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Abstract: In recent decades, 3D reconstruction techniques have been applied in an increasing number of areas 

such as virtual reality, robot navigation, medical imaging and architectural restoration of cultural relics. Most 

of the inspection techniques used in railway systems are, however, still implemented on a 2D basis. This is 

particularly true of track inspection due to its linear nature. Benefiting from the development of sensor 

technology and constantly improving processors; higher quality 3D model reconstructions are becoming 

possible which push the technology into more challenging areas. One such advancement is the use of 3D 

perceptual techniques in railway systems. This paper presents a novel 3D perceptual system, based on a low 

cost 2D laser sensor, which has been developed for the detection and characterisation of physical surface 

defects in railway tracks. An innovative prototype system has been developed to capture and correlate the laser 

scan data; dedicated 3D data processing procedures have then been developed in the form of three specific 

defect-detection algorithms (Depth gradient, face normal, and face-normal gradient) which are applied to the 

3D model. The system has been tested with rail samples in the laboratory and at the Long Marston Railway 

Test Track. The 3D models developed represent the external surface of the samples both laterally (2D slices) 

and longitudinally (3D model), and common surface defects can be detected and represented in 3D. The results 

demonstrate the feasibility of applying 3D reconstruction-based inspection techniques to railway systems. 

 

 

Keywords: rail, condition monitoring, inspection, defect detection, laser, non-contact, 3D model, 

model-based.

 

 

 

1 INTRODUCTION 

With increasing train speed, axle load and traffic 

density, rail defects are becoming more serious than 

ever. According to the European Railway Safety 

Agency,1 there was, on average, a derailment or 

collision at least every second day in the European 

Union in the period 2010–2011, most of which were 

caused by defects in the track. In the UK, the rail 

network open to traffic is 15,753 km (9788 miles) 

and this is constantly increasing with the growth of 

passenger and freight demand, which means that 

railway track inspection is a significant concern to 

the industry.2 
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In the last few decades, an increasing number of 

non-contact techniques have been used for rail 

inspection. These techniques are generally based on 

measuring technologies such as ultrasound, eddy 

currents and lasers. A comprehensive survey of the 

existing rail inspection techniques by Papaelias et al. 

indicated that laser-based inspection is the most 

applicable technology for detection of surface 

defects.3 Compared with conventional rail inspection 

methods, laser-based inspection methods are truly 

non-contact, with the laser equipment up to 100 mm 

above the rail line. As a form of machine vision 

technology, numerous studies about laser-based 

approaches to assist rail inspection have been 

carried out both by research groups at universities 

and industrial railway organisations. For example, 

Network Rail’s New Measurement Train (NMT) is 



2 

 

 Proc IMechE Part F: J Rail and Rapid Transit  

  

equipped with laser track scanners to get a precise 

2D rail-head profile; MERMEC developed a series of 

laser-based measurement systems that can ensure 

a 2D full-rail profile and evaluate the rail surface 

conditions by comparison with the standard profile. 

2D imaging has its advantages, such as high 

resolution and high efficiency with the capability to 

inspect at train speed; however, the geometrical 

characteristics of some defects like the particular 

cracks, squats and partial deformation of crossing 

noses are longitudinal in nature, and thus difficult 

to detect using 2D techniques. This is significant for 

defect evaluation such as maintenance suggestions 

and remaining life prediction of components 

suffering from fatigue damage. 

In recent years, the quality of 3D imaging techniques 

has been substantially improved with the 

development of sensor technology and processing 

capabilities. Applications involve many areas such 

as virtual reality, medical imaging and architectural 

restoration of cultural relics.4 Accordingly, using 3D 

techniques in railway systems is considered to be the 

next logical improvement. The proposed laser-based 

system described in this paper explores the 

feasibility of applying 3D techniques into the area of 

rail inspection. The main goal is that the system can 

not only measure the 2D transverse profile but also 

allow common longitudinal surface defects with 

different geometrical characteristics to be detected 

and characterised more comprehensively than using 

2D techniques. 

2 SYSTEM DESCRIPTION 

2.1 Dedicated rail components 

The ‘rail defects’ mentioned above offer a general 

identification. To answer questions like ‘What kinds 

of rail defects are we concerned with?’ and ‘What 

methods could we use?’, a systematic understanding 

of the geometry and some terminology of the rail is 

indispensable. In this section, dedicated rail 

components are divided into two parts, plain track 

and crossing noses. 

 

 

(1) Plain track 

The sectional profile in Fig. 1 shows that a UIC 60 

rail profile consists of rail foot, rail web and rail head. 

 

Fig. 1 Transverse profile of plain track 

As has been summarised by Cannon et al.,5 rail 

defects can be divided into three categories: (i) rail 

manufacturing defects, (ii) defects resulting from 

improper handling, use and installation and (iii) 

defects as a result of rolling contact fatigue (RCF) 

crack growth. Defects belonging to the first two 

categories have been greatly reduced globally with 

the improvement of materials and rail-making 

industries.5 However, defects in the third category 

are difficult to control because they normally 

originate from the cyclical loading and long-term 

impact from rolling stock. 

