and retrieval 

phases, we identified the phase at which encoding or retrieval classification was optimal in 

each subject. A Rayleigh circular statistic comparing the absolute phase angles at which 

encoding and retrieval classification was maximal revealed that these angles significantly 

differed from each other, z(1,23) = 5.5342, p = .001. Similar statistics were obtained by 

fitting a sine wave to the data and identifying and extracting the phase at which classification 

was optimal. Together, the results of the phase modulation analyses show that retrieval 

fluctuates as a function of hippocampal theta (8Hz) phase, and that the optimal retrieval 

phase is on average 188 degrees phase shifted compared with the optimal phase during 

encoding.   

Classifier-locked averages reveal a consistent theta phase prior to memory 

reinstatement 

Having established that the neural retrieval patterns oscillate and are coupled to an 8Hz 

oscillation, we next investigated the temporal relationship between theta phase and memory 

reinstatement. The analysis was inspired by the use of spike-triggered averages in animal 

intracranial work [34, 35]. We here adopted a similar approach computing classifier-locked 

averages around the time points of maximal memory reactivation (see Methods for details). 

On each single trial, those time points of maximal classifier fidelity that exceeded the 95
th

 

percentile of a bootstrapped baseline were marked as new events of interest, the 

corresponding time stamps were located in the raw EEG epochs, and the ongoing EEG signal 

surrounding these maxima was then analysed for phase consistency across all electrodes 

(Figure 3A). We used a non-parametric cluster-based permutation test to compare the real 

data with a temporally shuffled baseline that keeps the EEG trial structure intact but produces 

a random temporal alignment between the classifier maxima and the ongoing phase (see 

Method section). Comparing the “real” times of maximum classifier fidelity with the 
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temporally shuffled baseline revealed a cluster of significant (pcorr < .05) phase consistency 

from 500ms to 50ms before the classifier maxima, centred at 7Hz (Figure 3B). Note that in 

this analysis, several classifier peaks per trial can exceed the 95
th

 percentile criterium, and 

many of the classifier-locked EEG epochs will thus overlap, resulting in temporal smearing 

of the phase-locked activity. When running the same analysis extracting only one maximum 

per trial (Figure S2C), we found a similar cluster of phase locking but with a more narrow 

temporal extent from 500ms to 150ms pre-maxima, suggesting that the stongest phase-

consistency effect was present roughly two theta cycles (corresponding to 2*143ms = 286ms) 

before mnemonic information could most confidetly be decoded. This finding supports our 

primary hypothesis that memory reinstatement shows a consistent oscillatory timing across 

trials and participants, in the same 7-9Hz frequency band at which the classifier fluctuates 

(Figure 2C).  

It might seem counterintuitive that the strongest phase consistency was observed prior to the 

time points of maximum classification fidelity, rather than at the maxima themselves. 

However, this temporal relationship is to be expected if the phase-locked signal originates 

from a different, upstream region in the processing hierarchy compared to the signal that the 

classifier’s decision is based on. Our findings are consistent with a model where the re-

instantiation of a memory trace is triggered at a consistent phase of a hippocampal/MTL theta 

oscillation, followed by memory reinstatement in a broader range of neocortical regions 

representing the stored memory [1, 24, 36, 37]. The aim of the next analysis was to identify 

the brain regions involved in producing the observed clusters of theta phase consistency, with 

the hypothesis that the effect should be present in MTL areas [1, 2].  

Trial time-courses were projected into source space using a beamforming algorithm [33, 38], 

and we then looked for the sources showing the strongest phase consistency. Contrasting all 

classifier maxima with the shuffled baseline (identical to the scalp level analysis), we found 
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an activation cluster spanning large regions of occipital, temporal and frontal cortex, 

primarily in the right hemisphere (maximum at MNI coordinates xyz = 10 -10 10, Thalamus, 

Figure 3C). While these sources included medial temporal lobe areas, they do not suggest a 

specific role of the hippocampus in producing the theta phase-locked signal preceding the 

classifier maxima.  

High classifier fidelity is associated with strong theta phase consistency in MTL 

We next wanted to test whether the theta phase consistency systematically varied with the 

strength of neural reinstatement. We hypothesized that phase consistency would be highest 

when the classifier correctly detected neural reactivation with high fidelity, and lower when 

the classifier was correct, but less confident.  

Comparing classifier maxima of higher and lower fidelity revealed a significant (pcorr < .05) 

cluster at 7Hz preceding the maxima by 500ms to 200ms (Figure 3D). This cluster highly 

overlapped in timing, frequency and topography with our previous classifier-triggered 

average analyses. When conducting the same analysis in source space, we found sources that 

spanned the parietal and the right medial temporal lobes (maximum MNI coordinates xyz = 

50 -30 30, inferior parietal lobule; Figure 3E), strongly reminiscent of the core recollection or 

memory success network typically found in fMRI studies [39]. Our data thus suggest that the 

neural signatures of memory retrieval are linked to a specific phase of a theta oscillation, and 

this phase relationship becomes stronger with more confident neural reactivation. The source 

level analysis additionally confirms our a priori assumption that the phase-locked signal that 

precedes memory reactivation involves the MTL and other core recollection areas.  

Theta phase-locking is unlikely to be produced by early cue-related effects 

While consistent with our hypotheses, this pattern of results could in theory also be explained 

by an early ERP elicited by the reminder word, since ERPs are generally associated with 
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strong phase locking in slow frequencies [40]. Such an explanation would assume that our 

classifier maxima tend to occur at a consistent time point within each retrieval trial with a 

delay to the reminder-elicited ERP of approximately 300ms. Several observations speak 

against this alternative. First, the classifier maxima were relatively evenly distributed across 

the entire retrieval period and did not tend to cluster around early time points. A slight 

increase in density was found in the typical recollection time window [41] from 400-800ms 

post-cue, but the overall distribution of the maxima did not significantly differ from uniform 

(χ
2
 = (1, N = 6007) = 7376600, p  = .375) (Figure S2A). Second, we repeated the classifier-

triggered average analysis excluding all classifier maxima that occurred earlier than 400ms or 

600ms post-cue, respectively, excluding the time delays that would be most strongly affected 

by early ERPs. Both analyses revealed a significant phase-locking effect (pcorr < .05) in a very 

similar time window and frequency band as in the original analysis (Figure S2E and F). This 

result indicates that the theta phase-locked process preceding memory reinstatement can 

occur at various delays in a recall trial. 

