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ABSTRACT: Covalent PEGylation of biologics has been
widely employed to reduce immunogenicity, while improving
stability and half-life in vivo. This approach requires covalent
protein modification, creating a new entity. An alternative
approach is stabilization by encapsulation into polymersomes;
however this typically requires multiple steps, and the
segregation requires the vesicles to be permeable to retain
function. Herein, we demonstrate the one-pot synthesis of
therapeutic enzyme-loaded vesicles with size-selective perme-
ability using polymerization-induced self-assembly (PISA)
enabling the encapsulated enzyme to function from within a confined domain. This strategy increased the proteolytic stability
and reduced antibody recognition compared to the free protein or a PEGylated conjugate, thereby reducing potential dose
frequency and the risk of immune response. Finally, the efficacy of encapsulated L-asparaginase (clinically used for leukemia
treatment) against a cancer line was demonstrated, and its biodistribution and circulation behavior in vivo was compared to the
free enzyme, highlighting this methodology as an attractive alternative to the covalent PEGylation of enzymes.

■ INTRODUCTION

The clinical use of biologics (protein therapeutics) is the fastest
growing pharmaceutical sector, with the global market forecast
of $380 billion by 2019.1 The specificity of such drugs makes
them ideal candidates for the targeted treatment of diseases.
They are, however, susceptible to proteolysis and can induce an
immune response if identified by lymphocytes. Poly(ethylene
glycol) (PEG) is a non-immunogenic polymer commonly
conjugated to proteins (PEGylation) to increase its hydro-
dynamic volume, reducing glomerular filtration and improving
biological half-life.2,3 Conjugation also reduces the proteolytic
susceptibility and immunogenicity of the protein, improving its
pharmacokinetics.4 L-Asparaginase (ASNS) is a biologic sold
under the trade name Kidrolase as an injectable treatment for
acute lymphoblastic leukemia, by depleting external L-
asparagine and hence preventing tumor growth. Numerous
side-effects are associated with ASNS, driven by production of
anti-ASNS antibodies,5 which limits doses, thereby reducing the
event-free survival rate.6 These effects have been improved by

PEGylation (Oncaspar),7 yet hypersensitive patients previously
treated with ASNS still show an immune response to Oncaspar
making switching treatments unviable.8 Moreover, in patients
who do not show hypersensitivity with Oncaspar, the biologic
exhibits reduced efficacy upon anti-ASNS binding.8

Covalent PEGylation of proteins requires the chemical
modification of residues, often in a nonspecific manner, which
alters the protein’s hydrophobicity and surface charge.9 In
contrast, encapsulation of unmodified proteins inside compart-
mentalized domains requires no residue modification, provides
a physical shield against proteases, and also helps evade both
innate and adaptive (antibody) immune responses.10−13

However, for an encapsulated enzyme-therapeutic to exert its
effect the substrates/products must permeate into the compart-
ment necessitating multistep procedures to produce pores or
other mechanisms of small-molecule sieving, often addressed by
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using speciality monomers14,15 or post-synthetic procedures,16

stimuli-responsive membranes,17−20 membrane proteins,21−23

or DNA nanopores24,25 to impart permeability.
Herein, aqueous polymerization-induced self-assembly

(PISA)26,27 was utilized to encapsulate a clinical biologic,
ASNS, inside inherently size-selectively permeable vesicles in
order to protect it from external proteases and from antibody
recognition (Figure 1A). After encapsulation, the enzyme
remained catalytically active, demonstrating the membrane’s
permeability toward small molecules. The binding of ASNS
antibodies was shown to be greatly reduced relative to both the
native enzyme and the PEGylated conjugate. Furthermore, the
encapsulated protein’s stability to proteolytic degradation was
shown to be higher in vitro and in vivo, when compared to the
free enzyme. The efficacy of the ASNS-loaded vesicles toward a
cancer cell line with down-regulated L-asparagine synthetase
was also confirmed. Our approach is proposed as a possible
alternative to PEGylation of therapeutic enzymes, as it may
offer improved stability and reduced immunogenicity. As no
chemical modification is required, this approach could be
utilized for the encapsulation of a range of therapeutic enzymes,
independently of their structure.

