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Abstract		1	

High	indoor	CO2	concentrations	and	low	relative	humidity	(RH)	create	an	array	of	well-documented	human	health	2	

issues.	Therefore,	assessing	houseplants’	potential	as	a	low-cost	approach	to	CO2	removal	and	increasing	RH	is	3	

important.		4	

We	investigated	how	environmental	factors	such	as	’dry’	(<	0.20	m3	of	water	per	m3	of	substrate,	m3	m-3)	or	‘wet’	(>	5	

0.30	m3	m-3)	growing	substrates,	and	indoor	light	levels	(‘low’	10	µmol	m-2	s-1,	‘high’	50	µmol	m-2	s-1	and	‘very	high’	6	

300	µmol	m-2	s-1),	influence	the	plants’	net	CO2	assimilation	(‘A’)	and	water-vapour	loss.	Seven	common	houseplant	7	

taxa	–	representing	a	variety	of	leaf	types	and	sizes	–	were	studied	for	their	ability	to	assimilate	CO2	across	a	range	of	8	

indoor	light	levels.	Additionally,	to	assess	the	plants’	potential	contribution	to	RH	increase,	the	plants’	evapo-9	

transpiration	(ET)	was	measured.		10	

At	typical	‘low’	indoor	light	levels	‘A’	rates	were	generally	low	(<	3.9	mg	hr-1).	Differences	between	‘dry’	and	’wet’	11	

plants	at	typical	indoor	light	levels	were	negligible	in	terms	of	room-level	impact.	Light	compensation	points	(i.e.	the	12	

light	level	where	the	CO2	assimilation	equals	zero)	were	in	the	typical	indoor	light	range	(1-50	µmol	m-2	s-1)	only	for	13	

two	studied	Spathiphyllum	wallisii	cultivars	and	Hedera	helix;	these	plants	would	thus	provide	the	best	CO2	removal	14	

indoors.	Additionally,	increasing	indoor	light	levels	to	300	µmol	m-2	s-1	would,	in	most	species,	significantly	increase	15	

their	potential	to	assimilate	CO2.	Species	which	assimilated	the	most	CO2	also	contributed	most	to	increasing	RH.	16	

	17	

Key	words:	Dracaena;	drought;	Hedera;	indoor	light;	indoor	air	quality;	Spathiphyllum	18	

	 	19	
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Introduction		20	

Indoor	CO2	concentrations	are	primarily	dependent	on	the	occupancy	level	and	outdoor	air	supply	rate	(Zhang	et	al.	21	

2017).	Humans	produce	and	exhale	CO2;	therefore,	a	greater	occupancy	coupled	with	lower	ventilation	rates	–	22	

intended	to	reduce	energy	consumption	–	gives	rise	to	higher	and	often	harmful	CO2	concentrations	indoors	(Satish	23	

et	al.	2012).	Additionally,	even	when	ventilation	by	ambient	air	is	employed,	the	problems	may	be	exacerbated	in	24	

the	future:	ambient	CO2	concentrations	increased	by	40%	over	the	last	century,	to	400	ppm	–	with	a	rise	to	670	ppm	25	

expected	by	2100	(Hersoug	et	al.	2012).	26	

The	American	Society	of	Heating,	Refrigerating	and	Air-conditioning	Engineers	(ASHRAE)	recommends	a	maximum	27	

indoor	CO2	concentration	of	1000	ppm	(Torpy	et	al.	2017).	Concentrations	indoors	(e.g.	in	fully	occupied	offices	or	28	

meeting	rooms)	often	reach	2000	to	2500	ppm	but	can	rise	as	high	as	5000	ppm	(Zhang	et	al.	2017).	Although	29	

discrepancies	in	the	maximum	safe	exposure	concentration	are	commonplace	in	literature,	prior	research	suggests	30	

typical	indoor	CO2	concentrations	will	continue	to	present	unwanted	health	issues	(Zhang	et	al.	2017).	These	include	31	

mucus	membrane	symptoms	(i.e.	sore/dry	throat,	dry	eyes	and	sneezing)	and	respiratory	problems	(i.e.	tight	chest,	32	

wheezing/coughing	and	shortness	of	breath)	(Seppanen	et	al.	1999;	Erdmann	and	Apte	2004).	Elevated	CO2	can	also	33	

reduce	the	cognitive	performance	of	students	in	schools,	while	long-term,	regular	exposure	has	been	linked	to	34	

increased	absenteeism,	weight	gain	and	obesity	(Hersoug	et	al.	2012;	Satish	et	al.	2012;	Gaihre	et	al.	2014;	35	

Nieuwenhuis	et	al.	2014;	Vehvilainen	et	al.	2016;	Zhang	et	al.	2017).		36	

An	additional	challenge	in	indoor	environments	is	low	relative	humidity	(RH).	An	RH	below	30%	has	been	shown	to	37	

cause	eye	irritation	and	skin	dryness,	with	an	RH	below	10%	causing	dryness	of	the	nasal	mucus	membrane.	Low	RH	38	

can	also	increase	the	likelihood	of	influenza	transmission,	enhance	indoor	ozone	concentration	and	produce	static	39	

electricity	(Arundel	et	al.	1986;	Berglund	1998;	Sunwoo	et	al.	2006;	Lowen	et	al.	2007;	Abusharha	and	Pearce	2013;	40	

Zhang	and	Yoshino	2010).	However,	high	RH	(>	60%)	too	can	cause	issues	by	encouraging	fungal/mould	growth	and	41	

contributing	to	the	deterioration	of	building	materials	(Berglund	1998;	Bin	2002;	Zhang	and	Yoshino	2010;	Frankel	et	42	

al.	2012).	The	majority	of	adverse	health	effects	concerning	RH	can	be	avoided	by	maintaining	indoor	levels	between	43	

40	and	60%	(Arundel	et	al.	1986).		44	

Various	techniques	are	used	in	the	built	environment	to	control	and	regulate	CO2	levels.	They	include	highly	45	

engineered	approaches	to	ventilation	(Hesaraki	et	al.	2015;	Mateus	and	da	Graca	2017)	as	well	as	low-tech	46	

approaches	which	can	include	the	use	of	plants	(Raji	et	al.	2015;	Charoenkit	and	Yiemwattana	2016).	A	number	of	47	

studies	investigate	a	houseplants’	potential	to	sequester	CO2	from	indoor	environments	(Oh	et	al.	2011;	Pennisi	and	48	

van	Iersel	2012;	Torpy	et	al.	2014).	Studies	vary	in	scale	and	focus	–	from	those	focusing	on	individual	plants	in	49	

experimental	chambers,	to	room	scale	studies	in	situ.	50	

A	range	of	studies	investigated	houseplants’	ability	to	sequester	CO2	in	home,	school,	and	office	environments.	51	

Various	combinations	of	houseplants	were	found	to	generally	reduce	room	CO2	concentrations	and	increase	RH;	52	

however,	studies	rarely	specify	exact	plant	numbers	and	plant	types.	Plant	species	commonly	used	include	Dracaena	53	
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deremensis,	Dracaena	marginata,	Ficus	benjamina,	Hedera	helix,	and	Spathiphyllum	clevelandii	(Raza	et	al.	1991;	54	

