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Claudia Latella , Maria Lazzaroni, Ryan Lober , Marta Lorenzini, Daniele Pucci , Olivier Sigaud ,
Silvio Traversaro , Jan Babič , Serena Ivaldi , Michael Mistry, Vincent Padois , and Francesco Nori

Abstract—The success of robots in real-world environments is
largely dependent on their ability to interact with both humans
and said environment.The FP7 EU project CoDyCo focused on the
latter of these two challenges by exploiting both rigid and compliant
contacts dynamics in the robot control problem. Regarding the
former, to properly manage interaction dynamics on the robot
control side, an estimation of the human behaviors and intentions
is necessary. In this letter, we present the building blocks of such a
human-in-the-loop controller, and validate them in both simulation
and on the iCub humanoid robot using a human–robot interaction
scenario. In this scenario, a human assists the robot in standing up
from being seated on a bench.
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I. INTRODUCTION

THE ability to interact with and manipulate the environ-
ment gives robots a distinct advantage over purely software

based automated agents. In the FP7 European project, CoDyCo,
the focus was on how to properly exploit contact dynamics in
the control of the robot. When the interaction involves humans,
their intrinsic unpredictability makes the collaboration problem
far more difficult. Foreseen robotic applications range from the
use of robots as service and elderly assistants, to their use in
industrial plants in close contact with workers, i.e. the so called
collaborative robotics described in the Industry 4.0 manifest [1,
Sect. 2.2]. In all these scenarios, the human presence is central
and cannot be overlooked.

Research in physical human-robot interaction (pHRI) focuses
on trying to answer the following question: “How can we predict
human intentions so as to synthesise robot controllers that are
aware of and can react to the human presence?”

The most common methods to estimate human intention are
mainly based on minimum jerk models [2], or on imitation
learning techniques. In the latter, the movements of two human
actors are typically retrieved with motion capture techniques,
clustered in motion databases [3]–[5] and then used to learn
the interaction skills [6]–[8]. In contrast to these approaches,
we formulate the problem as the following: given a human
model, and measurements provided by wearable sensors, we
want to estimate the current human configuration (state) and
intention (dynamical quantities: force-torques, accelerations,
etc.); a robot controller formulated with this information can
then be aware of future human actions, and act accordingly.

In this letter, we propose and describe the main blocks that are
needed to perform interaction between a human and a human-
aware-robot, as depicted in Fig. 1. In particular the contributions
of this letter are mainly three:

1) Design of a momentum-based balancing controller to take
into account and exploit the support the human offers (c.f.
Section II)

2) Generation of high-level references, bootstrapping from
human experiments, and refining them through optimisa-
tion and machine learning methods (c.f. Section III)

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Collaboration between robot and human. High-level objectives gener-
ate references for the human-aware controller that commands the robot torques.
Thanks to the wearable sensors, we can estimate the human state and dynamical
quantities and provide them as feedback to the controller. A human Intention
predictor may be used to detect the human intention given the estimated human
dynamics.

Fig. 2. pHRI experiment. iCub stands up from a bench with the help of
a human subject wearing a sensorized suit. The visualisation (b) shows the
external forces acting on the human and the effort estimated at the human joints
as grayscale coloured spheres. (a) Robot. (b) Visualisation.

3) Online estimation of human dynamical quantities such
as force-torques, accelerations and internal torques (c.f.
Section IV).

We validate all the elements both in the Gazebo simulator and
on the real iCub humanoid robot and we report the results in
Section V. We perform a pHRI experiment, where the robot has
to stand from a bench helped by a human subject, see Fig. 2(a)
and (b) for a snapshot of the experiment and the proposed human
dynamics monitoring tool respectively.

What is currently missing, is the dashed block and lines
in Fig. 1. By adding the feedback from the human dynam-
ics estimator to the robot controller we can synthesise fully
human-aware controllers. Closing this loop is the main
motivation of the newly founded EU Horizon 2020 An.Dy.

project: designing human in the loop robots controllers. Future
perspectives in Section VI conclude the letter.