EEG signals at the exact time points of maximal classifier fidelity show content-

dependent differences with a source in anterior temporal lobe  

In order to correctly classify a trial as belonging to one category or another, linear classifiers 

including LDA require a consistent EEG signal difference across trials. If these signal 

differences additionally have consistent timing and topography across participants, we should 

on average be able to observe a robust signal difference between animate and inanimate 

objects at time points of confident classification. We therefore conducted two confirmatory 

ERP analyses comparing the average waveforms for animate and inanimate objects during 

retrieval. The first of these analyses contrasted animate and inanimate trials time-locked to 

the onset of the word cue (Figure S3A-B). This analysis shows that the strongest average 

signal differences were present over frontal channels, although this cluster did not survive 
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correction for multiple comparisons using cluster-based permutation statistics (pcorr = .64). 

The lack of significance could be due to variance in retrieval latency across trials, varying 

topographies across participants, or in fact due to an oscillating process that makes it difficult 

to observe a coherent cluster in time. Interestingly, when conducting an FFT on the average 

ERP differentiating animate and inanimate object retrievals in each participant, these signal 

differences showed power increases above baseline at 6-9Hz (Figure S3C), in the same range 

revealed by our frequency transformation of the classifier fidelity values. This finding 

confirms that the 8Hz oscillation is inherent in the signal difference that the LDA relies on.       

The second ERP analysis again contrasted animate and inanimate trials, but this time locked 

to the time points of maximal classifier fidelity (as used in previous analyses). A cluster-

based permutation test revealed a significant cluster (pcorr < .05) over frontal electrodes, 

spanning from 90ms before to 120ms after the classifier maxima (Figure 4A). Reconstructed 

at source level (Figure 4B), this effect showed a maximum in left anterior temporal lobe 

(maximum MNI coordinates xyz = -30 10 -40, superior temporal gyrus; and -40 0 -40, 

inferior temporal gyrus). The results confirm that the single-trial classifier maxima indeed 

reflect a meaningful difference in the neural patterns elicited by retrieving different types of 

objects, rather than reflecting random fluctuations in classifier performance. The most likely 

source of the effect was found in anterior temporal lobe, an area strongly linked to semantic 

memory processing [42, 43], where previous studies found tight links between classifier 

fidelity and the speed at which participants behaviourally categorize objects as animate or 

inanimate [38]. Together, the two ERP analyses validate our LDA approach and provide 

converging evidence that retrieval-related differences between animate and inanimate objects 

fluctuate in the theta range and are most pronounced over neocortical regions involved in 

high-level semantic processing [44].   
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Classifiers that generalise from encoding to retrieval show similar frequency 

characteristics 

The results reported so far focus on an index of memory reactivation derived from classifiers 

trained and tested on the retrieval data. Below, we report additional analyses conducted on 

classifiers that were trained on the encoding data, and then tested either on the encoding or on 

the retrieval data. Encoding-to-retrieval classification has been commonly used in previous 

studies [12]. We conducted the additional analyses to confirm that such classifiers can also 

successfully detect memory reactivation, and that their frequency characteristics are similar to 

our main, purely retrieval-based metric. The results are summarized in Figure S4.    

Encoding analyses were conducted on epochs time-locked to the onset of the animate and 

inanimate objects (-200ms to 1500ms). As a first step, an LDA was trained on encoding and 

also tested during encoding (Figure S4A). In line with the existing literature on object 

perception [58], animate vs inanimate category membership could be best decoded in a time 

window around 300ms after object onset, with an accuracy peak at 305ms. The classifier 

fidelity timecourses were then averaged within participants and subjected to a Fourier 

Transformation, following the same procedure as for the retrieval data. The resulting spectra 

(Figure S4B) showed the strongest power in lower frequencies with peaks at 3, 5, and 6 Hz 

exceeding the 95
th

 percentile of the random label chance distribution. 

During the time window where the LDA performed best, we also found a univariate ERP 

cluster (pcorr < .05) from 240-340ms with a frontal topography that significantly differentiated 

animate from inanimate objects during encoding (Figure S4C). Note that this cluster had a 

frontal topography similar to the main cluster differentiating animate from inanimate objects 

during retrieval (as shown in Figure S3A), providing a first indication that content-specific 

processes engaged during encoding might be re-engaged during retrieval.  
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Based on this observation, we next tested explicitly whether classifiers trained to distinguish 

animate from inanimate objects during encoding could successfully discriminate those 

categories during retrieval. For this analysis, the classifier was trained on each time point 

within the 240-340ms encoding interval identified above, and tested at each time point at 

retrieval (see Figure S4D). This approach revealed the highest decoding accuracy in a 

retrieval time window from approximately 800-1500ms, a window typically associated with 

successful recollection [41]. We then assessed the frequency characteristics of the encoding-

retrieval classifiers using the same FFT method as before, but this time applied to the 

classifiers trained on the activity patterns between 240-340ms during encoding, and tested at 

each time point during retrieval (see Figure S4E). The resulting power spectra showed the 

maximum peak at 9Hz (5 and 9Hz exceeding the 95
th

 percentile), with a similar distribution 

but at a slightly higher frequency peak compared with results obtained when training and 

testing at retrieval (see main Figure 2C).   

Discussion 

Memory retrieval, or at least the neural reactivation process underlying it, is often thought of 

as a static process that happens in an all-or-none fashion once a reminder has reactivated a 

past experience. However, evidence from rodents suggests that pattern completion fluctuates 

on a sub-second time scale, and that these fluctuations are determined by a hippocampal theta 

oscillation that shifts the network between states optimal for encoding, and states optimal for 

retrieval [19, 23]. We here sought to investigate these oscillating retrieval dynamics in 

humans in a cued recall task. Several findings from the present experiment indicate that the 

neural signatures of memory reactivation in fact do fluctuate within a single recall trial in the 

human brain, and are tightly linked to a specific phase of a theta oscillation.  
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Our main metric of interest was a parametric, time-resolved index of memory reactivation for 

each trial that we obtained from a multivariate classifier trained to detect the semantic 

category of the recalled object. First, we found that this index in itself fluctuates at 7-8Hz. 

This oscillating pattern was evident in the average classifier fidelity time courses from each 

participant (Figure 2C), relative to a baseline which used the output from random label 

classifiers. The effect can thus not readily be explained by the frequency structure of the data 

that served as input to the classifier (e.g., a dominant 7-8Hz rhythm inherent in the EEG 

epochs). The 7-9Hz fluctuation was stronger for successfully remembered than for all 

associations including misses, and it was also present in the average ERP waveforms 

differentiating the retrieval of animate and inanimate objects (Figure S3C). These findings 

suggest a fluctuation in the signals differentiating the two classes of retrieved mnemonic 

representations, consistent with a rhythmic memory reactivation process.  

Second, we investigated whether the classifier-based indices of memory reactivation 

systematically varied as a function of theta phase. We found that classifier fidelity was 

significantly modulated by the phase of an 8Hz oscillation extracted from virtual 

hippocampal channels (Figure 2E). The phase of peak classification fidelity during recall was 

188 degrees shifted compared to the phase of peak fidelity during encoding. These results 

support two of the central claims of the Hasselmo model: that neural signatures of memory 

reactivation are tighly coupled to a particular phase of a hippocampal 8Hz oscillation; and 

that the optimal phase for memory retrieval is flipped relative to the optimal encoding phase 

along this same theta oscillation [19].  

