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Exploring how phone classification neural networks learn phonetic
information by visualising and interpreting bottleneck features
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School of Engineering, The University of Birmingham, Birmingham B15 2TT, UK
{lxb190, p.jancovic, m.j.russell}@bham.ac.uk, dr.philip.weber@ieee.org

Abstract
Neural networks have a reputation for being “black boxes”,
which it has been suggested that techniques from user inter-
face development, and visualisation in particular, could help
lift. In this paper, we explore 9-dimensional bottleneck fea-
tures (BNFs) that have been shown in our earlier work to
well represent speech in the context of speech recognition,
and 2-dimensional BNFs directly extracted from bottleneck
neural networks. The 9-dimensional BNFs obtained from
a phone classification neural network are visualised in 2-
dimensional spaces using linear discriminant analysis (LDA)
and t-distributed stochastic neighbour embedding (t-SNE). The
2-dimensional BNF space is analysed with regard to phonetic
features. A back-propagation method is used to create “cardi-
nal” features for each phone under a particular neural network.
Both the visualisations of 9-dimensional and 2-dimensional
BNFs show distinctions between most phone categories. Partic-
ularly, the 2-dimensional BNF space seems to be a union of pho-
netic category related subspaces that preserve local structures
within each subspace where the organisations of phones appear
to correspond to phone production mechanisms. By applying
LDA to the features of higher dimensional non-bottleneck lay-
ers, we observe a triangular pattern which may indicate that si-
lence, friction and voicing are the three main properties learned
by the neural networks.
Index Terms: neural network, interpretation, visualisation, bot-
tleneck features, phonetic features, phone classification

1. Introduction
There is a “growing sense that neural networks need to be inter-
pretable to humans” [1]. Understanding the learning behaviour
of neural networks and the internal representations they develop
has therefore recently received considerable attention, particu-
larly in visual contexts such as image or handwriting recogni-
tion (e.g., [2, 3, 4]). Approaches to interpretation focus on vi-
sualisation and attribution [1]. For example, dimensionality re-
duction and visualisation has been applied to a long short-term
memory (LSTM) system for handwriting recognition [2], us-
ing t-distributed stochastic neighbour embedding (t-SNE) [5] to
cluster cell activations and suggest that particular groups of cells
work together to predict pen lifts, horizontal and vertical posi-
tion. Several researchers [3, 4] try to relate the activations of
units, to visualisations, to determine the image patches that an
individual neuron detects and how they are combined to make a
prediction.

There has been less research on interpreting networks for
speech processing, where visual interpretations are not so im-
mediate [6]. Mohamed [7] applies t-SNE to show increasing
organisation of the structure at deeper layers (e.g., activations
for different speakers become closer) and claims that the net-
work is thus implementing something similar to hand-crafted

training sequences such as SAT-fMLLR-discriminative training.
RNNs are analysed by Tang et al. [6]. While they visualise and
compare the distributions of the activations of LSTM and GRU
gates, and also the evolution over time of random subsets of
hidden units, we relate the behaviour and activations to human
models of speech. Some work [8, 9, 10] suggests that deep
neural networks (DNNs) learn phonetic structures in acoustic
features and treat different broad phone classes differently ([10]
shows multilingual bottleneck features seem to learn phonetic
information), whereas others [11] argue that DNNs have to be
stimulated to learn proper phonetic structures. We show that
the networks appear to simultaneously learn multiple “entan-
gled” representations of speech appropriate for different phone
classes, similar to the work of Bau and Zhou [12] who aver,
for image-detecting convolutional neural networks (CNNs), that
“The emergence of interpretable structure suggests that deep
networks may be learning disentangled representations spon-
taneously”.

In our previous work [13, 14], we demonstrated that very
low-dimensional bottleneck features (BNFs) extracted from
phone discrimination bottleneck neural networks contain suf-
ficient information to support high-accuracy phone recognition.
Specifically, 9-dimensional (9D) BNFs extracted from a phone
discrimination bottleneck neural network provided better ASR
phone accuracies than 39-dimensional Mel-frequency cepstral
coefficients (MFCCs) in conventional GMM-HMM ASR sys-
tems. In [15], we report visualisations and interpretations of
3-dimensional (3D) BNFs and argue that the bottleneck neural
networks derive representations specific to particular phonetic
categories, with properties similar to those used by human per-
ception. In this paper we extend this research and try to explore
how these bottleneck neural networks learn phonetic informa-
tion. We focus on 9D and 2D BNFs in this paper. We first vi-
sualise the 9D BNFs using linear discriminant analysis (LDA)
and t-SNE, then narrow the bottleneck layer to 2 nodes to have
a direct view of a BNF space. With a set of “cardinal” BNFs,
we analyse the organisation of BNFs and interpret it with regard
to phonetic features (e.g., [16]). Finally, we use LDA again to
visualise the non-bottleneck layers to see how phonetic infor-
mation is passed from input to output.