A. Background

In this work, we model both the robot and the human with
the same mathematical formalism. This choice is motivated by
the fact that we would like to use the estimated human state and
dynamics as additional feedback in robot controllers when pHRI
scenarios are considered. Furthermore, a richer representation,
e.g. modelling muscle activation, of the human dynamics seems
premature, given the current state-of-the-art of robot controllers
for pHRI.

The application of the Euler-Poincaré formalism [9] to the
interacting agents, leads to four sets of equations describing:

i) the dynamics of the robot,
ii) the dynamics of the human,

iii) the linking equations characterising the contacts between
agents and environment, and

iv) the contacts between human and robot:

M(q)ν̇ + h(q, ν) − J�(q)fe − J�
I (q)f =

[
0
τ

]
(1a)

M(q)ν̇ + h(q, ν) − J
�
(q)fe − J

�
I (q)f =

[
0
τ

]
(1b)

Ce(q, q, ν, ν, ν̇, ν̇) = 0 (1c)

C(q, q, ν, ν, ν̇, ν̇) = 0. (1d)

The state of an n (internal) degrees of freedom (DoF) free-
floating dynamical system is composed of its configuration
q ∈ SE(3) × Rn and its velocity ν ∈ R6+n . The matrix M
and vector h are the mass matrix and nonlinear bias vector re-
spectively, while actuation is provided by the internal torques
τ . Equation (1a) describes the dynamics of one of the two
agents, e.g., the robot, while (1b) describes the dynamics of
the other agent, i.e., the human. Note that, while the formal-
ism remains the same, the quantities and degrees of freedom
of the two systems are in general different, i.e. all quantities
related to the human are denoted with the (·) symbol. The Ja-
cobians J ∈ R6ke ×n+6 and JI ∈ R6k×n+6 , similarly, group all
the Jacobians corresponding to the ke contact force-torques with
the environment, fe ∈ R6ke, and the k interaction force-torques,
f ∈ R6k . It is worth noting that the interaction force-torques f
are the same in both agents described by (1a). Finally, (1c) and
(1d) describe the constraints due to the rigidly-assumed contacts
between the agents and the environments and between the two
agents, respectively.

II. ROBOT CONTROLLER TO EXPLOIT HUMAN HELP

State-of-the-art whole-body controllers are often decomposed
in two different stages, each of which solves a different control
objective [10]–[12]. The first stage is responsible of control-
ling the robot momentum that, when expressed at the center
of mass and with the inertial frame orientation, is defined by
H :=

[
mẋ�

c H�
ω

]�
, with m the total mass of the robot, xc ∈ R3
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the position of the robot center of mass, and Hω the angular
momentum of the multi-body system. The dynamics of the mo-
mentum is linearly related to all the external forces and torques
acting on the system, i.e.

Ḣ = mg +
k∑

i=0

cXifi = mg + Xf, (2)

where mg is the force due to gravity, cXi ∈ R6×6 is a proper
frame transformation matrix and fi is the i-th external force-
torque. All the force-torques and transformation matrices can
be compactly written with f ∈ R6k and X ∈ R6×6k respec-
tively. Ideally, we can consider these force-torques as virtual
control inputs and one can choose f so that Ḣ = Ḣ∗, where
Ḣ∗ ensures that xc → xd

c and Hω → 0. Additional constraints
are usually enforced on the variable f , so that the problem is
generally formulated in term of an optimisation problem, i.e.
as a quadratic program (QP). Once f ∗, the optimal value for
f is determined, the second stage consists in computing the
joint torque required to actually reach the desired value for the
contact force-torques at the feet. This computation is achieved
by solving a constrained QP, with f ∗ and torques τ related by
(1a), (1c). A secondary postural task can be used in order to
reach some desired configuration, e.g. the one corresponding to
a standing posture, and implemented as an impedance controller
in joint space, i.e. such that

τ ∗
posture = Kp,posture(qd

j − qj ) − Kd,posture q̇j , (3)

with qj the joint coordinates. The postural task is usually attained
with a lower priority with respect to the realisation of the desired
contact force-torques f ∗. More details and properties of this kind
of controllers can be found in [13].