Third, to scrutinize the temporal relationship between memory retrieval and theta phase, we 

tested whether the time points where our classifier indicated maximal neural memory 

reinstatement were time-locked to a consistent phase in the same frequency range, as would 

be the case if retrieval was initiated at a particular theta phase. A classifier-locked EEG 
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analysis, inspired by animal work, revealed significant phase alignment at 7-8Hz, preceding 

the time points of maximal memory reactivation by approximately 200-300ms (Figure 3B-C). 

This cluster remained robust irrespective of whether we included only one classifier 

maximum or several maxima per trial (Figure S2C), when including correct trials only 

(Figure S2D), and when excluding early maxima close to the onset of the word cue (Figure 

S2E-F). Together, these findings suggest a close functional relationship between the phase of 

an ongoing theta oscillation, and neural memory reinstatement as measured by EEG 

classifiers, in line with the computational models that motivated our hypotheses [19, 23, 45].  

The functional coupling between memory reinstatement and oscillatory phase is further 

corroborated by an analysis that contrasted phase consistency between classifier maxima of 

high and low fidelity, used as a proxy for strong vs weak memory reactivation (Figure 3D-E). 

Phase consistency in the 7-8Hz frequency and -500 to -200ms time range was higher for 

high-fidelity trials. The sources producing the difference between high and low fidelity 

maxima spanned medial and lateral parietal regions, and medial temporal lobe areas 

including the hippocampus. These regions are typically engaged during successful 

recollection [39] and show strong functional connectivity with the hippocampus [46]. While 

we cannot establish the hippocampus as a unique source of the theta phase-locking effect, our 

results are at minimum consistent with a hippocampal theta oscillation that extends into the 

functionally connected core recollection network. A link to medial temporal is also 

corroborated by the first analysis showing modulation of memory reactivation by the 

hippocampal 8Hz phase (Figure 2E). Together with the phase-locking results, our findings 

thus support theories suggesting that episodic memory retrieval relies on periodic cycles of 

communication between storage/retrieval systems in medial temporal lobe and neocortical 

areas that represent the various components of an episode [1, 2].  
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The exact time course of the interaction between hippocampus and neocortex during retrieval 

is still not fully understood. Electrophysiological studies using time-resolved multivariate 

methods have detected memory reactivation in the typical recollection time window [11, 16, 

17]. Consistent with this timing, our classifier maxima had a tendency to cluster in the 

recollection window around 400-800ms post-cue (Figure S2A). Our main interest in this 

study, however, was whether neural reactivation was linked to a consistent oscillatory phase 

in the theta band irrespective of when exactly it is triggered within a trial. Our findings 

provide strong evidence for such phasic modulation within a recall trial, in line with models 

suggesting that memory retrieval is initiated at an optimal phase of a hippocampal theta 

oscillation [19].  

At the exact time of the classifier maxima, we observed a significant difference in the ERPs 

distinguishing between the different types of retrieved memories (i.e., animate vs inanimate, 

Figure 4). The main source of this difference was localized to the anterior temporal lobe, 

consistent with this region’s role in representing abstract object information [42]. Note that it 

is not surprising that we observed such an ERP effect, since the classifier requires a reliable 

signal difference in order to detect differences in reactivated content. The source of this 

signal is interesting, however, indicating that the classifier’s decisions are based on 

information that originates from neocortical sources that are likely to represent the reactivated 

memory’s content, and have little overlap with the sources of the theta phase-locked signal. 

Overall, our findings suggest that a few hundred milliseconds before the brain reinstates a 

memory in neocortex, an oscillating process in the MTL initiates retrieval, leading to a 

memory signal that  oscillates and is modulated by the hippocampal theta phase [2, 5].  

To our knowledge, our study is the first that directly links memory reinstatement to theta 

phase in human long-term memory. Previous studies have investigated the role of theta phase 

in working memory, and have provided first evidence for a phase shift between encoding and 
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retrieval [47]. They also suggest that theta phase plays a role in orchestrating gamma (30-

80Hz) oscillations during periods of working memory maintenance [48, 49]. High frequency 

activity in the gamma range is thought to represent the firing of cell assemblies that code for 

the content of mental representations, and lower frequencies presumably provide the time 

windows for the firing of these assemblies [18, 28, 48-50]. Following this logic, Fuentemilla, 

et al. [28] used a delayed match-to-sample working memory task to investigate how gamma 

patterns representing the encoded material re-emerged during maintenance. Reactivation took 

place several times over a 5-sec delay, and these reactivations were phase-locked to a theta 

oscillation. Rodent work also suggests a link between gamma oscillations and theta phase. 

Different hippocampal subfields produce faster or slower gamma oscillations depending on 

whether the animal is encoding novel information or retrieving familiar information, and 

these two gamma rhythms are coupled to distinct phases of the hippocampal theta rhythm 

[51]. Our results provide the first evidence for a similar relationship in human long-term 

memory, using a classifier-based metric rather than gamma oscillations as a proxy for 

memory reinstatement and its relationship to the ongoing EEG.  

We hope that our method will prove useful as a general approach for probing the relationship 

between information coding and the phase of slow oscilaltions. Phase coding has been 

suggested as an important mechanism outside the memory domain, including attentional 

selection [52] and spatial navigation  [53]. Within memory, our approach could be used to 

directly test whether distinct parts of a sequence of events are represented at different phases 

along a theta oscillation  [54], or whether memories are reactivated at specific phases of slow 

oscillations during sleep [55, 56]. Computational models [57] also postulate that phase coding 

is crucial for resolving mnemonic competition when several memories are simultaneously 

reactivated by a reminder. Building on our method and findings, follow-up studies can 

directly test phase coding as a mechanism of organizing memories (e.g. according to their 
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relevance) during encoding, during offline periods following encoding, and when reactivating 

memories during retrieval.  

In sum, the present experiment shows that memories – or their neural signatures – wax and 

wane on a millisecond time scale within a trial, and that their neural reactivation follows the 

phase of a 7-8Hz theta rhythm. These findings provide the first direct support for theta phase 

encoding-retrieval models in the human brain, and thus bridge an important gap between 

computational, rodent and human work.  
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Main-text figure/table legends 

Figure 1. Trial structure and Multivariate Pattern Analysis. (A) At encoding, participants associated action verbs with 
images depicting either an animate or inanimate object. After a short distractor task, participants were tested on the 
previously learned associations. The action verb was shown as a cue, asking participants to retrieve the associated object, 
and to indicate with a button press when the object came back to mind. They then had to respond to the question whether 
it was an animate or inanimate object. (B) For each time point and each trial from cue onset at retrieval, a linear 
discriminant analysis (LDA) classifier was trained and tested on detecting evidence for retrieval of the correct object 
category. The output of the classifier was a parametric value for each time point, reflecting the fidelity of the classifier to 
differentiate between the two object classes. 