In railway systems, RCF is used to describe a range 

of defects caused by the development of excessive 

shear stresses at the rail contact interface. It is 

known that the gauge corner region, running surface 

and field corner region are the areas that make 

contact with the wheel, and thus defects in the third 

category that endanger the movement of the train are 

mostly centred on these regions which are the major 

concern to the railway industry.6 

(2) Crossing noses 

As one of the most important components of railway 

infrastructure, switches and crossings (S&C) are 

used to guide trains from one track to another and 

enable lines to cross paths. The crossing nose is one 

of the key components of S&C, it can be either 

fabricated from two machined rails joined together or 

cast as a single unit. 
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Modern crossings are now cast from manganese 

steel, which is an advanced alloy that gets harder 

with use. However, an increase in axle loads and 

train speed creates larger lateral forces as they 

change course, and these forces can cause wear, 

RCF and deformation.7 Flaws in crossings may 

eventually lead to grave consequences such as train 

derailments. For example, due to poor maintenance 

of S&C, a train derailed at Potters Bar in the UK on 

10 May 2002, and seven people died.8 Accordingly, 

the safe and reliable operation of crossing noses 

must be assured by high levels of routine inspection 

and maintenance. 

2.2 Motivation and approaches 

On the basis of an initial literature review, the system 

was proposed to be laser-based, and the dedicated 

rail components are the RCF defects in the rail 

contact interfaces of plain track and crossing noses. 

As a non-contact technology, the optical property of 

the laser and analysis of the existing systems both in 

the railway industry and other areas motivated the 

approaches and objectives of the proposed system. 

2.2.1 Laser equipment 

A laser generally refers to a device that emits light by 

means of optical amplification based on stimulated 

emission.9 The property of optical coherence allows a 

laser light to be focused to a tight spot, and also 

makes a laser beam stay highly collimated even after 

long-distance transmission.10 According to the 

geometrical characteristics (laser dot, laser line or 

laser arrays) of the laser light, laser scanners can be 

categorised as 1D, 2D or 3D.11 2D rail profiles can be 

captured due to the linear nature of the tracks, so 

2D laser scanners are generally the most common 

equipment for track measurement. Faulty track 

components such as surface defects, missing clips 

and deformation can be detected with a 

high-precision 2D digital profile.3 

2.2.2 Existing laser-based systems 

In practice, laser-based inspection methods often 

incorporate vision-based inspection. For example, 

profile data is analysed using image processing 

methods, or combines what the camera sees with 

laser inspection to improve accuracy. Lorente 

developed a system combining 2D laser profile data 

with 2D depth images.1 By applying derivative of 

Gaussian (DOG) edge detection and RANSAC-based 

line fitting, the track gauge can be calculated (Fig. 

2(a)). The system can also detect missing clips with 

2D depth images using 2D template-matching 

algorithms. Research by Zhou et al. presented a rail 

profile alignment algorithm which compares the 2D 

transverse profile of the rail extracted from a 3D 

model with the 2D laser profile so that rail wear can 

be detected (Fig. 2(b)).12 

 

 

 

(a)                                (b) 

 

 

Generally, most of the existing inspection methods 

are implemented on a 2D basis. GRAW developed an 

optical system called SCORPION, for 3D 

measurement of rails and turnouts, but the 

measurement is actually implemented in 2D, with 

the 3D model discrete in the longitudinal direction 

There exist, therefore, some opportunities to improve 

the performance of laser-based rail inspection. 

(a) Increase the dimension of inspection from 2D to 

3D; 

(b) Represent geometrical characteristics of rails 

and rail surface defects; 

(c) Detect and characterise rail surface defects in 3D. 

2.3 Design of the 3D perceptual system 

To achieve 3D perception, the first step is to acquire 

3D data points, known as a 3D point cloud. 

Commercial solutions are generally based on 3D 

laser scanners developed by a few companies (Cyra 

Technologies, Zoller & Frölich, Callidus Precision 

Systems, among others), but the robustness of these 

devices is unacceptable for most applications, and 

Fig. 2 Laser-based rail inspection methods: (a) rail 
gauge and rail fastener detection; (b) standard rail 

profile and extracted profile.  
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the cost is still high (from £20,000 to £80,000).13 

Therefore, many existing studies have been done to 

develop low-cost 3D scanners using different 

methodologies and technologies, such as the 1D 

optical distance sensor-based measuring systems 

developed by Arnulfo León Reyes and Jesús Medina 

Cervantes.14 Paulo Dias developed a low-cost 3D 

range scanner for 3D reconstruction of real-world 

scenes.13 A mechanically stable tilt unit was 

designed to rotate the 2D laser range finder. 

This project exploits similar methods to align 

high-resolution profiles from a low-cost 2D laser. The 

diagram in Fig. 3 illustrates the basic structure of 

the system. The 2D profile data stream from the laser 

is sampled at a specified frequency. To obtain 

information in the third dimension, to gather a 3D 

data set, a pair of 1D draw-wire sensors is used to 

increase the capability of the 2D laser. And thus, the 

stream of 2D profiles can be aligned in a global 

coordinate system according to the position of the 

laser at the time of scanning, with which a 3D point 

cloud representing the surface of the target object 

can then be generated. 