In this letter, we focus on the task of letting the robot stand
from a bench helped by a human subject. This in turn implies
that additional, unpredictable forces, i.e. the one applied by the
human to the robot, act on the robotic system. Consider (2) and
add the additional human force-torque fhum, expressed in the
same frame of the momentum:

Ḣ = mg + Xf + fhum. (4)

Given a measure of fhum, one possibility is to completely cancel
out this term by using the controllable force-torques f . The
macroscopic effect of this cancellation is that if a user would
like to help the robot stand up, the robot motion would be
invariant with respect to the help provided by the user since the
effects of the external force-torques are cancelled out.

An alternative approach is to cancel out only a part of the
human force-torque while keeping the component which may
help the robot stand. Recall that Ḣ∗, i.e. Ḣ∗ = Ḣd − KdH̃ −
Kp

∫ t

0 H̃ ds with H̃ := H − Hd , renders the energy-based
Lyapunov function

V =
1
2
‖H̃‖2 +

Kp

2

∥∥∥∥
∫ t

0
H̃ ds

∥∥∥∥
2

(5)

negative semi-definite, i.e. V̇ = −kd‖H̃‖2 . This equation
stresses the fact that an eventual help from a user to lift the
robot up is useless: the rate of change of V does not depend

upon the external force-torques, so the standing up motion is in-
variant to the user interactions. The modification proposed here
is based on a decomposition of the external force-torque fhum
that highlights the component of this external force-torque that
helps decrease the function V . More precisely, one can decom-
pose the external supportive force-torque as follows:

fhum = αH̃‖ + βH̃⊥ (5a)

H̃‖ =
H̃

‖H̃‖ , α =
H̃�fhum

‖H̃‖ . (5b)

Note that the scalars α and β are the components of the exter-
nal force-torque fhum along and perpendicular to the momentum
error H̃ . Now, one can re-define Ḣ∗ as follows

Ḣ∗ =

{
Ḣd − KdH̃ − Kp

∫ t

0 H̃ ds if α > 0

Ḣd − KdH̃ − Kp

∫ t

0 H̃ ds + αH̃‖ if α ≤ 0
(6)

and choose the control input f such that Ḣ(f) = Ḣ∗. By com-
puting the time derivative of (5) along the system evolution (4)–
(5a), one easily verifies that:

V̇ = −Kd‖H̃‖2
+

{
0 if α > 0

α‖H̃‖ if α ≤ 0.
(7)

The fact that the external supportive force-torques help the robot
stand up is encompassed in the right hand side of the above
equation: a negative α, i.e. the external force-torques are in
the direction of motion, make the Lyapunov function decrease
faster. Hence, (6) can be used to compute the f ∗ needed to help
the robot during standing up motions.

III. CENTER OF MASS AND JOINTS TRAJECTORY DEFINITION

The controller described in the previous section needs to be
provided with a center of mass (CoM) trajectory reference and
joint references for the postural task. It is the responsibility of
the module or the user providing these references to make sure
they can be actually tracked by the robot, i.e. not leading to
a fall. This section describes the procedure used to define the
CoM and joints references, starting from human acquisitions, to
their adaptation to the humanoid robot.