Figure 2. Analysis rationale and results of the time-frequency analyses relating classifier fidelity to theta oscillations and 
phase-modulation. (A) Example of a single-trial output from the LDA, reflecting the fidelity of the classifier in detecting the 
retrieved object’s correct category at each time point during a retrieval trial. The black line represents a theta oscillation to 
illustrate our assumption that neural indices of memory reinstatement (i.e., the d-value time series) rhythmically fluctuate, 
and that the time points of maximal classifier fidelity should be consistently related to a particular phase of the underlying 
oscillation. (B) D-values were subjected to a Fourier transformation which reveals the power in each frequency band. (C) 
The resulting power spectrum shows significant deviations from an empirical null distribution at 7 to 9Hz and 13Hz. The 
baseline power spectrum was obtained from a combination of random label classifiers and bootstrapping, and is shown in 
grey (mean and SD). Values of the real classifier outputs exceeding the 95

th
 percentile of the baseline distribution are 

marked as significant. (D) Frequency decomposition of the classifier time series using an alternative approach to detect 
frequencies [38], again showing above baseline power at slow frequencies including 7-8Hz. Figure showing mean ± SEM for 
baseline (grey lines) and 95th percentile (thick grey line). (E) Phase-amplitude coupling between EEG phase and classifier 
fidelity at source level revealed a significant modulation index averaged over hippocampal virtual channels (mask shown on 
the left) for 8Hz. Figure showing mean ± SD. See also Figure S4. 
 
Figure 3. Rationale for classifier-locked average analysis to test for a functional relationship between classification 
maxima and neural memory reinstatement. (A) Classifier d-values exceeding the 95

th
 percentile of the chance distribution 

were marked, corresponding time stamps were found in the ongoing EEG data, and the EEG was then re-epoched relative 
to the classifier maxima. This procedure resulted in new epochs with the classifier maxima at time zero. (B) Results of the 
classifier-locked average analysis relating classifier maxima to ongoing EEG phase. A non-parametric cluster-based 
permutation test revealed a significant cluster of phase consistency centred at 7-8 Hz, spanning from 500ms to 50ms 
before the maxima. (C) At source level, the maximal phase consistency was observed in occipital and right temporal lobe. 
(D) Contrasting maxima of high fidelity and maxima of lower fidelity, a significant cluster was again found at 7-8 Hz, from 
500ms to 200ms before the maxima. (E) At source level, the maximal phase consistency effect was located in parietal and 
temporal lobes, including MTL, when contrasting high and low fidelity trials. Time-frequency plots highlight the significant 
cluster in time and frequency. Topographical and source level plots show values above the critical t-threshold (t-value of 
1.7, 23 degrees of freedom, one-sided test) for significance. See also Figure S2. 
 
Figure 4. Event-related potentials centred around classifier maxima, on scalp and source level. (A) ERPs locked to the 
time points of maximum classifier fidelity. A non-parametric cluster-based permutation test revealed a significant (p < .05, 
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cluster-corrected) difference in the average signal produced by animate and inanimate recall trials, confirming that a 
robust difference between retrieved object classes was present at the time points of maximum classifier fidelity. The ERP 
plot shows the average of the significant channels for descriptive purposes. (B)  The classifier-locked ERP reconstructed at 
source level shows a maximum in anterior temporal lobe, regions assumed to be involved in high-level semantic 
processing. Source level plot show values above the critical t-threshold (t-value of 1.7, 23 degrees of freedom, one-sided 
test). See also Figure S3. 

 

STAR Methods 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Casper Kerrén (C.Kerren@pgr.bham.ac.uk). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All experimental procedures in the present study were approved by and conducted in 

accordance with the University of Birmingham Research Ethics Committee (STEM). Written 

informed consent was obtained from participants before they took part in the experiment. 

Participants 

Twenty-four healthy participants (19 female) aged 18-32 years (mean = 22.1, SD = 4.7 years) 

received credits or monetary payment for participation. Participants had normal or corrected-

to-normal vision and reported no history of neurological disorders.  

METHOD DETAILS 

Experimental Methods 

Material and Setup 

The material consisted of 64 images depicting animate objects (equal number of mammals, 

birds, insects, and marine animals) and 64 images depicting inanimate objects (equal number 

of electronic devices, clothes, fruits, and vegetables), taken from BOSS database [58] and 
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from online royalty-free databases, and was used due to previous success at distinguishing 

these categories using multi-variate pattern analysis [59]. All images were scaled to 500 x 

500 pixels. A black-and-white drawing version of each image was manually created using 

GNU imaging manipulation software (www.gimp.org). The photographs vs. drawings served 

as an additional perceptual category (not of interest for the purpose of our current analyses). 

In addition to the material used for the experiment, 16 images were used for demonstrative 

purpose. Images from both semantic classes were randomly split into 16 sets, so that each set 

consisted of 8 images, 4 animate and 4 inanimate. Each set constituted one learning block. In 

addition, a list of 128 action verbs was generated for the experiment, serving as cue words in 

the cued recall task.  

The experiment was set up via custom written MATLAB 2016a (©The Mathworks, Munich, 

Germany) code using functions from the Psychophysics Toolbox Version 3 [60]. The 

presentation was done on a 15-inch computer screen with Windows 64 bit.  

Paradigm 

Participants received instructions about the task and first performed two practice blocks. All 

participants then performed 16 experimental blocks (8 trials per block), each consisting of an 

associative learning phase, a distractor task, and a retrieval test (Figure 1). A learning trial 

consisted of a jittered fixation cross (between 500 and 1500ms), a unique action verb 

(1500ms), a fixation cross (between 500 and 1500ms), followed by a picture of an object that 

was presented in the centre of the screen for a minimum of 2 and a maximum of 10 seconds. 

The task was to come up with a vivid mental image that involved the object and the action 

verb presented in the current trial. As soon as they had a clear association in mind, 

participants pressed the up-arrow key on the keyboard, which led to the onset of the next trial. 

http://www.gimp.org/
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Participants were aware of the later memory test, and knew that they had to pay attention to 

perceptual and meaningful aspects to perform the memory test.  

A distractor task followed each learning phase. Here participants had to respond if a given 

random number (between 1 and 99) presented on the screen was odd or even. They were 

instructed to accomplish as many trials as they could in 45 seconds, and received feedback 

about their accuracy at the end of each distractor block. 