Lohr	and	PearsonMims	1996;	Jeong	et	al.	2008;	Lim	et	al.	2009;	Oh	et	al.	2011;	Pegas	et	al.	2012).		55	

Light	levels	and	substrate	moisture	are	the	key	factors	influencing	gas	exchange	between	the	plant	and	the	56	

environment,	with	‘low’	light	and	‘dry’	substrate	both	reducing	houseplants’	ability	to	sequester	CO2	and	contribute	57	

to	RH	increases	indoors	via	transpiration	(Lawlor	and	Cornic	2002;	Flexas	et	al.	2006;	Torpy	et	al.	2017).	In	indoor	58	

environments	light	levels	are	typically	at	least	100-fold	lower	compared	to	outdoors	(on	a	clear	summer	day	for	59	

example)	and	are	maintained	in	the	range	of	approximately	1	–	50	µmol	m-2	s-1	(Thimijan	and	Heins	1983;	Boyce	and	60	

Raynham	2009;	Lai	et	al.	2009;	Hawkins	2011).	Research	suggests	however,	that	having	higher	indoor	light	levels	61	

(approximately	30	–	50	µmol	m-2	s-1)	would	greatly	increase	occupant	comfort	(Lai	et	al.	2009;	Huang	et	al.	2012).	As	62	

previously	proposed,	indoor	light	is	the	most	limiting	factor	for	CO2	assimilation	(Pennisi	and	van	Iersel	2012).		63	

The	positive	contribution	of	plants	to	the	reduction	of	CO2	levels	and	RH	increases	indoors	are	based	on	the	premise	64	

that	plants	function	optimally	and	are	sequestering	CO2/releasing	water	vapour	at	their	maximum	capacity.	65	

However,	the	main	challenges	for	maintaining	plant	function	in	the	indoor	environment	are	‘low’	indoor	light	levels	66	

and	issues	arising	from	plants’	(mis)	management,	most	frequently	plants’	being	under	or	over	watered	without	the	67	

correct	nutrients	(RHS	2017).	A	few	studies	addressed	these	questions	in	part	by	investigating	a	wide	range	of	light	68	

levels	and	their	effect	on	CO2	assimilation	(Pennisi	and	van	Iersel	2012;	Torpy	et	al.	2014).	However,	no	study	to	our	69	

knowledge	investigated	the	effect	of	differing	substrate	moisture	content	(SMC)	–	namely	investigating	the	effect	of	70	

’wet’	(>	0.30	m3	m-3)	and	‘dry’	(<	0.20	m3	m-3)	SMC	conditions.	Additionally,	previous	studies	have	not	specifically	71	

focused	on	plants’	cultivar-level	differences;	this	may	be	of	interest	as	for	many	houseplant	species	there	are	a	range	72	

of	cultivars	available,	which	may	potentially	offer	augmented	service	compared	to	straight	species	if	they	are	larger	73	

in	size	or	more	physiologically	active.		74	

Pennisi	and	van	Iersel	(2012)	investigated	the	CO2	assimilation	of	17	houseplant	species	in	both	a	simulated	75	

controlled	environment	utilising	light	levels	of	10,	20	and	30	µmol	m-2s-1	and	a	public	office	building	in	Atlanta	(USA).		76	

In	the	public	office,	the	amount	of	CO2	assimilated	by	plants	varied	depending	on	plant	size.	In	the	controlled	77	

environment,	most	species	exhibited	positive	carbon	assimilation	over	a	10-week	period.	The	study	found	that	in	78	

both	environments	larger,	woody	plants	(such	as	Ficus	benjamina)	assimilated	more	CO2	than	herbaceous	species.		79	

Torpy	et	al.	(2014)	investigated	the	CO2	assimilation	of	eight	common	indoor	plant	species	by	producing	light	80	

response	curves	and	light	compensation	points	(LCPs)	using	an	infra-red	gas	analyser.	The	results	indicated	that	at	81	

least	some	CO2	sequestration	could	be	expected	from	the	studied	species	under	current	indoor	lighting	systems	and	82	

plants	could	be	effectively	utilised	in	the	built	environment	to	sequester	CO2	given	a	moderate	increase	in	the	83	

targeted	lighting	levels.		84	

Our	research	aims	to	improve	the	understanding	of	which	taxa	(i.e.	plant	species	and	cultivars)	as	well	as	which	light	85	

and	substrate	moisture	conditions	are	best	placed	to	regulate	indoor	CO2	and	RH.		Specifically,	the	aims	of	the	study	86	

were	to	determine:		87	
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1. The	impact	of	drying	substrate	on	CO2	removal	capacity	by	different	taxa	88	

2. The	impact	of	light	levels	on	net	CO2	assimilation	of	taxa	(i.e.	to	test	the	potential	to	improve	the	89	

performance	by	supplementing	indoor	light	levels)	90	

3. The	evapo-transpiration	(ET)	rates	of	each	taxon	and	their	potential	contribution	to	increasing	indoor	RH.		91	

2	Material	and	Methods	92	

2.1	Plant	material		93	

Five	common	houseplant	species,	including	two	cultivars,	were	selected	for	the	study	to	represent	a	range	of	leaf	94	

types	(succulent	and	herbaceous),	plant	sizes	and	plant	metabolisms	often	found	in	indoor	environments	(Table	1).	95	

Selected	plants	were	2-years	old	at	the	time	of	purchase	in	July	2016	from	the	RHS	plant	centre	(Wisley,	Surrey,	UK),	96	

ranging	between	10cm	-	60cm	in	height,	depending	on	the	taxon.	Within	the	species,	plant	height	and	stature	were	97	

uniform	(data	not	shown).	Plants	were	maintained	in	Sylvamix	growing	medium	(6:2:2	sylvafibre:	growbark	pine:	98	

coir;	Melcourt,	Tetbury,	Gloucestershire,	UK)	in	3	L	containers,	with	a	slow	release	fertiliser	feed	(Osmocote,	99	

Marysville,	OH,	USA).	For	three	months	prior	to	experimentation	plants	were	kept	at	ambient	temperatures	(17	–	22	100	

°C)	and	‘low’	light	levels	(10	µmol	m-2	s-1)	in	an	indoor	office	environment	within	the	Crops	Laboratory	in	the	101	

Glasshouse	Complex	of	the	School	of	Agriculture,	Policy	and	Development,	at	the	University	of	Reading	(UK).	102	

Table	1:	Characteristics	of	the	houseplant	taxa	(i.e.	plant	species	and	cultivars)	chosen	for	experiments.	Leaf	area	(n	103	