■ RESULTS AND DISCUSSION
ASNS’s mechanism of action is the breakdown of L-asparagine,
a nonessential amino acid for healthy cells, into L-aspartic acid
and ammonia. Certain cancerous cells, such as leukemia cells,
underexpress the synthetase required for the synthesis of L-
asparagine and are therefore starved of this amino acid in the
presence of ASNS, in contrast to healthy cells, which synthesize
their own L-asparagine.
Therefore, we hypothesized that semipermeable ASNS-

loaded nanoreactors, which could allow diffusion of the
substrate into the lumen, serve as an attractive alternative to
PEGylation. Aqueous photo-PISA in the presence of the

protein yielded ASNS-loaded vesicles comprising a PEG shell
and a poly(2-hydroxypropyl methacrylate) (PHPMA) mem-
brane.27−30 Such membranes are highly hydrated,31 which
enables size-selective transport of small molecules while
protecting the protein from external macromolecules.30 The
ASNS-loaded vesicles were fully characterized by dynamic light
scattering (DLS), atomic force microscopy (AFM), and dry-
state and cryogenic transmission electron microscopy (TEM)
after the excess protein was removed by repeated centrifuga-
tion/resuspension cycles (Figure 1B,C and Figure S1). Analysis
of the supernatants from the purification confirmed complete
removal of free ASNS (Figure 2A). The ASNS-loaded vesicles
retained activity, whereas empty vesicles purified from an
identical ASNS external solution showed no L-asparaginase-
associated activity (Figure 2B) confirming no residual adhered
protein on the polymersome surface or free protein in solution.
Analysis of the ASNS in the first supernatant revealed no loss in
activity after PISA relative to fresh enzyme, indicating that the
photo-PISA conditions did not damage the protein (Figure
2C). The loading efficiency of the protein was determined by
Western blot analysis of disassembled vesicles, which revealed a
loading efficiency of 9% (Figure S2). Comparing the activity of
the ASNS-loaded vesicles to the free protein showed retention
of 52 ± 8% activity (Figure 2D). The reduction in activity
could be mainly ascribed to the diffusive barrier imparted by the
semipermeable vesicle membrane, which retards the passage of
substrate, as relevant control experiments showed no loss of
activity under polymerization conditions with or without light
(Figure S5).
The colloidal stability of empty and ASNS-loaded vesicles in

a range of media (including cell culture media) was assessed
over time, upon incubation at 37 °C (Figure S3). As expected,
the hydrodynamic diameter of both blank and ASNS-loaded
vesicles remained constant in deionized water (DI) over
extended incubation periods. For both vesicles, a minor size

Figure 1. (A) Schematic of the ASNS-loaded vesicle preparation by aqueous polymerization-induced self-assembly (PISA) highlighting that the
semipermeable membrane is hypothesized to act as a size-selective barrier allowing for therapeutic function, but not degradation or antibody binding.
(B) Representative cryo-TEM image and (C) DLS size distribution of purified ASNS-loaded vesicles.
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increase was observed after 24 h upon incubation in fetal
bovine serum (FBS) solution, suggesting slow agglomeration
with blood proteins, while a slight decrease in size was
monitored upon incubation of the vesicles in cell growth
medium. These effects were more pronounced after 72 h;
however, the empty and ASNS-loaded vesicles still maintained
their overall size in the range 230−420 nm. These results
demonstrate that both empty and ASNS-loaded vesicles have
good colloidal stability in physiological media, for an extended
time period. The ASNS-loaded vesicles also showed excellent
proteolytic stability in the presence of a protease, α-
chymotrypsin (α-CT), with quantitative retention of activity
after 18 h exposure. Conversely, free ASNS and PEG−ASNS
both completely lost their activity after this time (Figure 2E).
Indeed, the ASNS-loaded vesicles remained intact after 7 days
incubation with α-CT, and the encapsulated ASNS remained
active even after this time (Figure 2F). Based on these positive
results, we hypothesized that antibodies, with larger molar
masses than α-CT, would also be prohibited from entering into
the lumen, thereby preventing antibody recognition. Anti-
ASNS binding was assessed using a sandwich enzyme-linked
immunosorbent assay (ELISA).32 The binding affinities of anti-
ASNS toward both PEG−ASNS and the ASNS-loaded vesicles
were compared to the binding toward a dilution series of native
ASNS. This demonstrated the promiscuity of the binding
toward the native ASNS or toward the PEG−ASNS conjugate,8
which bound with affinities within an order of magnitude of

one another (Figure 3A). However, ASNS-loaded vesicles
showed a binding affinity 2 orders of magnitude lower than the
native protein. Therefore, unlike with PEG−ASNS treatment,
treatment of hypersensitive patients with encapsulated ASNS
could lower the risk of an immune response. As with any
PEGylation strategy, PEG sensitization is still an issue (Figure
S4); however non-linear PEG stabilizers show potential to
reduce anti-PEG binding,32,33 and indeed could be incorpo-
rated into such nanoreactors.
The empty and ASNS-loaded vesicles’ cytotoxicity was