After the distractor task, participants’ memory for the 8 verb-object associations learned in 

the immediately preceding learning phase was tested in random order. Each trial consisted of 

a jittered fixation cross (500-1500ms), followed by one of the action verbs as a reminder cue 

for the association. Participants were asked to bring back to mind the object that had been 

associated with this word as vividly as possible. To capture the particular moment when 

participants consciously recalled a specific object, they were asked to press the up-arrow key 

as soon as they had a complete image of the associated memory in mind; or the down-arrow 

if they were unable to remember the association. The reminder was presented on the screen 

for a minimum of 2 seconds and until a response was made. Immediately following the 

button press, a blank square with the same size as the original images was displayed, and 

participants were asked to hold the retrieved object in mind for 3000ms. After a short fixation 

interval (1500ms), two questions were displayed sequentially, asking participants whether the 

associated object was a photograph or line-drawing (perceptual question), or an animate or 

inanimate object (semantic question). The order of questions was pseudo-random across trials 

such that the semantic question was asked first on half of the trials, and second on the other 

half.  

Each semantic category was presented equally often in each type of perceptual level per 

participant. The action verbs were randomly assigned to the word-object pairs, and the 
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distribution of object categories for perceptual and semantic features was equally distributed 

across the first and second half of the experiment. 

EEG Data Analysis 

The electroencephalogram (EEG) was recorded using a BioSemi Active-Two Recording 

System (BioSemi, Amsterdam, the Netherlands) with a 128-channel electrode cap, sampled at 

1024 Hz.  

Preprocessing 

Preprocessing was done twice using the FieldTrip toolbox [38] and custom written MATLAB 

code: First before implementing multivariate pattern analysis, and again after re-epoching the 

data based on the maxima of the classifier output. The data was baseline corrected based on 

the whole trial before implementing the independent component analysis (ICA), and down-

sampled to 256 Hz for the second preprocessing step, but kept at 1024 Hz for the first. The 

down-sampling was done in order to decrease computational time for the classifier-locked 

average analyses, where the time-frequency transformation diminishes temporal resolution 

anyway.  

Data were divided into trials from 700ms pre-stimulus to 2000ms post-stimulus onset (before 

implementing MVPA), or 2500ms before the classification maxima to 2500ms after the 

classification maxima (epochs created based on points of maximum fidelity). A high-pass 

filter of 0.1 Hz, a low-pass filter of 195 Hz, and a band-stop filter (48 to 52 Hz; 99 to 101 Hz, 

and 149 to 151 Hz), were applied to the data. At the edges of each trial, 500ms was then cut 

out to remove edge artifacts from filtering the epoched data. Trials were visually inspected 

before an ICA was computed to remove components related to eye-blink artifacts and muscle 

tension. After components were removed, all trials were again visually inspected, and trials 
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still containing artifacts were manually removed. On average 112 out of 128 trials were kept 

(min = 100, max = 124, SD = 7). Bad channels were interpolated using the triangulation 

method. Data were then re-referenced to average.  

Multivariate Pattern Analysis 

In order to attenuate unwanted noise, a Gaussian window with a full-width at half maximum 

(FWHM) in the time-domain of 40ms was applied to the signal before classification. A 

Linear Discriminant Analysis (LDA) was then trained and tested on the EEG sensor patterns 

(pre-processed signal amplitude on each of the 128 channels), independently per participant 

and at each time point during retrieval from 200ms pre-cue up to 1500ms post-cue. The 

classifier was trained to detect systematic differences between trials where participants were 

recalling an animate or inanimate object. A leave-one-out cross-validation procedure was 

used to train and test the classifier. The LDA reduces the data from 128 channels into a single 

decoding time course per trial, and we used these single-trial, time-resolved output of the 

classifier as an index of memory reinstatement. During training, the classifier found the 

decision boundary that could best separate the patterns of activity from the two classes 

(animate or inanimate) in a high-dimensional space. We then asked the classifier to estimate 

whether the unlabelled pattern of brain activity was more similar to one or the other class. 

This training-test procedure was repeated until every single retrieval trial had been classified. 

To avoid overfitting, the covariance matrix was regularized using shrinkage regularization 

[61]. The output of the classifier on a single-trial level indicates the distance to the decision 

boundary in a high-dimensional space, at a given time point. This parametric value is called a 

fidelity value or distance (d-)value, and can intuitively be regarded as reflecting how 

confidently the classifier predicted that the pattern of brain activity belonged to one or the 

other of the two classes, with the assumption being that the farther away from the boundary 

the more confident the classifier was [62]. Note that all the central LDA analyses in this study 
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were based on retrieval data. To relate retrieval phase to encoding, the same LDA approach 

was also applied to the encoding data. Moreover, additional results from classifiers trained on 

encoding and tested during retrieval are reported in the Supplemental Materials.  

Power spectrum of the classifier fidelity time series 

The first analysis investigated the frequency characteristics of the classifier timeseries using 

fast fourier transformation (FFT). This and all subsequent phase locking analyses were 

limited to the classifier outputs from 200ms until 1200ms after onset of the reminder. We 

choose this time-window of interest because based on the existing literature, memory 

reinstatement is highly unlikely to occur within the first 200ms post-cue, and in order to 

reduce influences of early, stimulus-evoked ERP components. For each participant, the trials 

were averaged and tapered with a Hann window before conducting the Fast Fourier 

Transform (FFT). To better visualize the power spectrum, a least-squares linear regression 

was used to subtract the 1/f background signal [63, 64]. The signal was log-transformed in 

the time and frequency domain and fitted with a regression line. The regression line was then 

subtracted from the power spectrum, and only the data that differed from the subtracted 

regression line were retained. 

A baseline for the LDA outputs was created using a classifier with randomly shuffled labels. 

The labels of the two classes that the classifier later used for training and testing were 

shuffled pseudo randomly (to keep the same number of photographs and line drawings in 

each class), and fed into the LDA 25 times for each participant, such that the newly created 

groups had approximately the same number of trials from both classes. The parameters for 

running the classifier were the same as previously described for the real labels. In line with 

the procedure outlined in [29], and identical as for the real data, for each participant we drew 

(with replacement) 100 random accuracy maps (i.e., either a baseline that was created using 



29 
 

shuffled labels, or the real classification of the data), which were then averaged within 

participants. These accuracy maps were tapered with a Hann window, frequency transformed, 

and averaged into a group accuracy map. The background 1/f signal was subtracted using a 

least-squares linear regression, as described above. This procedure was repeated 1000 times, 

and resulted in an empirical chance distribution, which allowed us to investigate whether the 

results from the real-labels classification had low probability of being obtained due to chance 

(p<.05) (i.e., exceeding the 95
th

 percentile).   

Phase-amplitude coupling between EEG data and fidelity values 

To investigate the relationship between the continuous classifier outputs and the EEG data, 

the Modulation Index (MI) was computed in accordance with [65]. Following the same 

procedure as outlined under Source Analysis below, we projected the data from scalp level to 

source level, where each filter was computed using baseline corrected pre-processed data (-.2 

– 0 sec), and frequencies below 15Hz (i.e., -200 before to 1500 ms after cue onset). Epochs 

were then reconstructed for 2015 virtual electrodes, rather than the original 128 electrodes. 