=	2)	and	plant	height	(n	=	5)	are	means	±	SEM.	Species’	Latin	name	is	given	in	italic	and	cultivar,	where	applicable,	104	

follows.	105	

Species/cultivars	 Family		 Metabolism	 Leaf	area	(cm2)	 Plant	height	(cm)		
Dracaena	fragrans	'Lemon	Lime'	 Asparagaceae	 C3	 1742	±	91	 51	±	1	
Dracaena	fragrans	'Golden	Coast'	 Asparagaceae	 C3	 1438	±	10	 60	±	1	
Guzmania	'	Indian	Night'	 Bromeliaceae	 C3/CAM	 1230	±	6	 32	±	1	
Hedera	helix	 Araliaceae	 C3	 1509	±	243	 9	±	0	
Spathiphyllum	wallisii	'Bellini'	 Araceae	 C3	 1766	±	189	 35	±	1	
Spathiphyllum	wallisii	'Verdi'	 Araceae	 C3	 5451	±	1104	 36	±	1	
Zamioculcas	zamiifolia	 Araceae	 CAM	 1388	±	88	 57	±	1	
	106	

2.2	Net	leaf-level	CO2	assimilation	at	‘low’	and	‘high’	indoor	light	levels	under	‘dry’	and	‘wet’	conditions		107	

Experiments	were	conducted	on	five	plants	per	taxon.	Measurements	of	the	net	CO2	assimilation	rate	(µmol	m-2	s-1)	108	

were	made	using	a	LCPro	infrared	gas	analyser	(ADC	Bioscientific,	Hoddesdon,	Hertfordshire,	UK)	on	three	young,	109	

fully	expanded	leaves	per	plant	(with	consistent	leaf	selection	i.e.	third	fully	expanded	leaf	from	the	plant	tip)	under	110	

office	conditions	(16.6	–	21.8	°C,	RH	>	35%)	at	‘low’	and	‘high’	indoor	light	levels	(Hawkins	2011;	Huang	et	al.	2012).	111	

‘Low’	10	µmol	m-2	s-1	lighting	was	achieved	in	the	usual	lighting	conditions	of	the	room	(eight	fluorescent	lights,	112	

Osram,	Munich,	Germany	lighting	a	floor	area	of	20	m2).	To	achieve	‘high’	50	µmol	m-2	s-1	during	measurements,	the	113	

photosynthetic	photon	flux	density	(i.e.	light	level,	µmol	m-2	s-1)	was	supplemented	at	the	leaf	by	an	external	halogen	114	
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source	(50	W,	12	V).	Each	light	increment	was	administered	for	seven	minutes	and	the	net	CO2	assimilation	rate	115	

recorded	at	the	end	of	the	seven-minute	period.	116	

Substrate	moisture	content	(SMC)	based	on	volume	of	water	per	volume	of	substrate	was	measured	daily	for	each	117	

plant,	in	two	locations	per	container	using	a	SM300	capacitance-type	probe	connected	to	a	HH2	Moisture	Meter	118	

(Delta-T	Devices,	Cambridge,	Cambridgeshire,	UK;	0–100%	range	and	an	accuracy	of	±	2.5%).	At	the	start	of	the	119	

experiment,	substrate	moisture	was	at	the	container	capacity	(SMC	>	30%,	0.3	m3	m-3)	and	plants	were	thus	120	

considered	optimally	watered	(Vaz	Monteiro	et	al.	2016).	Measurements	were	also	made	on	‘dry’	plants	(SMC	<	121	

20%,	0.2	m3	m-3).	Measurements	were	made	over	approximately	one	month.		122	

2.2.1	Calculation	of	the	respiration	of	the	potted-plant	microcosm			123	

To	ensure	that	CO2	removal	by	the	aboveground	parts	of	the	plant	(i.e.	leaves	and	stem)	was	not	cancelled	out	by	124	

respiration	of	the	potted-plant	microcosm	(PPM)	(i.e.	substrate	and	non-photosynthetic	plant	parts)	the	PPM	was	125	

investigated	for	CO2	contributions	at	both	‘high’	and	‘low’	light	and	under	‘wet’	and	‘dry’	SMC	conditions	(n	=	3).	The	126	

PPM	respiration	values	were	then	subtracted	from	all	the	leaf	CO2	assimilation	values	made,	to	obtain	the	overall	127	

contribution	of	the	plant	and	substrate.				128	

Measurements	of	the	PPM	respiration	were	made	utilising	a	150	L	(45	x	45	x	75	cm,	0.15	m3)	Perspex	chamber	(The	129	

plastic	people,	Leeds,	West	Yorkshire,	UK)	sealed	with	Swagelok’s	(Swagelok,	Bristol,	South	Gloucestershire,	UK).	130	

Enclosed	inside	the	Perspex	chamber	was	a	HOBO	MX1102	CO2	logger	(Onset	Computer	Corporation,	Bourne,	MA,	131	

U.S.A),	a	12	V	DC	brushless	fan	(RS	Components,	Corby,	Northants,	UK),	and	a	calibrated	(20	–	90	%	RH,	0	–	40	°C)	132	

Tinytag	RH/temperature	logger	(Gemini	data	loggers,	Chichester,	West	Sussex,	UK).	The	external	RH/temperature	133	

surrounding	the	chamber	was	also	monitored	with	another,	identical	Tinytag	logger.	Inside	the	chamber	‘low’	light	134	

levels	were	achieved	as	described	in	Section	2.2;	‘high’	levels	were	generated	by	two	LED	lights	(V-TAC	Europe	Ltd,	135	

Sofia,	Bulgaria)	and	measured	with	a	calibrated	light	sensor	(Skye	instruments,	Llandrindod	Wells,	Wales,	UK).	Bare	136	

substrate	was	prepared	for	the	experiment	as	explained	in	Section	2.2.	Experiments	were	undertaken	for	2	hr,	with	137	

the	chamber	analysed	for	leakage	prior,	during	and	after	experimentation;	leakage	was	found	to	be	<	2%	of	the	138	

starting	concentration	over	a	2-hr	test	period.	Measurements	were	made	over	approximately	one	week.	139	

Data	obtained	in	Section	2.2	was	normalised	by	leaf	area	by	multiplying	CO2	assimilation	(mg	m-2	hr-1)	with	leaf	area	140	

(m2),	providing	CO2	assimilation	in	mg	hr-1	plant-1	for	each	taxon.	Data	were	also	corrected	for	PPM	respiration	and	141	

leakage	by	calculation	of	an	average	conversion	value	(mg	hr-1)	for	both	‘wet’	and	‘dry’	SMC	conditions.	142	

2.3	Generating	light	response	curves		143	

To	generate	light	response	curves,	measurements	of	the	net	photosynthetic	rate	(µmol	m-2	s-1)	were	made	as	144	

explained	in	Section	2.2	on	four	plants	per	taxon.	Environmental	conditions	within	the	leaf	cuvette	were:	145	

temperature	controlled	at	25	°C,	ambient	CO2	concentration	(~400-450	ppm)	and	an	ambient	RH	of	35-45	%.	Plants	146	

were	prepared	for	the	experiment	as	explained	in	Section	2.2,	achieving	a	SMC	>	0.30	m3	m-3	and	were	considered	147	
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optimally	watered	on	the	commencement	of	each	experiment	(Vaz	Monteiro	et	al.	2016).	SMC	was	maintained	at	148	

this	level	for	the	duration	of	the	experiment.		149	

To	generate	the	light	response	curve	the	light	was	supplemented	in	the	following	set	increments:	0,	50,	300,	1200	150	