A. Bootstrap With Human Motion Capture Acquisitions

To obtain the motion of a human while performing a “stand-
up” motion with assistance task, we designed an experiment
where we record the standing-up subject’s angles of the ankle,
knee, hip, shoulder and elbow joints. In the experiment one
of the subjects (Subject 1) performs a stand-up task and
the other subject (Subject 2) participates as an assistant, i.e.
(Subject 2) helps Subject 1 to stand. The experiment is repeated
three consecutive times and we use the measurements of the last
trial only. We measure the kinematics of Subject 1 using the 3D
Investigator Motion Capture System (NDI, Waterloo, Ontario,
Canada) consisting of 1 × 3 camera array at a sampling rate of
100 Hz. To perform the motion capture of Subject 1, we placed
clusters of active markers on 5 body segments of the right side,
namely the foot, shank, thigh, upper arm and fore arm, and
2 on the back, i.e. lower back and upper back. By using the
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Fig. 3. Motion Capture experiment performed with the human subject. The
figure describes the configuration for which the zero angles are defined.

NDI First Principles Motion Capture Software, we compute
the angles of the joints connecting the considered segments.
The zero position, i.e. the position such that all the joint angles
are equal to zero, is defined as their value when the subject is
standing straight and with his arms extended in front of him,
see Fig. 3.

The joint angles trajectories captured by the motion capture
system are then used as initial guess for the robot joint angles,
and consequently the initial CoM trajectory is thus computed.
Obviously, the resulting trajectories cannot be directly applied
as references to the robot, and the remainder of this section is
dedicated to their modification.

B. Optimising the CoM Task Compatibility

The controller presented in Section II is an example of a
hierarchical-based control architecture. In this kind of con-
trollers, each level of the hierarchy is agnostic of the others
by design, and is responsible of stabilising a desired reference
that is usually provided by the higher level. However, the decou-
pling between levels eliminates any guarantee that the planned
task trajectories will be executed properly by the lower con-
trol layers. The end result is typically unstable or undesirable
whole-body behaviours, and these tasks can be qualified as in-
compatible. Prioritisation techniques use weighted sums [14],
[15], hierarchies [16], [17] or a mix of both [18], [19] to man-
age task incompatibilities at the whole-body control level, but
are difficult to tune and may not actually solve the problem.
Given that it is the task reference values which generate the
incompatible control objectives, an alternative to prioritisation
tuning is to modify the task trajectories and make them com-
patible as initially suggested in [20]. To do so, we introduce a
feedback loop that measures the errors induced by incompati-
bilities and changes the task trajectories to reduce them. This
loop should take into account the controller hierarchy, as well
as the robot’s dynamics and environment. Given the complex-
ity of the proposed feedback loop, we improve the trajectories
through a model-free trial-and-error process that minimises a
cost function using black-box optimisation solvers [21].

Here, we iteratively improve the task trajectories by trial-
and-error learning. Following the work in [22], we define a
task compatibility cost function that combines trajectory track-

Fig. 4. Original and optimised CoM reference trajectories and their resultant
whole-body motions. The original trajectory produces an unstable standing mo-
tion causing the robot to lose balance. The optimised CoM trajectory, however,
produces a successful sit-to-stand transition. (a) Original. (b) Optimized.

ing, end-point reaching and energetic costs. This cost is evalu-
ated by performing the prescribed tasks and we use Bayesian
Optimization to update the trajectory parameters, namely way-
points. Starting from the initial CoM trajectory as described in
Section III-A, we use the task optimisation process to improve
it so as to guarantee better performances in the stand-up motion.

In Fig. 4, the evolution of the CoM for the original and op-
timised movements is provided. The whole-body motion pro-
duced by the original CoM trajectory, Fig. 4(a), is unstable and
causes the robot to loose balance. The optimised CoM trajec-
tory, on the other hand, produces a stable sit-to-stand transi-
tion as shown in Fig. 4(b). At the moment the bench contacts
are deactivated in the controller, the original motion immedi-
ately tends to lift the CoM upwards, despite an inappropriate
x-location of the CoM (not close enough to the foot polygon
of support). This inconsistent CoM trajectory does not respect
the dynamic balancing conditions [23] and causes the robot to
fall. The optimised trajectory moves the CoM more aggressively
in the forward direction as well as lowering it prior to the con-
tact deactivation instant, thus leading to a successful sit-to-stand
transition.