The phase of the EEG signal was estimated by convolving the data with a complex Morlet 

wavelet of 6 cycles. Each complex value data point was then point-wise divided by its 

magnitude (absolute value or complex modulus), which gave us a 4D-matrix of phase values, 

containing trials*channels*frequencies*time. We then binned the phase values at a given 

electrode (e.g. a virtual hippocampal electrode), and at a given frequency of interest (e.g. 

8Hz), into 10 adjacent bins, ranging from – π to π. The z-scored amplitudes (d-values) of the 

classifier output from corresponding time points were then sorted into their corresponding 

phase bins, and the mean amplitude of each phase bin was calculated. Following this sorting 

procedure at a given frequency, the modulation index was calculated. The MI was computed 

by comparing the distribution of classifier fidelity values across the 10 phase bins against a 
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uniform distribution (using the mean across bins to construct the uniform distribution). The 

Kullback-Leibler (KL) distance was then calculated using the equation in [65]:  

D𝐾𝐿(𝑃, 𝑄) =  ∑ 𝑃(𝑗)log [
𝑃(𝑗)

𝑄(𝑗)
]

𝑁

𝑗=1

 

A statistical control analysis was then performed to infer whether the MI was significantly 

different from a distribution that could be obtained by chance. The baseline was computed by 

running the same analysis as described above, but by cutting the classifier outputs into two 

segments at a random time point, and inserting the second data segment at the beginning of 

the trial. This procedure is  recommended in [66], because it keeps the temporal structure of 

the classifier outputs largely intact while randomizing their relationship to the EEG phase at 

any given time point. The newly created random classifier outputs were then paired with the 

real EEG phase time series from their corresponding trial, and were binned in the same way 

as the real data. This procedure was repeated 500 times, and the MI was calculated for each 

iteration. The 95
th

 percentile across iterations was determined, and the real modulation index 

for each subject was compared against this subject’s 95
th

 percentile using a paired samples t-

test. Note that this is a very conservative analysis, resulting only in statistically significant 

phase modulation, if across participants real phase modulation values significantly exceed the 

95
th

 percentile of the time-permuted baseline. 

Based on our initial FFT findings, all phase modulation analyses were focused on the 

oscillatory phase at 8Hz (Figure 2). The phase modulation index was calculated as described 

above for each virtual channel in source space, and a mask including left and right 

hippocampus (from AAL atlas as implemented in FieldTrip, see Figure 2E) was then applied 

to specifically extract the modulation index from our main region of interest. This was done 

separately for the phase modulation during retrieval, and the phase modulation during 
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encoding. To directly compare the preferred phase during encoding and retrieval, the bin 

containing the highest classifier amplitudes was identified in each participant, separately for 

encoding and retrieval. A Rayleigh test (implemented using circ_rtest in the Circular 

Statistics Toolbox for Matlab) was then used to statistically test the extent to which the 

distribution of phase angles at encoding and retrieval differed from each other.  

Using classifier-locked averages to relate classifier outputs to the phase of the ongoing 

EEG-signal 

The third, classifier-locked average analysis was aimed at characterizing the EEG phase of 

the time points where the classifier showed the highest fidelity. To this end, three criteria 

were established in order to identify times of maximum fidelity. In order to be considered a 

maximum, a fidelity value was required to have an amplitude that exceeded the 95
th

 

percentile of a baseline constructed from the random-label classifications. For each 

participant, we drew (with replacement) the fidelity timeseries from random trials 1000 times 

to obtain the baseline distribution. In addition, a maximum included in the final analysis was 

also required to remain above the 95
th

 percentile threshold for more than 30ms, and to occur 

later than 200ms after reminder onset, for the same reasons as mentioned above. The average 

number of classification maxima extracted per trial was 2.27 (SD = 0.26). The onsets of the 

classifier maxima in each trial were then marked, and the corresponding time stamps were 

located in the raw, continuous EEG recordings. New epochs were created that were centred 

on each classifier maximum and contained 2.5 secs before and after the maximum, which 

were then cut during preprocessing to 2 secs before and after the maximum. These new 

epochs were used for all subsequent phase-locking analyses. 

A phase-locking analysis was conducted on the new epochs to test whether classifier maxima 

were related to a consistent phase of a theta oscillation. For every frequency between 1 and 
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20 Hz, we estimated phase by convolving the data with a complex Morlet wavelet of 6 

cycles. Resulting complex values were then point-wise divided by their magnitude (absolute 

value or complex modulus), and the mean phase was computed over all trials within each 

participant. The magnitude of this resulting complex value is a single value (the phase-angle 

time series) for each time-frequency-channel point averaged over all the trials. The value 

reflects the consistency of frequency-specific phase across trials and has a minimum of 0 and 

a maximum of 1, also called phase-locking value (PLV), phase-locking index (PLI) or 

Intertrial Phase Clustering (ITPC) [66].  

A baseline was calculated for each trial and each participant by shifting single-trial EEG 

epochs randomly between 0ms and 150ms (roughly one theta-cycle) forward or backward in 

time, relative to the centre (i.e., the classifier maxima). By doing so, the temporal structure of 

the analysed signal was kept intact, but the signal was shifted relative to the classifier 

maxima. The phase-locking index was calculated as described above for the “real”, non-

shuffled data. Shuffling was done 25 times per participant and thereafter averaged together.  

First, paired samples t-tests were computed between the real data and the time-shuffled 

baseline to investigate the difference in phase-consistency when using all maxima. To 

account for the multiple comparisons problem, the t-statistics for each time point (-500ms to 

500ms), frequency band (6 to 14 Hz), and electrode were subjected to nonparametric cluster-

based permutation testing, as implemented in the FieldTrip software. The threshold for the 

statistical testing was set to an alpha level of 0.025. The minimum number of neighbouring 

channels that were considered a cluster was set to two. T-values above the threshold of 0.1 

were then summed up, and compared against a distribution where condition labels were 

randomly assigned 5000 times with the Monte-Carlo method, following the standard method 

implemented in FieldTrip.  
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Phase consistency is strongly biased by number of trials. For our first analysis comparing all 

maxima against the time-shuffled baseline, the real data and shuffled baseline contained an 

equal number of trials. We also ensured that all subsequent comparisons were made between 

conditions with exactly equal trial numbers, within each participant, including an analysis 

contrasting classifier maxima of high fidelity and maxima of lower fidelity, and two analyses 

excluding early maxima (see following two paragraphs). For the analysis contrasting 

conditions with high and low fidelity values, we additionally controlled the average time of 

the high and low classifier maxima. This was done by creating 8 time bins of equal size 

between 200ms and 1500ms post-cue. Fidelity values in each time bin were median split into 

high and low fidelity values, resulting in two matrices representing high and low fidelity 

trials, equally distributed across time. To calculate the phase consistency, we then followed 

the same procedure as described above for all maxima, except that instead of using the 

shuffled baseline the two groups of trials were directly compared using a non-parametric 

cluster-based permutation test. 