µmol	m-2	s-1	as	described	in	Section	2.2.	An	increment	of	0	µmol	m-2	s-1	was	chosen	to	investigate	each	species	CO2	151	

assimilation	in	the	dark;	50	µmol	m-2	s-1	the	highest	indoor	light	level;	300	µmol	m-2	s-1	was	chosen	to	represent	the	152	

highest	feasible	light	level	which	could	be	engineered	(with	supplementary	artificial	lighting)	in	an	indoor	153	

environment;	1200	µmol	m-2	s-1	(a	sunny	day	in	a	UK	climate)	was	chosen	to	present	information	on	a	plant’s	154	

maximal	capacity	for	net	CO2	assimilation.	Measurements	were	made	over	approximately	one	week.		155	

The	light	response	curves	were	based	on	an	equation	proposed	by	Prioul	and	Chartier	(1977)	and	were	produced	156	

using	the	model	by	Lobo	et	al.	(2013).	Light	compensation	points	-	LCPs	(which	represent	the	light	level	where	the	157	

CO2	assimilation	is	equal	to	zero)	(Torpy	et	al.	2014)	were	calculated	with	the	same	model	(Lobo	et	al.	2013)	for	all	158	

taxa	apart	from	Guzmania	‘Indian	night’,	which	was	omitted	due	to	very	low	assimilation	rates	and	therefore,	159	

unreproducible	results.		160	

	 	

	161	

Figure	1:	Images	of	the	experimental	setup	for	leaf	CO2	assimilation	measurements,	equipment	pictured	includes	162	

infra-red	gas	analyser,	leaf	cuvette	and	external	halogen	light	source.		163	

2.4	Plants’	water	use/evapo-transpiration	(ET)	experiments		164	

Water	use/ET	of	the	plant	taxa	were	inferred	by	consecutive	plant/pot	weight	measurements	using	a	precision	165	

balance	(CBK	32,	Adam	Equipment,	Milton	Keynes,	Buckinghamshire,	UK)	under	indoor	office	conditions	(RH	>	35%	166	

and	at	‘low’	light	levels,	10	µmol	m-2	s-1.	Plants	were	prepared	for	the	experiment	as	explained	in	Section	2.2,	starting	167	

the	experiment	with	SMC	at	full	water-holding	capacity	and	were	not	watered	for	the	duration	of	the	experiment.	168	

Measurements	were	made	at	0	h	and	then	every	24	hr	over	a	three-week	period	on	a	whole	‘plant	–	substrate	169	

system’	(i.e.	potted	plant,	with	uncovered	substrate)	enabling	the	calculation	of	the	water	loss	at	each	time-point.	170	

We	were	interested	in	total	potential	RH	contribution	of	the	plant	along	with	substrate,	mimicking	a	real-life	171	
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scenario	of	an	indoor	plant.	Each	plant	was	removed	from	the	experiment	when	its	SMC	dropped	<	20%	(0.2	m3	m-3).	172	

Destructive	measurements	of	LA	were	made	using	a	LA	meter	(Delta-T	Devices,	Cambridge,	Cambridgeshire,	UK)	on	173	

two	plants	per	taxon,	at	the	end	of	the	experiment.	While	we	appreciate	that	measuring	the	leaf	area	at	the	end	of	174	

the	experiment	may	lead	to	under/over-estimating	assimilation	measured	earlier	in	the	experiment,	we	were	limited	175	

by	the	number	of	experimental	plants	we	could	destructively	harvest.	Given	that	this	approach	was	applied	to	all	176	

taxa,	that	the	leaf	areas	were	assessed	within	two	months	of	the	assimilation	experiments,	and	that	plants	did	not	177	

increase	in	size	significantly	over	this	period	(as	evidenced	by	height	measurements	which	we	made	at	the	start	and	178	

the	end	of	the	experiment),	we	believe	that	the	risk	of	the	error	is	small	and	evenly	spread.	SMC	was	measured	daily	179	

as	explained	in	Section	2.2.	Water	use/ET	per	unit	leaf	area	(ETLA,	expressed	in	g	cm-2)	was	calculated	by	dividing	the	180	

ET	(i.e.	water	loss)	from	a	plant	in	a	24-hr	period	by	the	mean	leaf	area.	181	

2.5	Statistical	analysis		182	

Experimental	data	(gas	exchange	parameters	and	water	loss/ET)	were	analysed	using	GENSTAT	(16th	Edition,	VSN	183	

International,	Hemel	Hempstead,	Hertfordshire,	UK).	An	analysis	of	variance	(ANOVA)	was	performed	to	compare	184	

means	for	each	measured	parameter	between	different	taxa	and/or	over	time.	Values	were	presented	as	means	185	

with	associated	standard	errors	of	the	mean	(SEM)	and	Tukey’s	95%	confidence	intervals	for	multiple	comparisons.	186	

Data	on	plants’	water	loss	were	log-transformed	and	Tukey’s	95%	confidence	intervals	were	used	to	compare	187	

between	taxa	in	the	text	(Section	3.3).			188	

3	Results		189	

3.1	Net	leaf-level	CO2	assimilation	at	‘low’	and	‘high’	indoor	light	levels	under	‘dry’	and	‘wet’	conditions	190	

At	‘low’	indoor	light	‘dry’	Spathiphyllum	wallisii	'Verdi'	was	statistically	significantly	respiring	the	most	(-87.6	mg	hr-1,	191	

p	<	0.001),	and	was	therefore	the	only	taxon	to	measure	significant	differences	between	‘dry’	and	‘wet’	substrate.	In	192	

‘dry’	substrate	statistically	significant	differences	in	CO2	assimilation	were	measured	between	the	cultivars	of	193	

Spathiphyllum	wallisii	‘Bellini’	and	‘Verdi’	(-19.6	and	-60.7	mg	hr-1,	respectively;	p	<	0.001).	In	‘wet’	substrate,	there	194	

were	no	significant	differences	in	CO2	between	any	studied	taxa	(Table	2).			195	

	196	

At	‘high’	indoor	light	only	Spathiphyllum	wallisii	‘Verdi’	measured	statistically	significant	differences	between	‘dry’	197	

and	‘wet’	substrate	(-60.7	and	60.0	mg	hr-1,	respectively;	p	<	0.001;	Table	2).	No	statistically	significant	differences	in	198	

CO2	assimilation	were	measured	between	cultivars	under	the	same	SMC	conditions;	significant	differences	were	199	

measured	with	Spathiphyllum	wallisii	cvs	‘Bellini’	and	‘Verdi’	between	‘dry’	(-19.6	and	-60.7	mg	hr-1,	respectively)	and	200	