 

Fig. 3 System mechanism 

2.4  System integration 

The most essential imaging unit used in this project 

is a scanCONTROL 2900-100/BL from 

Micro-Epsilon. Because of their compact size, high 

profile frequency (up to 200 Hz) and high resolution 

(1280 points/profile), scanCONTROL lasers are 

ideally suited to both static and dynamic 

measurements, such as profile measurement and 

defect recognition. This series of 2D laser scanners 

(profile sensors) uses the laser triangulation 

principle. As can be seen in Fig. 4(b), the distance 

information (Z axis) and the position alongside the 

laser line (Y axis) can be calculated from the position 

of the laser spot on the sensor matrix and the camera 

image.15 This measured data is then output in a 2D 

coordinate system which is fixed with reference to 

the laser. Therefore, it is possible to do 3D 

measurement with this laser when moving the object 

or sensor. 

 

 

 

 

 

 

 

(a)                          (b) 

 

 

Due to a high data rate, Gigabit Ethernet is the 

standard connection between the laser and the PC. 

For the analogue output from draw-wire sensors, 

NI USB-6210 from National Instruments is used. 

The analogue input is converted to a digital signal 

and transmitted to the PC. Given that the laser has 

a built-in timer, the only requirement for data 

synchronisation is to sample the sensors during 

laser scanning and provide the profile with the 

corresponding spatial location. So, software-timed 

acquisition was chosen for this project. The sampling 

commands are sent by the C++ program, which do 

not increase the complexity of the hardware system. 

Fig. 5 shows the mechanical frame designed for the 

system. For periodic measurements, a simple 

four-footed frame with slide rails in both lateral and 

longitudinal directions was built to be the main 

operating platform. The laser is held by a mechanical 

arm with six degrees of freedom (6DoF). Although the 

laser just needs movement in two dimensions, X and 

Y, for the current project, 6DoF allows improvement 

of the system in the future. The length and width of 

the frame are 1.5 m and 0.5 m, respectively, which 

is enough to cover a rail section or crossing nose. The 

height of the frame is 0.5 m, which allows adaption 

of the location of the laser and makes transition of 

the measurement head over different-sized objects 

Fig. 4 Measuring principle of the laser: (a ) laser 
triangulation; (b) scanCONTROL 2D laser scanner.  
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possible. Fig. 5(b) shows the completed system in the 

lab. All equipment is powered by a DC power supply 

with a rated value of 24 V (last maximal 500 mA). 

Movement of the laser is manually controlled 

according to the real-time LCD display. The 3D point 

cloud is generated along with movement of the laser 

in longitudinal and lateral directions, which is then 

saved in. ply or .pcd format for further processing. 

 

 

 

 

 

(a)                                  (b) 

 

2.5 System resolution 

Resolution is a significant property of any 

measurement system, which determines the quality 

of output data directly and influences the selection 

of data processing techniques. The resolution of the 

laser used is up to 1280 points in the Y axis, and the 

outputs of the displacement sensors are analogue 

signals. So, the resolution of the system in the X axis 

is limited by the 16-bit ADC converter in the 

sampling device (NI USB-6210). The input signal of 

each AI channel is an analogue voltage (0–10 V) 

representing movement of the laser in the X axis (0–

1500 ms), and thus the resolution of the system in 

the X axis is: 

                      
𝟏𝟎 𝑽

𝟐𝟏𝟔 = 𝟏𝟓𝟐. 𝟓 𝝁𝑽                  (2-1) 

                   
𝟏𝟓𝟎𝟎 𝒎𝒎

𝟐𝟏𝟔 ≈ 𝟎. 𝟎𝟐𝟑𝒎𝒎                   (2-2) 

So, each 2D profile consists of 1280 points, and the 

minimum interval between each profile is 0.023 mm 

in theory and 1 mm in practice, due to the manually 

controlled movement of the laser and the filtering 

process of the point cloud (see later discussion on 

errors). This resolution of the integrated system is 

considered to be accurate enough. 

 

2.6 Point cloud reconstruction 

The point cloud derived from the 3D perceptual 

system discussed above includes a tremendous 

number of scattered points representing the surface 

of the objects. The next step is to reconstruct the 

surface with these scattered points, known as point 

cloud reconstruction. It is the process of applying a 

computer-based description of the surface of the 

reconstructed object, from which the geometrical 

characteristics of objects can be generated. The 

common procedures of point cloud reconstruction 

are as follows:16 

 Data Registration: Aligning several scans into a 

global coordinate system to generate a coherent 

point cloud. 

 Data Integration: Interpolating the points from 

the measured samples with a surface 

representation, which is helpful for filling holes 

and gaps and making the points structured in 

space. 

 Model Conversion: Representing the external 

surface of the objects using surface mesh with 

scattered data points. 

The flowchart in Fig. 6 illustrates the workflow of the 

3D point cloud reconstruction for this project and is 

discussed with a rail sample in the following 

sections. 

 

 

 

 

 

 

 

(1) Filtering and down-sampling 

There are always some noisy points caused by 

uncontrollable factors during data acquisition, such 

as surface roughness and mechanical vibrations, 

which will influence the accuracy of the model and 

increase the computational time of the system. To 

remove these noisy and redundant points, a series of 

filters are applied. 

Fig. 5 Mechanical frame: (a) 3D model of the frame in 
SolidWorks; (b) completed system in the lab 

Fig. 6 Workflow of 3D point cloud processing 
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Fig. 7 shows a point cloud sampled from a rail 

sample. Areas where data is not returned are 

indicated as 0 mm and can be omitted. According to 

the transverse profile of the rail, a filter based on the 

depth (Z) of each reflected point is applied. The points 

with depths that exceed the specified threshold will 

be trimmed from the point cloud data. 