To investigate the degree to which our phase-locking effects were mainly produced by 

classifier maxima close to the reminder word, which would be strongly influenced by the 

early stimulus-elicited ERP, we conducted two additional analyses excluding early classifier 

maxima that occurred in the first 400ms and the first 600ms post-cue, respectively, from 

further analysis. Otherwise, these analyses followed the same method as described for all 

maxima, with the same time-shuffled baseline. Similarly, an analysis using only the highest 

classifier maximum per trial used the same procedures and baseline described in this section 

for all maxima. 

Event-related potential analysis 
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Event-related analyses were mainly conducted as sanity checks, on the one hand to 

investigate average signal differences between the retrieval of animate and inanimate objects 

locked to cue onset; and on the other hand to evaluate the average signal differences and their 

topography/source around the time points at which the classifier showed maximal confidence 

that the correct category was reinstated. For the classifier-centred analysis, we only used the 

20% classifier maxima with the highest fidelity values in each of the to-be-compared classes 

(i.e., animate and inanimate retrieval trials), in order to enhance signal-to-noise ratio. This 

latter analysis included on average 48 (SD = 7.10) trials per participant. Cluster-based 

statistics for ERPs were conducted in the same way as for phase, except that we here focused 

on a narrower time window from 200ms pre- until 200ms post-maximum. 

Source Analysis 

A linear constrained minimum variance (lcmv) beamforming approach [33] was used to 

reconstruct EEG epochs in source space. The source-level results were used to obtain an 

approximation of the hippocampal theta phase for the phase modulation analysis, and to 

reconstruct classifier-locked averages (i.e., phase consistency and ERP effects) in source 

space [38]. Since individual MRI scans were not available, a standard MRI model was used 

to construct the boundary element model. The boundary element model was used in 

combination with individual electrode positions obtained from a Polhemus system 

(Colchester, Vermont, USA) to reconstruct the activity on a source level. To project the phase 

consistency effect from scalp level to source level, each filter was computed using 

frequencies below 15Hz and the entire time-window from the preprocessed data (i.e., 1500ms 

before to 1500ms after classifier maxima), and the original epochs were then reconstructed on 

2015 virtual electrodes. Thereafter the phase-locking analysis followed the same procedure as 

done on scalp level. For calculating the filters for the ERP effect, we used all frequencies 

below 20Hz, and a time-window of 300ms pre-maxima to 300ms post-maxima. The ERP was 
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then calculated in the same way as on a scalp level. Note that the full-brain source 

reconstructions or the classifier-locked effects are only used to illustrate the most likely 

sources of the effects observed on scalp level (see above). We do not report additional 

statistics at source level, since these would be circular relative of the already known effects 

on scalp level. Labels of MNI coordinates were assigned based on the Lancaster, et al. [67] 

Talairach atlas. 

Distribution of fidelity values across time 

To statistically test whether the distribution of fidelity values was different from a uniform 

distribution across the entire retrieval time window, we manually created a uniform 

distribution, by producing linearly spaced values between the minimum and maximum of the 

real values. We then calculated the chi square statistic using the crosstab function as 

implemented in MATLAB, which tests whether the proportion of items in one cell is equal to 

the product of the proportion in that row (Figure S2A).  

Time generalisation 

To characterise the temporal dynamics of the classifiers, we calculated the full time 

generalization matrices from encoding and retrieval. These matrices show where in time 

classification accuracy was maximal, to which degree a classifier trained at one time point 

generalises to a different time point, indicating temporal stability of the underlying neural 

code [68]. All analyses were performed using LDA as implemented in the MVPA-Light 

toolbox, running on MATLAB (https://github.com/treder/MVPA-Light). Two different 

analyses were run: training at each time point at encoding and testing at each time point at 

encoding (Figure S1A); training at each time point at retrieval and testing at each time point 

at retrieval (Figure S1B). When analysing encoding-to-encoding generalization, data were 

baseline corrected (-200 to 0ms), and then z-scored per trial before running the classification. 
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We used a k-fold cross-validation approach with 5 folds, which was repeated twice with 

randomly assigned folds. When training and testing at each time point at retrieval, we did not 

baseline correct before the classification. However, baseline correction was applied after the 

classification in both analyses. 

Identifying oscillating frequencies 

An alternative method for detecting oscillations in time series was used in addition to our 

FFT approach in order to corroborate our claim that classifier outputs oscillate. This method 

finds time points of oscillations in the data by investigating the change in phase per unit time. 

We followed the method detailed in [69], with a modification for dynamic filter edges only 

using minimum and maximum of frequencies exceeding the 1/f distribution, made in line 

with [31]. Briefly, we started with raw time series data, which in our case was the z-scored 

fidelity values averaged within participants. Instead of creating a plateau-shaped band-pass 

filter based on an a priori defined frequency range, the filter was constructed based on the 

lowest and highest frequencies exceeding the fitted line in log-log space using robustfit in 

MATLAB [70]. The analytic signal was obtained by applying the Hilbert transform to the 

data, from where we extracted the phase angle time series. To obtain the frequency and phase 

at each sample, frequency sliding was applied to the data as follows: (sampling 

frequency*diff(unwrap(signal))/(2*π)). After this step, in order to attenuate “phase slips”, we 

applied median filters with different length in the time domain (50ms to 400ms), wherefrom 

we took the median, in accordance with [69]. Frequencies that did not exceed the 1/f-fitted 

line were then excluded, which gave us a vector for each participant containing the 

frequencies and time points where an oscillation was present. We then calculated the average 

probability across time (200 to 1200ms post-cue, as in all other analyses using classifier 

output) for observing an oscillation in a given frequency between 1 and 15 Hz.  



37 
 

To infer whether the result that we obtained was significantly different from chance, we 

randomly picked one averaged random label classifier per participant. The same procedure as 

has been described above was applied. An average of this value was then calculated, and 

stored. This was done 1000 times, and resulted in an estimated chance distribution. The 95
th

 

percentile was then calculated for each frequency, and compared that to the real data (Figure 

2D). 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Behavioural data 

N = 24 for all behavioural analyses. 

Correlation between the two measures of remembering were highly correlated, using the 

Spearman’s rank correlation coefficient implemented in the MATLAB function corr, and can 

be seen on page 4 (rSpearman = 0.60, p = .002). 