C. Optimising the Postural Task

CoM dynamic manipulability is a metric to measure robots
physical abilities to accelerate their CoMs in different directions.
It is defined as a velocity independent metric which depends
only on robot configuration and inertial parameters [24]. CoM
dynamic manipulability determines the CoM acceleration due
to weighted unit norm of actuated joint torques. This norm is
defined as

τ�Wτ τ = 1 , (8)
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Fig. 5. CoM dynamic manipulability with respect to arm configuration.

where Wτ is a symmetric positive definite weighting matrix.
By using (1a), we can find the CoM acceleration as a function
of joint torques as ẍc = Jτ τ + ẍcv g

, where Jτ ∈ R3×n is a
Jacobian that maps the joint torques to the CoM acceleration
and ẍcv g

∈ R3 is the gravity and velocity dependent part of the
CoM acceleration. By applying torques which satisfy (8), the
CoM acceleration will be bounded as

0 ≤ (ẍc − ẍcv g
)�(Jτ W−1

τ J�
τ )−1(ẍc − ẍcv g

) ≤ 1 . (9)

This inequality defines an ellipsoid in the CoM acceleration
space. The center of this ellipsoid is ẍcv g

and its radii and ori-
entation can be determined by the eigenvectors and eigenvalues
of matrix Jτ W−1

τ J�
τ . This implies that this ellipsoid depends

on Jτ , which is a function of the robot parameters and configu-
ration, and on Wτ , which is a user dependent parameter based
on the application.

In this letter, the weighting matrix is chosen so as that the
resulting ellipsoid accommodates for all possible CoM acceler-
ations due to torque limits, see [24, Sec. III-A]. The maximum
joint torques are assumed to be 40 Nm for the legs and 20 Nm
for the arms of the iCub. The robot is in a sitting configuration
with joint angles as result of the human motion capture experi-
ment in Section III-A. We decide to use the shoulder pitch angle
and elbow angle as two optimisation variables to maximise the
CoM dynamic manipulability in a desired direction. The desired
direction is assumed to be horizontal since this corresponds to
the first segment of the desired CoM trajectory, i.e. moving the
CoM from the bench to lie on top of the feet.

The CoM dynamic manipulability for different arm config-
urations (i.e. different values of the shoulder pitch and elbow
angles) is shown in Fig. 5. The maximum manipulability can be
found at shoulder pitch = −33[deg] and elbow = 30[deg]. The
values corresponding to the maximum manipulability are then
used as desired joint coordinates qd

j in (3).

IV. REAL-TIME ESTIMATION OF HUMANS DYNAMICS

This section describes the theoretical formulation and the
software architecture we used to estimate in real-time the human
dynamics.

To efficiently describe the dynamics of a mechanical system,
and of humans as previously motivated in Section I-A, we use
the Newton-Euler equations.1 This set of equations is commonly
used to describe the dynamics of articulated rigid body systems
such as robots, and we combine them with measurements equa-
tions for a multitude of sensors, such as accelerometers, gyro-
scopes, force/torque sensors, etc., which might be redundant.

Assuming that the considered system is composed of NB

rigid bodies, we want to estimate the variable d ∈ RnD which
contains dynamics quantities related to each rigid body and
joint composing the system. We also denote with y ∈ RnY the
vector containing all the measurements coming from the various
sensors located on the system body. We can thus rewrite the
Newton-Euler equation and the measurements equations in a
compact matrix form:

D(q, ν)d + bD (q, ν) = 0

Y (q, ν)d + bY (q, ν) = y,
(10)

where the matrix D ∈ Rne q ×nD , bias vector bD ∈ Rne q and the
matrix Y ∈ RnY ×nD , bias vector bY ∈ RnY are state-dependent
elements obtained by manipulating the model and measurement
equations respectively, and neq is the number of equations re-
sulting from the Newton-Euler formulation. The two systems
in (10) can be grouped together in a linear system in the only
unknown variable d.