2. Methodologies
2.1. Neural network structure used for BNF extraction

We use neural networks having five layers, as in our previous
work [13]. A bottleneck layer is used as the second hidden
layer to extract BNFs. The neural networks are trained on the
TIMIT corpus with TIMIT labels. Logarithm filter-bank ener-
gies with context are used as input to the network (26 logFBEs
with context of 5 frames before and 5 frames after the current
frame in the input layer, i.e., the input layer is of size 286). The
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output of the neural networks are phone posterior probabilities
of the 49 phones [17]. We denote the network structure as 286-
H-B-H-49, where ‘B’ stands for the bottleneck layer, ‘H’ other
hidden layers.

The neural networks are trained with standard stochastic
gradient descent back-propagation using Theano [18, 19].

2.2. Phone categorisation

When interpreting the features, we use the phone categorisation
based on [20, 21], which is listed in Table 1.

Table 1: Phone categorisation used.

Phone category Phone label
Plosive /g/, /d/, /b/, /k/, /t/, /p/
Strong fricative /s/, /z/, /sh/, /zh/, /ch/, /jh/
Weak fricative /f/, /v/, /th/, /dh/, /hh/
Nasal/Flap /m/, /n/, /en/, /ng/, /dx/
Semi-vowel /l/, /el/, /r/, /w/, /y/
Short vowel /ih/, /ix/, /ae/, /ah/, /ax/, /eh/, /uh/, /aa/
Long vowel /iy/, /uw/, /ao/, /er/, /ey/, /ay/, /oy/,

/aw/, /ow/
Silence /sil/, /epi/, /q/, /vcl/, /cl/

2.3. Visualisations of BNFs

We choose linear discriminant analysis (LDA) and t-distributed
stochastic neighbour embedding (t-SNE) [22] to visualise 9D
BNFs. In the case of LDA, the first and second dimensions
of the LDA-based projections are selected and plotted on a 2D
graph. The LDA process is a linear supervised process and the
projections are learned with the 49 phone labels shown in Ta-
ble 1. In the case of t-SNE, perplexity and training iterations are
set to 50 and 2000, respectively. These are chosen empirically
after exploring suitable values. t-SNE is a non-linear unsuper-
vised process and does not use any labels during the training.
The phone label information is only used when plotting the 2D
mapping space.

To find at the limit what the network is trying to do, we
narrowed the bottleneck layer down to 2 nodes so that the BNF
space can be visualised straightforwardly. A phone discrimi-
nation network of structure 286-512-2-512-49 is trained and 2-
dimensional (2D) BNFs extracted. We develop a way to obtain
“cardinal” BNFs, as described in Section 2.4.

2.4. Optimised neural activations

We use an approach to obtain the “best” or “cardinal” phone
representations under a neural network. In other words, to find
what pattern of activation in the hidden layers would be opti-
mal to maximise the probability of the network predicting each
phone, given a neural network.

This is done by back-propagating layer activations by keep-
ing the network weights fixed and calculating the derivatives of
errors with respect to the layer activations. Assume a trained l-
layer neural network with l− 2 hidden layers between the input
and output layers. Let Lm denote the layer m after the input
(m ≥ 0), such that L0 is the input layer, Ll−1 is the output
layer. We use cross-entropy C as the loss function. The deriva-
tive of the error with respect to the activations at arbitrary layer
Lm can be derived as

∂C

∂am
=

∂C

∂al−2

∂al−2

∂al−3
...
∂am+1

∂am
, (1)

and
∂am+1

∂am
=

∂am+1

∂om+1

∂om+1

∂am

= am+1(1− am+1)Wm,

(2)

where am is the activations at layer Lm, Wm is the weight ma-
trix between layer Lm and Lm+1 of the trained neural network
and om is the linear output at layer Lm.

In our experiments, when calculating the “cardinal” bottle-
neck layer activations, i.e. BNFs, we first back-propagate to the
input layer as a pre-training process (with the maximum epoch
being 1000), and then use the bottleneck layer activations re-
sulting from this pre-training as the start point, to apply back-
propagation to the bottleneck layer (with the maximum epoch
being 100).