The filtered point cloud (Fig. 8(a)) shows the shape 

of the rail sample clearly, but these 2D profiles are 

still distributed non-uniformly in the longitudinal 

direction, with an excessive point density in some 

regions due to the manually controlled movement of 

the laser. These excessive points will increase 

the computational time in further processing 

and have no positive effect on the accuracy of 

the model. To remove these points, the point 

cloud data needs to be down-sampled. The 

method utilised in this project is grid average 

down-sampling, which computes the axis-aligned 

bounding box for the entire point cloud.17 The 

bounding box is divided into grid boxes of a size 

specified (1.0 × 1.0 × 1.0 mm for this project). Points 

within each grid box are merged to a single point, by 

averaging their locations and normals. The graphs in 

Fig. 8 show the filtered point cloud and the 

down-sampled point cloud. With this sample, the 

raw point cloud contains 256,000 points, and the 

down-sampled point cloud retains the most 

representative 8604 points. 

 

 

 

 

(a)                               (b) 

(2) Interpolation 

In numerical analysis, interpolation refers to 

computing new data points within the range of a 

discrete set of known data points. This concept is 

applied in the area of 3D reconstruction to generate 

an interpolating surface that encloses the raw data 

points in space. This surface is helpful for computing 

a set of interpolated points which retain the 

geometrical features of raw data points and are also 

structured in space. 

There are various approaches to generate an 

interpolating surface. One common approach, 

applied in this project, is Delaunay triangulation. 

 

 

 

 

 

 

 

Fig. 9 illustrates the principles of Delaunay 

triangulation-based interpolation. The interpolating 

surface is represented in the form of an interpolant 

F with the following syntax: 

                     𝒁 =  𝑭(𝑿, 𝒀)                         (2-3) 

where vectors 𝑋  and 𝑌  specify the (𝑋, 𝑌) 

coordinates of the raw data points, and vector 𝑍 

contains the depth associated with the 

points (𝑋, 𝑌). 

Once the interpolating surface is generated, the 

interpolated points are calculated (non-connected 

points in the X–Y plane in Fig. 9). To preserve the 

geometrical features of raw data, the 

nearest-neighbour interpolation method is used. 

Interpolated points are distributed uniformly in the 

projection area (connected points in the X–Y plane 

in Fig. 9) of the raw data points with a specified 

density, based on the geometrical complexity of the 

model. For example, a planar surface needs few 

points to be defined. However, more points are 

required for reliable surface reconstruction of rough 

Fig. 7 Raw data points 

Fig. 8 (a) Filtered point cloud; (b) down-sampled point 
cloud 

Fig. 9 The principles of Delaunay triangulation 
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features.18 Next, the depth Zq of the interpolated 

points is derived from the nearest raw data points. 

Fig. 10(a) is the interpolation result of the 

down-sampled point cloud in Fig. 8(b). It shows that 

the interpolated points are distributed uniformly 

with a controllable density (220 (X) × 70 (Y) in this 

example). Fig. 10(c) shows the merged result of the 

raw data and interpolated points. The partial 

enlarged view in Fig. 10(d) illustrates that the 

interpolated points preserve the geometrical features 

of the raw data. 

 

 

 

 

 

 

 

(a)                                  (b) 

 

 

 

 

 

                (c)                                   (d) 

 

(3) Surface polygon mesh 

After a coherent point cloud is generated, the 

subsequent step is known as surface polygon mesh. 

It is known that three points (not distributed in a 

line) identify a planar face in 3D space. The polygon 

mesh is a collection of convex polygons with which 

the scattered points in a point cloud are connected 

to build the external surface of the reconstructed 

object.19 The polygon mesh gives the data 

geometrical properties, e.g. surface angles and 

surface normal vectors, which is indispensable for 

further processing and analysis such as geometry 

description and defect detection. 

As usual, the polygons used for meshing are 

triangles and quadrilaterals, which are each known 

as a ‘face’ in a 3D model. Different polygons are used 

depending on the geometrical complexity of the 

reconstructed object and the distribution of points in 

the point cloud. In this project, the interpolated 

points are distributed uniformly in the X–Y plane, so 

quadrilaterals were chosen to construct the surface. 

MATLAB graphics define the ‘surf’ function to build 

the surface by connecting neighbouring matrix 

elements to form a mesh of quadrilaterals.20 Fig. 11 

shows the reconstructed surface of the railway track 

model from the point cloud in Fig. 10. The partially 

enlarged view in Fig. 11 illustrates that the surface is 

built with thousands of quadrilaterals, and the 

geometrical properties of the surface defects are 

captured, which is essential for surface defect 

detection in the following section. 

 

Fig. 11 Polygon mesh of smoothed point cloud 

3 SURFACE DEFECT DETECTION 

To explore the feasibility of applying 3D techniques 

to rail inspection, the key point is to replace 

conventional 2D-based defect detection with 3D, 

namely surface defect detection. It is a process of 

calculating and analysing the geometrical 

characteristics of the 3D model, and finding 

abnormal data caused by the flaws.21 Before 

exploring suitable approaches for rail surface defect 

detection, the system was tested with different rail 

samples suffering from common defects. From a 

defect detection perspective, defects can be classified 

into three groups based on their geometrical 

characteristics, namely surface cracks, partially 

concave hulls with vertices lower than the original 

surface, and partially convex hulls with vertices 

higher than the original surface. Three defect-

detection algorithms have been developed for these, 

and are described below. 