Solutions to the system (10) can be obtained with different
methods depending on the number of measurements available.
For example, if only joint accelerations are available, then (10)
is a square system and the solution roughly corresponds to the
one obtained by computing the inverse dynamics. In case of
more measurements, the solution in general does not exists and
it is common to obtain minimum error solutions, i.e. a least
square solution.

In this letter, we adopt a different technique. We consider
each of the variables composing the system as random variables
with an associated a-priori probability density function. Given
the actual measurements coming from the sensors, we want
to find an estimate of d that maximises the likelihood of the
a-posteriori probability density function p(d|y). We thus per-
form a Maximum A-Posteriori (MAP) estimation. We refer the
reader to [25], [26] for a more thorough description of the
method.

The MAP estimation has been implemented as YARP C++
modules and the whole software architecture (see Fig. 6) has
been validated in the human-robot collaboration scenario. The
human is modelled with 22 spherical joints, i.e. allowing three
rotational degrees of freedom (DoF), connecting 23 bodies. We
use the Xsens MVN motion capture wearable suit to obtain the

1Newton-Euler equations are an alternative representation with respect to
(1a) of the dynamics of mechanical systems. Their recursive implementation is
often used in computer algorithms thanks to their efficient implementation.
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Fig. 6. Schema describing the YARP modules used for the real-time human
dynamics estimation.

3D position and orientation of each of these bodies, together
with their velocities. Interaction between the human and the
floor occurs at specified location and it is measured by two force
plates. The force-torques exchanged with the robot are estimated
by the robot itself thanks to the presence of the artificial skin,
the force/torque sensors mounted on the robot and of the whole-
body estimation algorithm [27, Sec. 3.2].

As an intermediate step, we need to convert the information
about the human motion coming from the motion capture system
into a representation compatible with the formalism in (1b). In
fact, we need to obtain the state of the system in term of its
generalised coordinates, i.e. (q, ν).

We use inverse kinematics to map the bodies pose to the
configuration q. In particular, denote with Ti, Tj ∈ SE(3) the
pose of two connected bodies in the original human model and
with T̂i(q), T̂j (q) ∈ SE(3) their pose in the rigid-body model
in (1b). We can now define the relative pose to be Tij = T−1

i Tj

and T̂ij (q̂) = T̂−1
i (q)T̂j (q) for the human and the rigid-body

model respectively, where q̂ are only the degrees of freedom of
the joints connecting the bodies i, j. We now solve the following
nonlinear optimisation problem

min
q̂

error(Tij , T̂ij (q̂))

s.t. q̂min ≤ q̂ ≤ q̂max, (11)

where error : SE(3) → R is an error function and q̂min, q̂max

are the joint limits.
To compute the generalised velocities of the joints connecting

the frame i and j, i.e. ν̂, we measure the relative angular velocity
of the two bodies ωij = ωi − ωj . The generalised velocities are
then computed by inverting the following relation:

ω̂ij = iJj (q̂)ν̂, (12)

where iJj is the relative Jacobian of the link j with respect to the
link i and ω̂ij is the angular velocity of the body j with respect
to the body i using the model in (1b). Note that, in general
ω̂ij 	= ωij as it depends on the rigid-body model. To obtain ν̂
we solve (12) in the least square sense.

The optimisation problem (11) and (12) are solved for every
(i, j) pair. Note that the mapping procedure (Tij , ωij ) → (q̂, ν̂)
is quite generic, allowing one to use simpler models in the
estimation process by changing the kinematics of the rigid-body
model.

Finally, the human state as processed by the inverse kinemat-
ics together with the force-torques measurements are supplied
as input to the MAP estimation algorithm, which runs online at
100 Hz.

V. SIMULATION AND EXPERIMENTAL SCENARIO

In the experimental scenario a human subject stands in front
of the robot agent so as to help it stand up from being seated on
a bench, see Fig. 2 for a snapshot of the different phases of the
experiment.