assessed in vitro on A549 cells (human lung cancer fibroblasts).
Cell viability was found to be ≥90% after incubating cells for 7
days with vesicle concentrations up to 2 mg mL−1,
demonstrating low cytotoxicity (Figure S6). Furthermore, the
ability of the ASNS-loaded vesicles to inhibit cell proliferation
on ASNS gene silenced A549 was assessed in vitro. To generate
cells deficient in L-asparagine synthetase (simulating leukemia),
A549 (lung adenocarcinoma) cells were gene silenced with the
appropriate siRNA making them dependent on external L-
asparagine to proliferate. Western blot analysis of lysed cells
treated with the siRNA revealed a 65% knockdown efficiency
(Figure S7). Growth media was treated with either free ASNS,
PEG−ASNS, empty vesicles, or ASNS-loaded vesicles, to
deplete external L-asparagine. Treated media were then used
to grow gene silenced cells, and metabolic activity was assessed
at various time points (Figure 3B). As shown in Figure 3C,
such cells showed a comparable reduction in proliferation when

Figure 2. (A) Purification process by repeated centrifugation/resuspension cycles (end point microwells are shown) and (B) activity of ASNS-
loaded vesicles compared to empty vesicles purified from ASNS. (C) Activity of free ASNS from supernatant after photo-PISA against untreated
enzyme. (D) Activity of ASNS-loaded vesicles against free enzyme. (E) Proteolytic stability of ASNS-loaded vesicles, free ASNS, and free PEGylated
ASNS after 18 h and (F) ASNS-loaded vesicles after 7 days. The inset shows dry-state stained TEM micrograph of vesicles after 7 days with α-CT,
scale bar = 500 nm. The normalized activity is defined as the ratio between the absorbance of the sample and the absorbance of free, untreated
ASNS, at the end point of the enzymatic assay (end point = 30 min, λ = 485 nm).
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treated with the ASNS-loaded vesicles (58%), PEG−ASNS
(61%), or free ASNS (78%), demonstrating similar enzymatic
function. Cells treated with a growth medium incubated with
the empty vesicles proliferated at a similar rate as the control,
demonstrating the retention of cell function. In order to
understand the vesicles’ site of action, internalization of GFP-
loaded vesicles30 in A549 cells was investigated. After 12 h of
incubation no internalization was observed (Figure S8). This
supports an extracellular mechanism of action that the
polymersomes do not need to enter cells to exert their
therapeutic effect, in agreement with the mechanism of action
reported for free ASNS.34 Finally, the biodistribution and
circulation behavior of ASNS encapsulated in our polymeric
vesicles was compared to the free enzyme in an immuno-
competent Balb/c mouse model. At 24 h post-injection, the
free enzyme is seen to be present at significantly higher levels in
both the liver and the kidneys compared to that encapsulated in
the vesicles, indicating that the vesicles provide enhanced
clearance protection of the enzyme (Figure S9). The
accumulation of the vesicles at 48 h within the different
clearance organs (spleen, liver, kidneys) is typical for
nanoparticle systems.35−37 This data implies a greater degree
of immune-avoidance through the use of the “stealthy” vesicle
structure, and shows great potential for the ASNS vesicles to be
used as therapeutic delivery vehicles.

■ CONCLUSIONS

A mild, one-pot methodology to stabilize protein therapeutics
within permeable nanoparticles has been developed using PISA
as an alternative to PEGylation for therapeutic enzymes. Our
approach yielded inherently size-selective vesicles using
commercial reagents at high solids content (11 wt %) in
short reaction times under mild photoinitiated polymerization.
The PHPMA membrane exhibits size-selective permeability,
which allowed the therapeutic L-asparaginase to function by
catalyzing the removal of asparagine from an external solution
while protected inside the vesicle. The encapsulated protein
exhibited a greater proteolytic stability in vitro and in vivo than
the native protein or a PEGylated conjugate, while the
immunogenicity of the encapsulated species was greatly
reduced due to its location inside the polymersome. This
approach does not chemically alter the protein of interest and
can be applied to a wide range of therapeutic and functional
proteins, and hence future research includes the encapsulation
of a range of biologics, and further in vivo investigations.
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Figure 3. (A) Anti-ASNS binding affinity toward native ASNS, PEG−ASNS, and ASNS-loaded vesicles shown on linear and logarithmic scales. (B)
Schematic representation of the in vitro assay followed for the assessment of metabolic activity of ASNS gene silenced A549 cells over time. (C)
Metabolic activity of ASNS gene silenced A549 cells over time grown in different treated media.
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