3.1 Depth gradient-based detection algorithm 

Surface cracks, such as gauge corner cracks, usually 

Fig. 10 Nearest-neighbour interpolation 
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have an interspace from 0.5 to 10 mm. The long-term 

friction between wheel and rail surface can lead to 

surface cracks. Most occur at an angle of 15–30° to 

the traffic direction. 

Fig. 12(a) shows the laser scanning result of a rail 

sample with a surface crack, while Fig. 12(b) 

illustrates the actual cross-section of the sample. It 

can be seen that the laser cannot capture the data 

behind the steep edge (circled and marked in red) 

due to shadowing effects of the laser, which means 

that the laser line will disappear completely or 

partially behind the steep edge. Accordingly, the 

inner structure cannot be built accurately. 

 

 

 

 

 

(a)                             (b) 

 

 

 

This type of defect can only be detected by 

recognising the points out of plane caused by surface 

cracks, more specifically by detecting surface points 

with sharply changing depth. 

To detect surface points with sharply changing depth, 

the concept of gradient is used. In mathematics, the 

gradient of a scalar field refers to the direction of a 

point in which the scalar field has the greatest rate 

of increase.22 The gradient of a scalar field is a vector 

field that can be represented as: 

                |𝜵𝒇| =  [𝜵𝒗𝒇]|𝒗|=𝟏
𝒎𝒂𝒙                 (3-1) 

where 𝑓 represents a scalar field, |𝛻𝑓| denotes 

the absolute value of the gradient of the function, 

and 𝛻𝑣𝑓  is the directional derivative of the 

function. 

In Fig. 10(b), the rail-head surface is built with 

interpolated points distributed uniformly in the X–Y 

plane. If we define the function H(x, y) representing 

the depth (z) of the point (x, y), the depth gradient of 

this scalar field is as follows: 

              |𝜵𝑯(𝒙, 𝒚)| =  [𝑯(𝒙, 𝒚)]|𝒗|=𝟏
𝒎𝒂𝒙         (3-2) 

Taking the simulated point cloud in Fig. 13 as an 

example, the rectangular window (arrowed) is set to 

traverse the point cloud every n neighbouring points 

at a time, in which n must be a multiple of 4 to make 

sure that at least one mesh element is covered by the 

window. Data points in each window can be regarded 

as a subset of the whole scalar field. 

 

Fig. 13 Traversal of the point cloud for depth gradient-based 

defect detection 

Equation (3-2) can be simplified as: 

|𝜵𝑯(𝒙𝒊, 𝒚𝒊)| =  𝒎𝒂𝒙(𝑯(𝒙𝒊, 𝒚𝒊)) − 𝒎𝒊𝒏 (𝑯(𝒙𝒊, 𝒚𝒊)) 

                                                                   (3-3) 

where 𝐻(𝑥𝑖 , 𝑦𝑖) represents the depth of different 

points in each subset, and 𝑚𝑎𝑥 𝑎𝑛𝑑 𝑚𝑖𝑛 are the 

value of maximum depth and minimum depth 

respectively. 

Depending on the geometrical complexity of the 3D 

model and the estimated depth of the defects, the 

size of the rectangular window and threshold of 

depth gradient can be configured. If the depth 

gradient is larger than the threshold, the 

corresponding area in the 3D model will be 

recognised as a defect (surface crack). In theory, the 

detectable depth variation for each mesh element is 

from 0 mm (when the mesh element is horizontal) to 

the side-length of each mesh element (when the 

mesh element is vertical). Because this approach is 

derived from the definition of the gradient, it is called 

a depth gradient-based detection (DGD) algorithm. 

3.2 Face normal-based detection 

Partially concave hulls are defects that grow into the 

rail surface such as shells, squats and broken 

Fig. 12 Cross-section of rail track: (a) laser scanning 
result of a rail sample suffering from a surface crack; 
(b) actual cross-section of the rail sample 
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crossing noses. Fig. 14(a) shows the laser scanning 

result of a rail sample with such a defect. Fig. 14(b) 

illustrates the cross-section of the rail sample. The 

arrows show the distribution of normal vectors of the 

concave hull caused by the defects. It indicates that 

the surface normal vectors of the mesh elements in 

this area are not in alignment with those on the 

original rail surface. 

 

 

 

 

 

(a)                             (b) 

 

 

 

Through the geometrical analysis above, an 

algorithm was used to enable detection and 

characterisation of the defects, called face 

normal-based detection (FND) as the detection is 

based on surface normal vectors. This approach was 

initially discussed by Torok et al.21 By examining the 

surface normal vector of each mesh element, its 

orientation relative to a horizontal reference plane 

can be calculated. Mesh elements constituting the 

surface of the defects with surface normal vectors 

beyond a specified threshold can be extracted, and 

thus the defects can be detected. The diagram below 

shows the basic principles of this approach. 

 

Fig. 15 The principles of face normal-based detection 

In Fig. 15, the quadrilateral represents a mesh 

element. The angle β is the difference between the 

normal vector of a horizontal reference plane and the 

surface normal vector of the mesh element. The 

absolute value of α is set as a tolerance for slight 

deviation of mesh elements caused by surface 

roughness of the rail and system errors. In MATLAB, 

the function ‘surfnorm’ can be used for computing 

and displaying 3D surface normal vectors.23 In Fig. 