Our test platform is the iCub robot, a state-of-the-art 53 de-
grees of freedom humanoid robot [28]. For the purpose of the
present experiment, only the principal 23 degrees of freedom, lo-
cated in the legs, torso and upper arms are torque controlled. All
the other degrees of freedom are position controlled. The robot
is controlled by the momentum-based balancing controller de-
scribed in Section II and implemented in Simulink by using the
WB-Toolbox [29]. References to the controller are coordinated
by an internal state-machine, whose states trigger depending on
external signals, such as changes in the contact force-torques.
The trajectories commanded by the state-machine are the one
described in Section III.

A. Gazebo Simulations

We first tested the proposed controller and references by us-
ing the Gazebo simulator [30] together with the YARP-based
plugins [31] to connect the iCub simulated model to the con-
troller. Interaction with the human partner is simulated by using
the Geomagic touch haptic device, which has been integrated
in the YARP middleware. The frame corresponding to the tip
of the Geomagic is virtually attached to the end-effectors of the
simulated iCub, so as to simulate the human grasping the robot
arms at this location. When the human clicks and holds the but-
ton of the Geomagic and moves the device at the same time, the
new position of the tip is used to compute the interaction force to
apply to the robot, following a linear spring model whose con-
stant value is determined by the max force that can be applied
(chosen by the user, e.g. 30 N). At the current state, no force
feedback is provided to the user. The reference frame is chosen
with the origin on the left foot while the robot is standing; the
z axis points against the gravity, the x axis points forward, and
the y axis completes the right-handed base. Fig. 7 shows the
results of the stand up experiment with and without the human
assistance. An initial interaction force ≥ 10 N in the x-direction
is used to trigger the stand-up movement, whereas the proper
assistive force is in the z-direction. Even if the applied forces
are not very big, it is possible to notice the effect of the assistive
force on the CoM position.
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Fig. 7. CoM during the stand-up motion simulated in Gazebo with and without
human assistance.

B. iCub Experimental Results

During the interaction with the real robot, the human dynam-
ics is continuously estimated and monitored by the software
architecture described in Section IV. The human subject wears
the Xsens sensorized suit and stands on the two force plates by
positioning each foot on a platform. In the current experiment
the human cannot move the feet outside the force plates, as
those are the only source of information to measure the ground
reaction force-torques. As we currently lack of a global base
pose estimation for the robot, the distance between the robot
and the human remains constant and known a-priori throughout
the entire experiment.

We performed two different experiments for the stand-up mo-
tion. In the first experiment, we performed 10 trials where the
robot stands without the human assistance. We then repeated
the experiments with the presence of the human. In this second
scenario, we asked 6 subjects of different height, sex and ex-
perience in interacting with robots to perform each 7 different
trials trying to help the robot standing up, and 7 trials trying
to hamper the robot action, as a test for the robustness of the
controller.

To understand if the human provides help during the standup,
we used, as a basis for comparison, the norm of the robot torques
that can be assimilated to the electric power used by the robot
motors, i.e. Pe ∝ ‖τ‖. Indeed, as the iCub robot is equipped
with electric motors, motor torques are proportional to motor
currents and, as they are driven by constant voltage, also to
electric power. Fig. 8 shows the robot torque norm average,
together with the 95% confidence region, in both scenarios.
Notice that the robot needs to provide less torque when helped
by the human.

Fig. 9 shows the estimation of the human torques during
the robot standup. We plot the average torques, together with
the 95% confidence region, of the L5-S1 (Lumbosacral) joint
of one subject across the different trials. As all the joints are
modelled as spherical (3 DoFs) joints, we plot the torques around
the three axes. Nevertheless, only the torque around the y axis
has as significant component as expected given the performed
movement.

Fig. 8. Robot torques norm with and without human assistance. The lines
show the sample means across the different trials. The shaded regions represent
the associated 95% confidence region.

Fig. 9. Estimation of the L5-S1 torque (Lumbosacral Joint) on human. The
lines show the sample means across the different trials. The shaded regions
represent the associated 95% confidence region. It is worth noting that only the
y component is relevant given the type of performed movement.