‘wet’	(11.7	and	60.0	mg	hr-1,	respectively)	SMC	conditions	(p	<	0.001,	Table	2).	201	

	 	202	
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	203	

Table	2:	Net	leaf-level	CO2	assimilation	of	each	species	at	‘low’	and	‘high’	indoor	light	(<	10	and	50	µmol	m-2	s-1)	in	204	

‘wet’	(>	0.30	m3	m-3)	and	‘dry’	(<	0.20	m3	m-3)	conditions.	Data	are	a	mean	of	five	plants	of	each	species,	three	young,	205	

fully	expanded	leaves	per	plant	±	SEM	(n=15).	Data	are	adjusted	to	account	for	PPM	respiration	and	chamber	206	

leakage	and	is	normalised	by	leaf	area	(Table	1).	Different	letters	next	to	means	correspond	to	statistically	significant	207	

differences	between	means	based	on	Tukey’s	95%	confidence	intervals.	(–)	values	signify	respiration	(i.e.	the	release	208	

of	CO2).		209	

'Low'	Light	(<	10	μmol	m-2	s-1)	 Net	CO2	assimilation	per	plant	(mg	hr	-1)	

Taxa	 'Wet'	(>	0.30	m3	m-3)	 'Dry'	(<	0.20	m3	m-3)	

Dracaena	fragrans	'Lemon	Lime'	 -17.4b	±	2.1	 -35.7b	±	4.9	

Dracaena	fragrans	'Golden	Coast'	 -28.4b	±	3.0	 -25.3b	±	2.2	

Guzmania	'	Indian	Night'	 -14.3b	±	1.1	 -23.8b	±	1.0	

Hedera	helix	 -9.5b	±	2.2	 -27.3b	±	1.0	

Spathiphyllum	wallisii	'Bellini'	 -14.8b	±	4.5	 -22.7b	±	2.5	

Spathiphyllum	wallisii	'Verdi'	 3.9b	±	5.2	 -87.6a	±	33.3	

Zamioculcas	zamiifolia	 -17.5b	±	2.0	 -23.9b	±	1.8	
	

'High'	Light	(50	μmol	m-2	s-1)		 Net	CO2	assimilation	per	plant	(mg	hr	-1)	

Taxa	 'Wet'	(>	0.30	m3	m-3)	 'Dry'	(<	0.20	m3	m-3)	

Dracaena	fragrans	'Lemon	Lime'	 -5.5abc	±	6.0	 -41.97ab	±	11.3	

Dracaena	fragrans	'Golden	Coast'	 -21.8ab	±	4.7	 -24.0ab	±	4.7	

Guzmania	'	Indian	Night'	 -11.5ab	±	6.7	 -19.6ab	±	1.3	

Hedera	helix	 -6.6abc	±	8.2	 9.4bc	±	4.7	

Spathiphyllum	wallisii	'Bellini'	 11.7bc	±	9.3	 -19.6ab	±	3.8	

Spathiphyllum	wallisii	'Verdi'	 60.0c	±	31.3	 -60.7a	±	24.5	

Zamioculcas	zamiifolia	 -12.2ab	±	2.8	 -20.9ab	±	0.8	
	

	210	
	211	

3.2	Generating	light	response	curves	and	light	compensation	points	212	

Light	compensation	points	(LCPs),	which	represent	the	light	level	where	the	CO2	assimilation	is	equal	to	zero,	were	213	

calculated	for	each	species	(Table	3).	Of	the	studied	species,	Spathiphyllum	wallisii	'Verdi'	and	Hedera	helix	had	the	214	

lowest	LCPs	of	20	and	31	µmol	m-2	s-1	respectively.	The	highest	LCP	was	recorded	for	Dracaena	fragrans	'Golden	215	

Coast'	(96	µmol	m-2	s-1),	with	both	Dracaena	fragrans	‘Lemon	Lime’	and	Zamioculcas	zamiifolia	also	having	LCP	216	

values	outside	of	the	light	level	typically	experienced	in	indoor	environments	(93	and	65	µmol	m-2	s-1	respectively,	217	

Table	3).		218	

	 	219	
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	220	

Table	3:	Light	compensation	points	(LCPs)	are	means	of	8	leaves	per	species	±	SEM	for	each	of	the	studied	species.	221	

Taxa	 LCP	(µmol	m-2	s-1)	
Dracaena	fragrans	'Lemon	Lime'	 92.9	±	7.1	
Dracaena	fragrans	'Golden	Coast'	 95.6	±	13.2	
Guzmania	'Indian	Night'	 N.	A	
Hedera	helix	 30.9	±	3.9	
Spathiphyllum	wallisii	'Bellini'	 31.9	±	11.7	
Spathiphyllum	wallisii	'Verdi'	 20.1	±	9.8	
Zamioculcas	zamiifolia	 64.7	±	15.7	
		222	

At	0	µmol	m-2	s-1,	Hedera	helix	was	statistically	significantly	respiring	the	most	(-	1.2	µmol	m-2	s-1,	p	<	0.001;	Figure	2),	223	

no	significant	differences	were	measured	in	net	assimilation	between	other	studied	taxa.			224	

At	300	µmol	m-2	s-1,	all	taxa	were	assimilating	CO2.	Net	assimilation	was	highest	in	Hedera	helix	(7.7	µmol	m-2	s-1)	and	225	

was	statistically	significantly	different	to	all	other	taxa	(p	<	0.001).	Spathiphyllum	wallisii	‘Bellini’	and	S.	wallisii	‘Verdi’	226	

(2.4	and	2.4	µmol	m-2	s-1	respectively)	measured	a	net	assimilation	that	was	statistically	significantly	higher	than	227	

three	other	studied	taxa	(Dracaena	fragrans	'Lemon	Lime',	Dracaena	fragrans	'Golden	Coast'	and	Guzmania	'Indian	228	

Night',	p	<	0.001;	Figure	2).	At	this	highest	indoor	photosynthetic	photon	flux	density,	there	were	no	cultivar	level	229	

differences	within	the	same	species	in	net	assimilation.	230	

	231	

At	1200	µmol	m-2	s-1,	all	taxa	were	assimilating	CO2.	Net	assimilation	was	highest	in	Hedera	helix	(10.7	µmol	m-2	s-1)	232	

and	was	statistically	significantly	higher	than	all	other	taxa	(p	<	0.001).	Spathiphyllum	wallisii	‘Bellini’	(2.7	µmol	m-2	s-233	
1)	measured	a	net	assimilation	that	was	statistically	significantly	higher	than	three	other	studied	taxa	(Dracaena	234	

fragrans	'Lemon	Lime',	Dracaena	fragrans	'Golden	Coast'	and	Guzmania	'Indian	Night',	p	<	0.001;	Figure	2).	Again,	no	235	

net	assimilation	was	statistically	significantly	different	between	cultivars	of	the	same	species.		236	