16, assuming that γ represents the angle between 

the horizontal reference plane and the surface 

normal vector of the mesh element, it can be 

calculated from the difference between two vertices 

of the surface normal vector based on Pythagorean 

theorem in which the tangent of γ is: 

               𝒕𝒂𝒏 𝜸 =  
∆𝒛

√(∆𝒙𝟐+∆𝒚𝟐)

                      (3-4) 

where ∆𝑥, ∆𝑦 𝑎𝑛𝑑 ∆𝑧 are the differences between 

two vertices of the surface normal vector in each 

axis in a 3D coordinate system, and thus 

angle  𝛾 is: 

 𝜸 =  𝒕𝒂𝒏−𝟏(
∆𝒛

√(∆𝒙𝟐+∆𝒚𝟐)

)                (3-5) 

where 𝑡𝑎𝑛−1 is the arc-tangent function. Accordingly, 

the angle β is equal to (90° − γ). If β is greater than 

the tolerance angle, it indicates that the mesh 

element is not properly in alignment with the original 

rail surface, and thus is considered as part of the 

surface defects. 21 

 

Fig. 16 Calculation of the reference angle of surface normal 

3.3 Face normal gradient-based detection 

A partially convex hull usually occurs at the edge of 

a concave defect, or the long-term collision between 

wheel and crossing nose may cause deformation of 

the crossing nose with a partially convex surface. 

These kinds of defect are difficult to detect using FND. 

Because the orientations of surface normal vectors 

in this region are diverse, it is impossible to set a 

specified threshold region to cover all conditions. 

Fig. 14 Cross-section of rail track: (a) laser scanning 
result of a rail sample suffering from squats; (b) 
actual cross-section of the rail sample 
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Meanwhile, the depths of surface points in this 

region change slowly in most cases, so DGD cannot 

work properly either. 

 

 

 

 

 

(a)                            (b) 

 

 

The geometrical characteristics of these types of 

defect can be analysed using commonly used edge 

detection algorithms, such as brightness 

gradient-based detection in digital images which was 

first developed by J. Canny.24 Similarly, a new 

approach that combines the principles of DGD and 

FND is applied because the angles of surface normal 

vectors will have a sharp change at a convex surface 

or at the edge of concave defects with fluctuation in 

the surface. By comparing the normal vectors of 

adjacent mesh elements, the sharp change in 

adjacent surface normal vectors caused by these 

kinds of defect can be detected. When the difference 

reaches a certain threshold, the corresponding mesh 

elements will be recognised as part of a surface defect. 

Similar to DGD, this approach is called face normal 

gradient-based detection (FNGD). The face normal 

gradient can be calculated as follows: 

|𝜵𝑵𝒋| =  [𝜵𝒗𝑵𝒋]|𝒗|=𝟏
𝒎𝒂𝒙 = 𝒎𝒂𝒙(𝑵𝒋) − 𝒎𝒊𝒏 (𝑵𝒋)    

                                                     (3-6) 

where 𝑁𝑗  represents the angles of surface 

normal vectors of mesh elements in each subset, 

and 𝑚𝑎𝑥 𝑎𝑛𝑑 𝑚𝑖𝑛  are the values of maximum 

angles and minimum depth, respectively. 

4 EXPERIMENTAL RESULTS 

4.1 Simulation results 

All the defect-detection algorithms were tested with 

a 3D surface (Fig. 18) simulated in MATLAB for 

feasibility analysis and optimisation before being 

integrated into the system. The 3D model is a plane 

with concave and convex hulls as well as a ditch 

simulating a surface crack. 

 

 

 

 

(a)                               (b) 

 

 

(1) Depth gradient-based detection 

The first detection algorithm applied was DGD. In 

this case, the rectangular window was set to cover 

four neighbouring points. Fig. 19(a) shows the 

results of the detection (defects indicated in blue), 

and (b) shows the geometrical structure of the 

simulated surface crack. Some concave and convex 

hulls experiencing a sharp change in depth are 

recognised; however, these can be ignored as they 

have no effect on the assessment of the surface crack. 

 

 

 

 

(a)                               (b) 

 

 

(2) Face normal-based detection 

Fig. 20 illustrates the results of FND. With the 

tolerance angle set to 30°, the whole concave and 

convex hull will be covered. Fig. 20(b) is the extracted 

frame showing the geometrical structure of the 

simulated defects. With this ideal model, the 

simulated surface crack is detectable. In practice, 

the inner structure of surface cracks cannot be 

reached by the laser line, which means data for the 

corresponding area is unavailable, so the surface 

crack detected here should be ignored. 

 

 

 

Fig. 17 Cross-section of rail track: (a) laser scanning 
result of a rail sample suffering from squats; (b) actual 
cross-section of the rail sample 

Fig. 18 Simulated model: (a) surface polygon mesh; 
(b) surface normals 
 

Fig. 19 Depth gradient-based detection: (a) results of 
detection; (b) extracted surface crack 
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(a)                            (b) 

 

(3) Face normal gradient-based detection 

The third algorithm tested was FNGD. The testing 

results (Fig. 21) demonstrate that the peak, bottom 

and edge of the simulated defects where the surface 

normal vectors have significant variation as a 

consequence of fluctuations in the surface can be 

detected when the maximum gradient is set to 12°. 