3. Experimental Results
3.1. Visualisation of 9D BNFs

Figure 1 shows the 1st and the 2nd dimension of the LDA-based
projections of 9D BNFs from a phone classification DNN. The
visualisations of the training set and the test set show broadly
the same pattern. Therefore to improve the clarity of the visu-
alisations, we plot only 10% of the frames randomly sampled
from the training set. Figure 2 shows 2D t-SNE visualisations
of the same BNFs as in Figure 1 (10% of TIMIT training data).
In both Figure 1 and Figure 2 the plotted points are coloured by
their broad phone categories.

Figure 1: Visualisations of LDA-based projections (1st vs. 2nd

dimension) of 9D BNFs from a phone classification DNN of
structure 286-512-9-512-49. Horizontal axis: the 1st dimen-
sion of LDA projections; vertical axis: the 2nd dimension of
LDA projections.

From both figures we can see that vowels, consonants and
silences are fairly well separated. Also there are many overlaps
among the sub-categories of vowels, especially long vowels and
short vowels, and among plosive and fricatives, especially plo-
sive and weak fricatives. These overlaps indicate that the over-
lapping data are alike in some way and may lead to confusions
in speech recognition using these features, between the broad
phone categories.

1473



Figure 2: 2D t-SNE visualisations of 9D BNFs from a phone
classification DNN of structure 286-512-9-512-49.

In Figure 1, the 1st LDA dimension (horizontal axis) seems
to indicate voicing, with voiced phones on the left and unvoiced
on the right. Moving from left to right, we observe vowels,
nasals, then fricatives and plosives, and finally silences. In Fig-
ure 2, the sizes of clusters and distances between them are not
directly related to the size or importance of clusters in the orig-
inal high-dimensional space, due to the properties of the t-SNE
algorithm.

3.2. Visualisation of 2D BNFs and analysis of 2D BNF space

The plot of the 2D BNFs is shown in Figure 3. To keep con-
sistency with the plots in the previous sections, we again plot
a random 10% sample of the TIMIT training set. The defini-
tion of phone categories and colours are the same as used in
Section 3.1.

Figure 3: 2D BNFs from a phone classification DNN of struc-
ture 286-512-2-512-49.

From Figure 3 we can see fairly clear organisations of
phone categories: vowels (red, black, and orange) are dis-
tributed at the left top half, nasals (green) at the right top corner,
strong fricatives (cyan) at the lower left, plosive (purple) some-
where at lower middle, some weak fricatives (blue) mixing up
with plosive and some at the mid lower edge, and silence takes

the right lower part of the figure. The BNFs are constrained
within the range of [0,1], due to the “squashing effect” of the
sigmoid function. “Concentrated” edges along the four sides of
the square appear to indicate “hard” or “certain” decisions made
by the sigmoid for those BNFs.

Using the method described in Section 2.4, we obtain 49
2D BNF vectors representing the 49 phones for the DNN. We
plot them in Figure 4 (solid dots). We also plot the centroids of
the 2D BNFs (i.e. feature means) of each phone in the training
set in Figure 4 using open circles. In the figure we link every
pair of dot and circle points that correspond to the same phone
for a clearer view.

Figure 4: Optimised 2D BNFs (dots) and feature means of 2D
BNFs (circles) for each phone for a phone classification DNN
of structure 286-512-2-512-49.

Most of the “cardinal” features (dot points) are close to the
corresponding centroids obtained from the data (circles), and
the organisations of both are similar. The direction from top
left to bottom right seems to indicate voicing, with vowels dis-
tributed at the top left half of the graph, and silences being at the
right bottom corner. Compared to the feature means (circles),
for the “cardinal” features (dots) the various categories seem to
be pushed to the edges of a local space. The reason may be that
“cardinal” features are trained to provide more certain phone
decisions than random BNFs, which forces the hidden layer to
make harder decisions. The edges of these local spaces also
seem to be hinted at in Figure 3 by the denser congregations of
points.

We now focus on long vowels and short vowels (shaded
area) in Figure 4. The arrangement of centroids and cardinal
features strongly resembles a “traditional” F1:F2 vowel space
diagram used by phoneticians. Vertically from top to bot-
tom, we observe /ay/, /ey/, /iy/ (left side) and /ao/, /uh/, /uw/
(right side) – roughly corresponding to the places of articula-
tion (tongue positions) from low to high. Horizontally from left
to right, we observe /ey/, /ah/, /ow/ – roughly front to back with
respect to place of articulation.