	 	237	
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	238	

	239	
Figure	2:	Net	CO2	assimilation	across	three	light	levels	(0,	50,	300,	1200	µmol	m-2	s-1);	data	are	a	mean	of	four	240	

containers	of	each	species	and	two	young	fully	expanded	leaves	per	plant	(n=8).	Tukey’s	95%	confidence	intervals	241	

are	used	for	species	comparison	in	text	–	error	bars	represent	SEM.			242	

3.3	Plants’	water	use/evapo-transpiration	experiments	243	

In	terms	of	ET	per	plant	per	day,	when	well-watered,	the	ET	was	statistically	significantly	higher	for	Hedera	helix	244	

(70.5	g)	and	Spathiphyllum	wallisii	‘Verdi’	(71.0	g)	compared	to	all	the	other	taxa	(p	<	0.001).	ET	per	plant	was	also	245	

statistically	significantly	different	between	the	taxa	Guzmania	‘Indian	Night’	(28.0	g)	and	Dracaena	fragrans	'Lemon	246	

Lime'	(44.3	g,	p	<	0.001);	ET	per	plant	at	24	hr	was	statistically	significantly	different	between	Spathiphyllum	wallisii	247	

cultivars	(p	<	0.001;	Figure	3A).		248	

In	terms	of	ET	per	leaf	area	per	day,	when	well-watered	the	ET	was	statistically	significantly	higher	for	Hedera	helix	249	

(0.047	gcm-2)	in	comparison	to	other	taxa	(p	<	0.001).	ET	per	leaf	area	was	statistically	significantly	lower	for	250	

Spathiphyllum	wallisii	‘Verdi’	(0.013	g	cm-2),	in	comparison	to	the	other	taxa	tested	(p	<	0.001)	-	no	ET	per	leaf	area	251	

was	statistically	significantly	different	between	any	other	taxa.	The	ET	per	leaf	area	was	statistically	significantly	252	

different	between	one	pair	of	cultivars:	Spathiphyllum	wallisii	‘Bellini’	and	Spathiphyllum	wallisii	‘Verdi’	(0.02	g	cm-2	253	

and	0.013	g	cm-2,	respectively;	p	<	0.001;	Figure	3B).		254	

At	the	time	when	SMC	decreased	to	20%,	ET	reduction	ranged	between	7%	(Spathiphyllum	wallisii	‘Verdi’)	and	63%	255	

(Guzmania	‘Indian	Night’)	(data	not	shown).	The	time	taken	for	the	SMC	to	decrease	to	<	20%	ranged	between	10	256	

days	(Dracaena	fragrans	'Golden	Coast'	and	Spathiphyllum)	and	23	days	(Zamioculcas	zamiifolia)	across	studied	taxa.	257	
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	258	

A	

B	
Figure	3:	Water	use	per	plant	(A)	and	per	leaf	area	(B)	per	day;	data	are	a	mean	of	four	containers	of	each	species	259	

(n=4).	ANOVA	was	performed	on	the	log	transformed	data	only	(data	not	shown)	–	Tukey’s	95%	confidence	intervals	260	

were	generated	in	the	analysis	of	the	transformed	data	are	used	for	species	comparison	in	text.			261	

	262	

	263	

	264	
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4	Discussion		265	

The	current	work	presents	the	first	insight	into	leaf-level	CO2	assimilation	-	from	plants	in	both	‘dry’	and	‘wet’	266	

substrate	–	and	potential	RH	increases	for	a	range	of	common	houseplant	taxa	(i.e.	species	and	cultivars),	differing	in	267	

structure	and	physiological	function.	268	

In	this	study	we	demonstrate	that	little	potential	is	offered	by	the	studied	houseplants	alone	to	reduce	CO2	269	

concentrations	in	‘low’	light	indoor	environments	–	with	only	three	taxa’s	light	compensation	points	falling	within	270	

the	typical	indoor	light	level	range	(0	–	50	µmol	m-2	s-1;	Table	3).	However,	our	findings	demonstrate	that	although	271	

respiration	was	generally	occurring	in	houseplants	grown	in	‘dry’	substrate,	the	net	CO2	exchange	recorded	was	272	

extremely	low	and	thus	likely	to	have	little	or	no	negative	impact	on	the	CO2	levels	at	a	room	scale.	Our	results	273	

suggest	that	increasing	light	levels	to	a	technically	feasible	300	µmol	m-2	s-	1	(e.g.	through	use	of	supplementary	274	

lighting)	would	provide	a	significant	increase	in	CO2	assimilation	in	most	of	the	studied	taxa.	The	study	also	indicates	275	

that	the	best	performing	taxa	for	CO2	assimilation	will	also	contribute	the	most	to	raising	RH	indoors.	276	

From	the	results	of	this	study	we	estimated	the	mass	(in	grams)	of	CO2	removed	per	hour,	per	plant	and	per	m2	of	277	

each	taxon.	In	home	and	office	environments,	each	person	contributes	30g	(CO2)/hour	and	36g	(CO2)/hour,	278	

respectively	(Persily	and	de	Jonge	2017)	and	these	different	values	are	consequences	of	the	level	of	individual’s	279	

activity	in	various	environments.	Using	both	these	values,	we	calculated	the	number	of	plants	required	to	remove	280	

10%	of	a	single	person’s	CO2	contribution	at	the	‘very	high’	(300	µmol	m-2	s-1)	indoor	light	level	(Supplementary	Table	281	

1).	The	plant	numbers	range	from	15	(for	more	active	plants	like	Hedera	and	Spathiphyllum)	to	>100	for	282	

physiologically	less	active	plants,	highlighting	how	correct	plant	choice	can	result	in	a	different	air	quality	outcome.		283	

Of	the	taxa	we	investigated	Guzmania,	Dracaena	and	Zamioculcas	would	be	better	placed	to	provide	services	other	284	

than	CO2	reduction	(e.g.	pollutant	sequestration	(Yang	et	al.	2009;	Kim	et	al.	2010).	Hedera	and	Spathyphyllum	would	285	

have	more	effect	on	room-level	CO2	exchange,	and	in	numbers	which	can	be	realistically	installed	in	small	living	286	

walls.	Estimates	of	the	number	of	plants	required	to	remove	the	CO2	generated	by	human	contributions	were	also	287	

made	by	Pennisi	and	van	Iersel	(2012)	and	Torpy	et	al.	(2014).	However,	widely	different	estimates	of	the	CO2	288	

generated	per	person	were	used	by	each	study	–	making	direct	comparisons	difficult.		289	

In	typical	indoor	environments	with	‘low’	light	levels,	only	one	taxon,	in	‘wet’	substrate	conditions	was	assimilating	290	

CO2	(Spathiphyllum	wallisii	'Verdi')	and	would	contribute	to	CO2	concentration	reduction	(3.9	mg	hr-1,	respectively;	291	

Table	2).	Additionally,	only	three	taxa	were	found	to	possess	light	compensation	points	that	fall	within	the	range	of	292	

typical	indoor	light	levels	(i.e.	Hedera	helix	and	Spathiphyllum	wallisii	'Verdi’	and	‘Bellini’).	Both	Hedera	helix	and	293	