VI. CONCLUSION AND FUTURE PERSPECTIVES

In this letter we presented a pHRI scenario where a robot has
to stand from a bench helped by a person. The state-of-the-art
momentum-based balancing controller has been modified
accordingly, thus exploiting the human help instead of simply
cancelling it out. The references for the controller have been
generated by optimisation and machine learning techniques. We
also presented a method and the necessary software architecture
to perform online estimation of human dynamics during the
pHRI experiment.

Fig. 1 describes a general pHRI scenario, and its blocks have
been presented throughout this letter. What we did not present,
and that will be the focus of future research, are the dashed block
and connecting lines, i.e. how do we use the human feedback in
the robot controller.

As an example, assume that the control objective for the robot
is to keep the balance. Then, this objective can be viewed as the
asymptotic stabilisation of an output function h ∈ Rk , usually
representing the robot center of mass, momentum, etc. [13].
For instance, if the function h represents the robot center of
mass, the function only depends on the robot’s position q, i.e.
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h = h(q). Then, one may attempt at its control by comput-
ing the second order time derivative of h, and use the robot
torque input τ to impose desired dynamics for h. This process of
feedback linearisation may involve the knowledge of the state
of the human (q̄, ν̄) as well as the human joint torques τ̄ .

Another very promising perspective of the results presented in
this letter is the control of human related quantities via the robot
actuation. For instance, assume that the above task for keeping
the robot balance leaves free some robot control actuation. Then,
the question is: “Can we use the robot input redundancy to
control the human body?” To answer this question, one must
first define the control objective for the human. Assume that a
paralysed human wants to balance by using the help of a robot.
Then, the human control objective may be the control of the
human center of mass, i.e. an output hH = hH (q̄) that clearly
depends only on the position q̄ of the human body. Then, the
control of this quantity can be attempted by imposing a desired
dynamic for ḧH that can be influenced by the redundancy of
the robot input actuation while balancing. All these research
directions will be the scope of forthcoming publications and the
main focus of the newly funded EU H2020 An.Dy. project.
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[24] M. Azad, J. Babič, and M. Mistry, “Dynamic manipulability of the
center of mass: A tool to study, analyse and measure physical ability
of robots,” in Proc. 2017 IEEE Int. Conf. Robot. Autom., May 2017,
pp. 3484–3490.

[25] F. Nori, N. Kuppuswamy, and S. Traversaro, “Simultaneous state and
dynamics estimation in articulated structures,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. IEEE, 2015, pp. 3380–3386.

[26] C. Latella, N. Kuppuswamy, F. Romano, S. Traversaro, and
F. Nori, “Whole-body human inverse dynamics with distributed micro-
accelerometers, gyros and force sensing,” Sensors, vol. 16, no. 5, 2016,
Art. no. E727.

[27] F. Nori, S. Traversaro, J. Eljaik, F. Romano, A. Del Prete, and D. Pucci,
“iCub whole-body control through force regulation on rigid non-coplanar
contacts,” Front. Robot. AI, Frontiers Media SA, vol. 2, p. 6, Mar. 2015.

[28] G. Metta et al., “The iCub humanoid robot: An open-systems platform
for research in cognitive development,” Neural Netw., vol. 23, no. 89,
pp. 1125–1134, 2010.

[29] F. Romano, S. Traversaro, D. Pucci, J. Eljaik, A. Del Prete, and F. Nori,
“A whole-body software abstraction layer for control design of free-
floating mechanical systems,” in Proc. IEEE Int. Conf. Robot. Comput.,
2017, pp. 148–155.

[30] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Proc. 2004 IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2004, pp. 2149–2154.

[31] E. M. Hoffman et al., “Yarp based plugins for gazebo simulator,” in Proc.
Int. Workshop Model. Simul. Auton. Syst. New York, NY, USA: Springer,
2014, pp. 333–346.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