 

 

 

 

 

(a)                               (b) 

 

To demonstrate the feasibility of the detection 

algorithms further, the results of different detection 

algorithms were merged (Fig. 22). From an 

approximate viewpoint, it can be seen that the areas 

covered by different detection algorithms are 

complementary to each other. The whole defect can 

be detected and recovered using the detection 

algorithms. 

 

 

 

 

 

 

 

 

4.2 Laboratory tests 

The experimental results were encouraging, to 

demonstrate the practical value of the approach 

presented. The system was tested with samples in 

both the laboratory and in the real world, which is 

more cogent for giving the advantages as follows: 

(1) To demonstrate the feasibility of performing rail 

measurement with the selected instruments; 

(2) To prove the ability to build a 3D model of the rail 

and characterise defects using 3D reconstruction 

techniques; 

(3) The more complicated geometrical structures of 

the rail defects demonstrate the performance of 

the defect-detection algorithms developed. 

The experimental procedures and evaluation 

mechanism referenced the approaches used by 

Rowshandel25 and Torok et al.21 The main strategy 

was to evaluate the accuracy of the 3D 

reconstruction and the defect-detection algorithms 

by deriving the relative errors from the following 

equation: 

𝜹 =  
𝑨𝒄𝒕𝒖𝒂𝒍 𝒗𝒂𝒍𝒖𝒆−𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕

𝑨𝒄𝒕𝒖𝒂𝒍 𝑽𝒂𝒍𝒖𝒆 
 × 𝟏𝟎𝟎%       (4-1) 

4.2.1 Testing results 

From a large number of experiments conducted, 

four representative cases have been chosen. 

Fig.  23(a) shows a 118.0 (L) × 65.0 (W) ×

151.0 (H) mm rail sample in the laboratory, 

which has three artificially-induced cracks in 

the gauge corner with a cutting angle of 45°, 

mimicking surface cracks. Fig. 23(b) shows a 

164.0 (L) × 60.0 (W) × 128.0 (H) mm rail sample, 

which has two artificially induced squats in the 

running surface with a depth of around 2 mm, 

mimicking surface squats. Fig. 23(c) shows a 

section of the in-service rail at the Long 

Marston Railway Test Track. The width of the 

rail is 62 mm. The scanned section is 210 mm 

long and contains the joint of two plain rails, 

and a rail defect at the gauge corner. Fig. 23(d) 

shows the crossing nose inspected at Long 

Marston. The scanned section is 705.0 (L) × 

98.5 mm (W), and the joint between the two 

plain tracks and the crossing nose is 285.0 mm 

from the vertex of the crossing nose. The 

quantitative information for each target and the 

defects are listed in Table 1.

Fig. 20 Face normal-based detection: (a) results of 
detection; (b) extracted surface defects 

Fig. 21 Face normal gradient-based detection: (a) 
results of detection; (b) extracted frames 

Fig. 22 Merging the detection results of different 
algorithms 
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(a)                                       (b)                                       (c)                                        (d) 
 

Table 1 Quantitative information of the defects 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Surface length refers to the size of the defect in the longitudinal direction of the rail. 
2 Maximum depth is the maximal distance between the bottom of the defect and the original surface of the rail. 
3 Surface angle is the cutting edge when making the artificial defects. 
4 Surface width refers to the size of the defect in the lateral direction of the rail. 

                                          

For visual ease and understanding of the 

approach, the procedures starting from surface 

polygon mesh to detailed surface defect 

detection have been summarised in Fig. 24. 

Procedures before surface polygon mesh follow 

the method introduced in section 2.6. The 

density of interpolation is set to make the size 

of each mesh element small enough to capture 

details of the rail surface. For example, the 

length and width of the rail sample shown in 

Fig. 24(a) are 118.0 mm and 65.0 mm, 

respectively. The density of interpolation was 

set to 120 (X) × 65 (𝑌), so the area of each mesh 

element is about  1 𝑚𝑚2 (
118

120−1
 ×  

65

65−1
) which is 

small enough to capture details of the rail 

surface. 

The first row is the 3D surface polygon meshes 

of the four rail samples in Fig. 24. It can be seen 

that all the geometrical details can be captured 

clearly. The graphs in the second row are the 

depth-coloured 3D models in which the colour 

of each mesh element is determined by the 

depth of the corresponding vertices. As 

discussed in section 3, surface defects lead to 

the surrounding points being out of plane, 

which in turn are displayed as colour changes. 

Accordingly, the region of interest (ROI) can be 

extracted (in the rectangular box). Applying the 

defect-detection algorithms to the ROI rather 

than the entire data set can reduce the 

computational load, improving the efficiency of 

detection.26  

Defect Surface length 

(mm)1 

Maximum depth 

(mm)2 

Surface angle (°)3/width 

(mm)4 

Cross-section view 

(approx. geometry) 

1 31.20 4.00 45 (2.00 mm) 
 

2 28.30 3.00 45 (2.00 mm) 
 

3 27.00 4.33 45 (2.00 mm) 
 

4 16.60 1.90 12 
 

5 19.50 2.42 12 
 

6 10.34 6.85 3.12 
 

Fig. 23 Targets of laboratory and field tests 
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The third row shows the results of surface 

defect detection. Because laser-based 

measurement does not give colour information 

for the rail surface, to make the texture of the 

3D models more clear, digital photographs 

containing different textures of metal were 

mapped using a method called texture mapping, 

more details of which can be found in the thesis 

by Paulo Dias.27 The fourth row is the extracted 

surface defects, from which the geometrical 

characteristics of the defects can be evaluated.