Spathiphyllum	wallisii	would	require	an	unrealistic	number	of	plants	to	see	any	significant	CO2	concentration	294	

reduction	(data	not	shown);	at	typical	‘low’	indoor	light	levels,	the	study	indicates	that	a	plants’	potential	benefits	295	

psychologically	or	in	productivity	terms	(Thomsen	et	al.	2011;	Raanaas	et	al.	2011;	Nieuwenhuis	et	al.	2014)	would	296	

be	more	important	than	their	contribution	to	indoor	CO2	removal.	Furthermore,	as	suggested	in	Torpy	et	al.	(2014)	297	

plants	should	not	be	expected	to	completely	replace	ventilation	systems,	but	to	act	as	a	supplement	in	reducing	the	298	

energy	load	required.	299	
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In	typical	‘low’	light	indoor	environments,	when	grown	in	‘dry’	substrate,	all	studied	taxa	were	respiring.	The	results	300	

also	indicated	that	in	the	range	of	typically	observed	indoor	light	levels,	six	of	the	studied	species	(Dracaena	fragrans	301	

cvs	‘Lemon	Lime’	and	'Golden	Coast',	Guzmania	‘Indian	Night’,	Hedera	helix,	Spathiphyllum	wallisii	‘Bellini’	and	302	

Zamioculcas	zamiifolia)	were	respiring	in	both	‘dry’	and	‘wet’	SMC	conditions	(Table	2).The	(mis)	management	and	303	

under	watering	of	houseplants	is	anecdotally	a	common	problem;	therefore,	determining	if	a	‘dry’	houseplant	is	304	

releasing	significant	amounts	of	CO2	into	an	indoor	environment	and	detrimentally	impacting	health	is	important;	305	

our	results	however,	suggest	this	is	not	the	case.	In	‘dry’	SMC	conditions,	in	typical	office	light,	Spathiphyllum	wallisii	306	

'Verdi’	was	releasing	the	most	CO2	into	the	indoor	environment	out	of	all	studied	taxa	at	0.0876	g	hr-1.	In	307	

comparison,	a	single	person,	in	an	office	environment	would	release	36	g/hour	into	the	indoor	environment	(Persily	308	

and	de	Jonge	2017).	This	confirms	that	in	typical	office	light	conditions	–	even	for	plants	growing	in	drying	substrate	309	

–	the	contribution	of	plants	to	room-level	CO2	is	negligible.		310	

At	a	‘high’	indoor	light	level	(50	µmol	m-2	s-1),	a	greater	net	CO2	assimilation	was	generally	measured	for	all	taxa,	but	311	

no	statistically	significant	differences	were	found	between	cultivars	of	the	same	species	in	‘dry’	or	‘wet’	conditions.	312	

Although	measurements	were	only	made	under	‘wet’	SMC	conditions,	this	trend	for	the	lack	of	cultivar	differences	313	

continued	at	higher	light	levels	of	300	and	1200	µmol	m-2	s-1	suggesting	that	cultivar	level	differences	were	not	314	

pronounced	in	this	study.		315	

Our	study	suggests	that	for	most	studied	taxa,	light	saturation	occurs	at	around	300	µmol	m-2	s-1	and	further	316	

increases	beyond	this	show	little	difference	in	assimilation	terms	(Figure	2).	As	discussed	in	Torpy	et	al.	(2014)	317	

targeted	indoor	lighting	could	be	used	to	maximise	a	houseplants	CO2	assimilation	potential.	Extensive	research	has	318	

been	undertaken	into	various	light	systems	for	plant	cultivation	and	development	on	indoor	living	walls	but	not	319	

specifically	with	potted	houseplants	or	concerning	CO2	assimilation	(Yeh	and	Chung	2009;	Egea	et	al.	2014).	Our	320	

findings	support	the	notion	that	increased	light	levels	maximise	plant	gas	exchange	and	we	suggest	future	research	321	

should	investigate	the	suitability	of	testing	targeted	lighting	installations	in	indoor	environments.	Light	compensation	322	

points	calculated	in	our	study	are	generally	higher,	but	comparable	with	other	indoor	species	previously	tested	323	

(Burton	et	al.	2007;	Pennisi	and	van	Iersel	2012;	Torpy	et	al.	2014;	Torpy	et	al.	2017;	Tan	et	al.	2017).		324	

Earlier	attempts	at	estimating	the	CO2	removal	of	houseplants	(Pennisi	and	van	Iersel	2012)	did	not	take	into	account	325	

ambient	CO2	concentrations	or	consider	the	effects	of	substrate	moisture	on	CO2	assimilation.	A	more	robust	study	326	

by	Torpy	et	al.	(2014)	investigated	several	factors	which	could	influence	assimilation	including	different	327	

acclimatisation	treatments,	the	respiration	of	the	‘potted-plant	microcosm’,	but	again	did	not	consider	impact	of	328	

substrate	moisture	conditions.	Other	studies	did	not	specify	the	exact	number	or	type	of	houseplant	(Lim	et	al.	2009;	329	

Pegas	et	al.	2012)	which	contributed	to	any	CO2	concentration	reduction	or,	only	considered	a	single	light	level	(Oh	330	

et	al.	2011).		331	

The	results	from	the	ET	experiment	indicate	that	the	best	performing	species	in	CO2	assimilation	terms	(Hedera	helix	332	

and	Spathiphyllum	wallisii	‘Verdi’)	both	have	the	highest	ET	rates	per	plant.	However,	the	comparative	water	use	per	333	

area	results	show	Spathiphyllum	wallisii	‘Verdi’	having	the	lowest	ET	per	leaf	area;	this	species	is	therefore,	334	



15	
	

inherently	more	water	use	efficient	and	only	uses	more	water	per	plant	due	to	its	large	size.	We	found	a	difference	335	

between	the	Spathiphyllum	wallisii	cultivar	pair	in	terms	of	water	use	per	plant	and	per	area	–	with	no	difference	per	336	

plant	or	per	area	measured	for	the	Dracaena	fragrans	pair.	This	confirms	that	our	hypothesis	that	inherent	337	

physiological	differences	can	be	measured	in	water	use	terms	down	to	a	cultivar	level.	The	results	also	suggest	that	338	

certain	species	(i.e.	Spathiphyllum	wallisii	‘Verdi’)	do	not	restrict	their	water	loss	under	water	stress	conditions	(SMC	339	

<	20%).	Spathiphyllum	wallisii	‘Verdi’	would	therefore,	in	a	drying	substrate,	continue	to	contribute	the	most	to	RH	340	

increases.	To	achieve	the	optimal	function	for	the	studied	taxa,	which	would	then	support	biggest	improvements	in	341	