Reaction times for the first button press when retrieving animate (Mean = 3.03 secs, SD = .95 

secs, min = 1.28 secs, max = 6.01 secs) and inanimate (Mean = 2.96 secs, SD = .77 secs, min 

= 1.47 secs, max = 4.24 secs) objects did not differ significantly, t(1,23) = .57, p = .58. The 

time-window used for classification (-200ms to 1500ms around the word cue) thus only 

minimally overlapped with the time window where participants made a button press, and can 

be seen on page 4. 

EEG data 

N = 24 for all EEG analyses. 

Power spectrum of classifier output was calculated by using the Fieldtrip function 

ft_freqanalysis, implemented in MATLAB. The baseline was calculated as described on page 
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27. Every frequency that exceeded the 95
th

 percentile was considered significant. This was 

done on all 24 participants, and the results can be seen in Figure 2C. 

Phase-amplitude coupling between EEG data and classifier output was calculated as 

described on page 6. The real data and the time-shuffled baseline were subjected to a paired-

samples t-test, for hippocampal virtual channels for retrieval, t(1,23) = 1.8191, p < .05, one-

sided t-test (Figure 2E), and encoding, t(1,23) = 2.7494, p < .05, one-sided t-test (Figure 2E). 

All phase-consistency analyses were calculated using the following procedure. The different 

conditions were inserted in the Fieldtrip function ft_freqstatistics on a scalp level, and 

ft_sourcestatistics on a source level, implemented in MATLAB, which performs a non-

parametric cluster-based permutation testing.  

The p-values for the different analyses were: 

For all peaks at scalp level: p = .0002, Figure 3B. 

For all peaks at source level: p = .0002, Figure 3C. 

High vs low fidelity trials at scalp level: p = .003, Figure 3D. 

High vs low fidelity trials at source level: p = .009, Figure 3E. 

ERP at scalp level: p = .04, Figure 4A. 

ERP at source level: p = .003, Figure 4B. 

One Peak: p = .001, Figure S2C. 

Only correct trials: p = .002 and .005, Figure S2D. 

Excluding 400ms: p = .001 and .006, Figure S2E. 

Excluding 600ms: p = .049, Figure S2F. 
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Testing for a uniform distribution, the MATLAB function crosstab was used. The function 

provides a chi-square test, to obtain significant difference between two distributions. The 

results revealed no significant difference, (χ
2
 = (1, N = 6007) = 7376600, p  = .375), and can 

be seen on page 11, Figure S2A. 

To identify oscillating frequencies, we implemented the procedure described on page 34. The 

results were compared to a constructed baseline, and only frequencies exceeding the 95
th

 

percentile of the baseline were considered significant (Figure 2D). 

To test for difference between the power spectra for all trials and only correct trials, the two 

matrices were subject to a one-sided paired samples t-test, where we expected higher power 

for only correct trials in the 7-9Hz frequency range of interest, t(1,23) = 1.9425, p = .03 

(Figure S2B). 

DATA AND SOFTWARE AVAILABILITY  

Custom MATLAB code as well as data additional to the already published on 

http://dx.doi.org/10.17632/h4vcpxt4sr.1 will be made available upon request (fulfilled by 

Lead Contact, C.Kerren@pgr.bham.ac.uk). Since consent for sharing data at the level of the 

individual participant was not received originally, we can only make summary data available 

online or upon request. 

mailto:C.Kerren@pgr.bham.ac.uk
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Supplemental Figures 

 

 

 

Figure S1. Time generalisation matrices for encoding and retrieval, with time zero indicating the onset of the object 
during encoding, and the onset of the reminder word during retrieval, related to STAR Methods.  
(A) Training and testing at encoding showed sustained high classifier accuracy from approximately 500-600ms to the end of 

the time window. (B) Training and testing at retrieval shows that accuracy is generally above baseline after cue onset, and 

indicates that participants reinstated the memory at different time points, and possibly several times. Unlike at encoding, 

the retrieval pattern suggests that there is not a sustained state across the entire time period, consistent with periodic 

reactivation. Each of the matrices in panels A-B is based on an LDA classification using a 5-fold cross-validation.  
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Figure S2. Distribution of classifier maxima across participants and time, behavioural relationship to power spectra, and 
phase consistency for various control analyses, related to Figure 3 and STAR Methods.  
(A) The distribution of classifier maxima, accumulated across participants, showed no significant deviation from a uniform 
distribution, indicating that the maxima were evenly distributed across the entire retrieval period, with a noticeably 
increased density around 400-800ms. This is in line with previous studies showing strongest memory reinstatement in the 
recollection period. (B) To evaluate the relationship between the power spectra and memory performance, we compared 
the power spectra for all trials and correct trials only for 7-9 Hz, which revealed a significantly stronger effect for correct 
trials compared to all trials. Note that a direct comparison between correct and incorrect trials was not possible due to a 
low number of incorrect trials in the cued recall task. (C) Classifier-locked averages showing phase consistency when using 
only the highest maximum per trial, and thus excluding all overlapping epochs. As expected, the phase consistency is less 
temporally smeared, with a cluster from -500ms to -150ms pre-maximum. (D) Same analysis as shown in main Figure 3, but 
limited to correct trials, showing a cluster of significant phase consistency 500-150ms before the classifier maxima. (E) 
Removing the first 400 ms of classifier maxima did not change the phase consistency effect, neither did removing the first 
600 ms of classifier maxima (F). When using only very late maxima, an even earlier cluster of 7-8Hz phase consistency 
becomes evident, with the later cluster at -500ms to -250 ms remaining significant. This results likely reflects several cycles 
of a 7-8Hz oscillation.   
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Figure S3. Average difference between animate and inanimate object retrievals shown in the time and frequency 
domain, related to Figure 4 and STAR Methods.  
(A) Topographies of the absolute EEG difference between the recall of animate and inanimate objects, showing a frontal 

maximum during retrieval (600-1200ms). (B) Average difference signal between animate and inanimate objects during 

retrieval, interestingly showing a visible rhythmicity.  (C) Applying the Fourier-transform, we can see above baseline power 

increases in spectral frequencies between 6-9Hz, the same frequencies that also show power increases in the classifier 

time series.  
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Figure S4. Encoding for encoding and encoding for retrieval analyses, related to Figure 2 and STAR Methods.  
(A) Training and testing at encoding revealed a peak of classifier performance at ~300ms, a time window commonly seen 

when investigating encoding activity for semantic memory. (B) The averaged fidelity values were subjected to a Fourier 

Transformation, and showed a peak in the lower frequencies. (C) At encoding, a frontal cluster survived a non-parametric 

cluster-based permutation test, indicating an overlap with retrieval activity seen in Figure S3A. (D) Using the time points 

from 240-340ms during encoding, where animate vs inanimate differences showed an overlapping topography compared 

with retrieval (see Fig. S4A), a fluctuating pattern is also visible in the time generalisation matrix of a classifier trained on 

encoding and tested during retrieval. (E) The power spectra of this encoding-retrieval classifier revealed a peak at 9 Hz. 

 

 

 