Strong fricatives are displayed in cyan. /s/ and /z/, produced
with a flat tongue, are distributed at the left bottom corner. /zh/,
/jh/, /ch/ and /sh/, produced with the tip of the tongue curled up,
are distributed in mid-lower region. Strong fricatives at the top
(/z/, /zh/, /jh/) are voiced, and those at the bottom (/s/, /sh/, /ch/)
are unvoiced. A similar pattern is seen for the plosives (in pur-
ple) – voiced at the top (/d/, /g/, /b/) and unvoiced at the bottom
(/t/, /k/, /p/). For both voiced and unvoiced plosives, phones
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are placed horizontally in an order that reflects their place of
articulation (from left to right: teeth, soft palate and lips).

The 2D BNF space therefore can be seen to show distinct
regions used for each phonetic category. Within each category,
the organisation of phones appears to correspond to phone pro-
duction mechanisms. However, the interpretation of the axes
of one phone category cannot be simply applied to other cate-
gories, and so the BNF space seems to be a union of phonetic
category related subspaces that preserve local structures within
each subspace.

3.3. Visualisation of non-bottleneck layer activations

We next apply LDA to non-bottleneck layers to investigate what
information is carried through these layers. We use the same
DNN as in Section 3.1. The DNN hidden layer size was 512-9-
512, thus we now visualise the 1st and the 2nd dimensions of
the LDA projection for the two 512-node layers.

Figure 5 shows the 1st and the 2nd dimension of the LDA-
based projections of the activations of the first hidden layer,
plotted on the 10% of the training set like before. The same
process is applied to the 3rd hidden layer, giving Figure 6.

Figure 5: Visualisation of LDA-based projections (1st vs. 2nd

dimension) of the 1st hidden layer activations from a phone
classification DNN of structure 286-512-9-512-49. Horizontal
axis: the 1st dimension of LDA projections; vertical axis: the
2nd dimension of LDA projections.

Both figures show a clear “triangular” shape with similar
structures, where vowels, strong fricatives and silences each oc-
cupy a corner of the triangle. Along the horizontal axis, from
left to right, we see silence and fricatives first and then vow-
els, which could be interpreted as transitioning from unvoiced
to voiced, or as the energy in low frequency bands increasing;
Along the vertical axis, from upper to lower, we see silence first,
and then vowels, finally fricatives – this could be interpreted
as energy in high frequency bands increasing. As the horizon-
tal and vertical axes correspond to the first two dimensions of
LDA, these interpretations may indicate that the energies in low
and high frequency bands are two main pieces of information
learned by the DNN. An alternative interpretation of this trian-
gular shape could be that there is some inherent 3-dimensional
structure in the high dimensional data, corresponding to 3 prop-
erties of phones: silence, frication and voicing.

Comparing Figures 5 and 6, we can see the triangular plot
of the third hidden layer is similar but in sharper focus than

Figure 6: Visualisations of LDA-based projections (1st vs. 2nd

dimension) of the 3rd hidden layer activations from a phone
classification DNN of structure 286-512-9-512-49. Horizontal
axis: the 1st dimension of LDA projections; vertical axis: the
2nd dimension of LDA projections.

that of the first hidden layer. As the interpretation of the input
progresses through the network, from input to output, the pho-
netic categories become more specific, seeming to confirm the
predictions of deep learning behaviour [23] and prior interpre-
tations of speech recognition networks [7].

We find that this triangular visualisation of the 1st and
the 2nd dimension of the LDA-based projections is always ob-
served when analysing “bigger” hidden layers (wider than about
30 nodes) within DNNs of a similar 5-layer structure.

4. Discussions and Conclusions

The visualisations of BNFs indicate that the strategy of a phone
classification neural network can be interpreted in terms of pho-
netic categories. For the 9D BNFs, in both LDA and t-SNE ex-
periments we observed phonetically meaningful clusters in the
projected 2D spaces. The 2D BNF analysis even suggests that
the BNFs can be interpreted in terms of phonetic features, i.e.,
the organisations of phones in the BNF space appear to corre-
spond to phone production mechanisms.

By visualising non-bottleneck layer activations, we found
that as features move through the network, from input to out-
put, phonetic categories become more specific. This is consis-
tent with the observations by Hinton et al. in the deep learning
experiment of image processing for digit hand-writing recog-
nition. Also the triangular pattern in the first two dimensions
of LDA projection indicates that silence, friction and voicing
are the three main properties that are learned by the neural net-
works.

It holds promise for many research topics when recognising
that the internal representations learned by networks for speech
recognition can be related to knowledge of human speech struc-
ture. For example, to use phonetic knowledge to improve DNN
performance (like in [6]), and to use visualisation of DNN struc-
ture to gain phonetic insights. Interpretable visualisation may
also be used for pronunciation training.
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