IAQ	–	based	on	results	from	Section	3.3	and	authors’	experience	–	we	suggest	a	watering	regime	of	200	ml	per	week	342	

for	all	studied	species	other	than	Spathiphyllum	wallisii	‘Verdi’	and	Hedera	helix,	where	250	ml	is	recommended	343	

twice	a	week.	We	also	suggest	that	future	studies	should	evaluate	the	CO2	assimilation	ability	of	other	more	344	

physiologically	active,	vigorous	species	(i.e.	Osmunda	japonica,	Selaginella	tamariscina	and	Hemigraphis	alternata),	345	

which	also	performed	well	in	pollutant	sequestration	experiments	(Yang	et	al.	2009;	Kim	et	al.	2010)	under	‘high’	346	

indoor	light	levels	(300	µmol	m-2	s-1).		347	

From	the	results	of	the	ET	experiment	we	estimated	the	contribution	of	studied	taxa	to	raising	RH	indoors.	348	

Calculations	of	the	amount	of	water	vapour	in	the	air	were	made	through	the	equation:	RH	(%)	=	100	*	actual	vapour	349	

density	(g	m-3)	/	saturation	vapour	density	(g	m-3)	(using	a	saturation	vapour	density	of	19.1	g	m-3	at	22	°C)	(Galindo	350	

et	al.	2005).	A	RH	of	40	–	60%	is	considered	optimal	in	terms	of	human	health	(Arundel	et	al.	1986),	we	therefore	351	

calculated	the	number	of	plants	–	per	taxon	-	required	to	raise	RH	from	40	to	60	%	in	a	static	100	m3	office	352	

(Supplementary	Table	2).	Calculations	assume	that	100%	of	the	water	vapour	‘lost’	by	taxa	(Figure	3A)	was	released	353	

into	the	surrounding	environment.	The	results	do	not	take	into	account	the	impact	of	ventilation,	occupancy	or	the	354	

feedback	effect	of	taxa	(i.e.	as	RH	increases	plants	release	less	water	vapour	into	the	indoor	environment).	These	355	

calculations	are	intended	to	act	as	a	guide	on	how	the	studied	taxa	could	influence	RH	indoors.	Our	results	indicate	356	

that	five	Spathiphyllum	wallisii	'Verdi'	or	Hedera	helix	plants	growing	in	an	unmulched	(i.e.	uncovered)	growing	357	

medium	-	over	a	24-hr	hour	period	-	could	raise	the	RH	from	40	to	60%	(Supplementary	Table	2).	It	also	suggests	that	358	

less	physiologically	active	plants	(such	as	Guzmania,	Dracaena	and	Zamioculcas)	could	be	used	in	larger	numbers	359	

(10+)	as	part	of	installations	such	as	indoor	living	walls	within	even	smaller	offices,	without	a	risk	of	office	RH	raising	360	

above	60%.	Conversely,	Hedera	and	large	Spathiphyllum	cultivars	would	be	suitable	in	smaller	numbers	(5	or	below)	361	

or	in	larger	rooms	with	greater	overall	volume	where	their	RH-influencing	effect	would	be	diluted.	362	

	363	

5	Conclusions	364	

The	results	indicate	that	net	CO2	assimilation	of	all	studied	plants	was	generally	‘low’,	with	Spathiphyllum	cultivars	365	

and	Hedera	helix	removing	most	CO2.	366	

While	CO2	assimilation	of	plants	in	‘wet’	substrate	was	higher	than	in	‘dry’	conditions,	in	practical	terms	however	(i.e.	367	

when	considering	the	plant’s	potential	to	influence	indoor	CO2	levels),	net	CO2	assimilation	differences	between	‘dry’	368	

and	‘wet’	plants	at	‘high’	and	‘low’	indoor	light	levels	were	negligible	for	the	taxa	studied.	Light	compensation	points	369	
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were	in	the	typical	indoor	light	range	for	both	Spathiphyllum	wallsii	'Verdi'	and	Hedera	helix,	suggesting	that	these	370	

plants	would	be	best	suited	to	provide	most	CO2	removal	in	a	typical	indoor	setting.	Additionally,	both	these	taxa,	371	

per	plant,	had	the	highest	transpiration	rates,	suggesting	the	highest	potential	for	influencing	the	RH.	Finally,	our	372	

study	indicates	that	increasing	indoor	light	levels	to	300	µmol	m-2	s-1	would,	in	most	taxa,	have	a	significant	impact	373	

on	the	potential	for	houseplants	to	assimilate	CO2	and	increase	RH	in	indoor	environments.	374	
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Supplementary	Information	493	

Supplementary	table	1:	Net	CO2	assimilation	(mg	hr-1)	of	each	species	and	number	of	taxa	required	to	remove	10	%	494	

of	the	CO2	generated	per	person	at	‘very	high’	indoor	light	(300	µmol	m-2	s-1)	in	‘wet’	(>	0.30	m3	m-3)	conditions.	Data	495	

is	taken	from	Figure	2	and	adjusted	to	account	for	PPM	respiration	and	chamber	leakage	and	is	normalised	by	leaf	496	

area	(Table	1).	Plant	numbers	for	each	taxon	were	calculated	by	dividing	the	30	g	(CO2)/hour	or	36	g	(CO2)/hour	497	

exhaled	per	person	in	home	and	office	environments	respectively	(Persily	and	de	Jonge	2017)	by	the	net	CO2	498	

assimilation	of	each	taxon	(mg	hr-1).	499	

	500	

Supplementary	table	2:	Number	of	plants	required	to	raise	the	RH	from	40	to	60%	in	a	static	100	m3	office.	Numbers	501	

of	plants	were	generated	from	our	data	in	Figure	3A	at	a	temperature	of	22	°C,	where	ventilation,	occupancy	and	the	502	

feedback	effect	were	not	considered.	Calculations	of	the	amount	of	water	vapour	in	the	air	were	made	through	the	503	

equation:	RH	(%)	=	100	*	actual	vapour	density	(g	m-3)	/	saturation	vapour	density	(g	m-3)	(using	a	saturation	vapour	504	

density	of	19.1	g	m-3	at	22	°C)	(Galindo	et	al.	2005).	505	

	Species/cultivar	 Number	of	Plants	
Dracaena	fragrans	'Lemon	Lime'	 9	
Dracaena	fragrans	'Golden	Coast'	 12	
Guzmania	'	Indian	Night'	 14	
Hedera	helix	 5	
Spathiphyllum	wallisii	'Bellini'	 10	
Spathiphyllum	wallisii	'Verdi'	 5	
Zamioculcas	zamiifolia	 10	
	506	

'Very	high'	Light	(300	μmol	m-2	s-1)	 mg	hr	-1

Taxa 'Wet'	(>	0.30	m3	m-3) Home	 Office
Dracaena	fragrans 	'Lemon	Lime' 10.9 275 330
Dracaena	fragrans 	'Golden	Coast' 5.7 526 632
Guzmania 	'	Indian	Night' 0.9 3333 4000
Hedera	helix 172.3 17 21
Spathiphyllum	wallisii 	'Bellini' 55.0 55 65
Spathiphyllum	wallisii	 'Verdi' 194.9 15 18
Zamioculcas	zamiifolia 11.5 261 313

Number	of	plants	