 
                (a)                                   (b)                                   (c)                                     (d) 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.2 Evaluation 

To evaluate the accuracy of the 3D 

reconstruction and defect-detection algorithms, 

the relative errors are summarised in Tables 2 

and 3. It can be seen that the relative errors of 

3D reconstruction are very minor. As discussed 

in section 2.5, the resolution of the system in 

the X axis is 0.023 mm in theory, so the relative 

errors between the 3D model and the rail 

sample are mainly caused by the minimal 

human intervention in moving the laser, which 

is reasonable and could be reduced by 

improving the measuring mechanism of the 

system in future work. 

The size of the extracted defects and the actual 

size of the corresponding defects are listed in 

Fig. 24 Results of the proposed approach for the detection and characterisation of physical surface defects 
in rails and crossing noses 
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Table 3. Most of the defects can be detected and 

characterised with a relative error lower than 

10%, which demonstrates the accuracy and 

feasibility of the defect-detection algorithms 

developed. The relative errors greater than 10% 

are from measurement of the three artificial 

cracks. According to the analysis in section 3.1, 

measurement is influenced by the shadowing 

effects of the triangulation laser. The laser line 

will disappear partially or completely behind 

the steep edge. As shown in Fig. 25,28 the laser 

cannot ‘see’ the red areas. That is the main 

reason why the relative errors increase when 

performing surface crack measurement. 

 

 

 

 

 

(a)                               (b) 

There are also some other factors that may 

influence the accuracy of surface defect 

detection, such as surface roughness, 

mechanical vibrations and approximation-

based interpolation. Most of them correspond 

to systematic errors that are caused by the 

instruments involved, or random errors which 

are the inherent property of the measurement 

process. Although the approximate surface for 

interpolation may cause errors, these can be 

compensated for by the advantages of 

interpolation, such as filling gaps and 

distributing the points uniformly. So, it can be 

concluded that the approach itself is reliable, 

and the errors could be suppressed by 

improving the instruments. 

 

 

 

 

 

Table 2 Comparison between the rail sample and the 3D model 

Rail 

sample 

Length (mm) Relative error 

(%) 

Width (mm) Relative error 

(%) Mea. Actual Mea. Actual 

1 116.0 118.0 1.69 63.5 65.0 2.31 

2 164.0 164.0 0.00 59.0 60.0 1.67 

3 211.5 210.0 0.71 61.0 62.0 1.61 

4 703.0 705.0 0.28 96.0 98.5 2.54 

 

Table 3 Comparison between measurements and the actual size of the defects 

Defect 
Length (mm) Relative 

error (%) 

Width (mm) Relative 

error (%) 

Depth (mm) Relative 

error (%) Mea. Actual Mea. Actual Mea. Actual 

1 25.97 31.20 16.76 2.30 2.00 15.00 3.30 4.00 17.50 

2 21.07 28.30 25.55 2.30 2.00 15.00 2.10 3.00 30.00 

3 21.61 27.00 19.96 2.20 2.00 10.00 2.90 4.33 33.03 

4 

 

17.00 16.60 2.41 - - - 1.80 1.90 5.26 

5 19.10 19.50 2.05 - - - 2.40 2.42 0.83 

6 9.50 10.34 8.12 6.17 6.85 9.93 2.80 3.12 10.26 

Fig. 25 Shadow effects of the laser line.  



15 

 

 Proc IMechE Part F: J Rail and Rapid Transit  

  

 

5 CONCLUSIONS 

This paper has presented an innovative 

prototype and processing to explore the 

feasibility of applying 3D techniques in railway 

track and crossing-nose inspection to improve 

the capability of existing inspection methods 

which are usually implemented on a 2D basis. 

To ensure the research supports the 

requirements of the railway industry, the 

current state of rail and crossing-nose 

inspection has also been reviewed. 

The methodology has been discussed in three 

phases: development of a low-cost 3D 

perceptual system, generation of 3D models, 

and development of defect-detection algorithms 

to be applied to these models. A 3D perceptual 

system has been developed to achieve 3D 

measurement at a cost much lower than that of 

commercial 3D scanners. The integrated 

system manages the interaction between 

different devices and synchronisation of the 

different types of signal. All the devices are 

mounted on a mechanical frame which is easily 

transportable and ensures stable operation of 

the device. 

For data processing, a series of image 

processing techniques have been applied to 

generate a 3D model of the rail or crossing-nose 

surface. Three defect-detection algorithms have 

been developed for use specifically with the 

model, rather than just the 2D laser outputs. 

These techniques allow common surface 

defects with different geometrical 

characteristics to be detected and 

characterised more comprehensively than 

algorithms working in the 2D space alone. The 

results of laboratory and field tests 

demonstrate that applying 3D techniques and 

using 3D model-based analysis can identify a 

range of realistic defects, both transversal and 

longitudinal, and hence that 3D model based 

rail and crossing-nose inspection is feasible. 
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