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Transferring Visuomotor Learning from Simulation to the Real World
for Robotics Manipulation Tasks

Phuong D.H. Nguyen1,2, Tobias Fischer2, Hyung Jin Chang2,3, Ugo Pattacini1, Giorgio Metta1, Yiannis Demiris2

Abstract— Hand-eye coordination is a requirement for many
manipulation tasks including grasping and reaching. However,
accurate hand-eye coordination has shown to be especially
difficult to achieve in complex robots like the iCub humanoid.
In this work, we solve the hand-eye coordination task using a
visuomotor deep neural network predictor that estimates the
arm’s joint configuration given a stereo image pair of the arm
and the underlying head configuration. As there are various
unavoidable sources of sensing error on the physical robot, we
train the predictor on images obtained from simulation. The
images from simulation were modified to look realistic using an
image-to-image translation approach. In various experiments,
we first show that the visuomotor predictor provides accurate
joint estimates of the iCub’s hand in simulation. We then show
that the predictor can be used to obtain the systematic error of
the robot’s joint measurements on the physical iCub robot. We
demonstrate that a calibrator can be designed to automatically
compensate this error. Finally, we validate that this enables
accurate reaching of objects while circumventing manual fine-
calibration of the robot.

I. INTRODUCTION

Humans are able to achieve remarkably accurate and
fast hand-eye coordination when performing tasks such as
reaching and grasping. A key requirement for this skill is
the association of a visual percept with proprioception by
means of a visuomotor mapping [1]. It has been suggested
that infants develop this visuomotor mapping during the
development of reaching skills [2].

Most previous works in robotics find the visuomotor
mapping in two steps [3]. The first step is to obtain the
robot’s kinematic model, which allows finding the position
of a joint in Cartesian space given the joint configuration (i.e.
the joint angles). If a physical model of the robot is available
(e.g. a CAD model) the kinematic model can be represented
in the Denavit–Hartenberg notation. An alternative is to learn
the kinematic model without using a priori information, as
exemplified in [4], [5].

The second step, called visual-based pose estimation,
serves to improve the robustness and the accuracy of the
first step and consists in finding the pose of the end-effector
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Fig. 1. Overview of the overall learning framework. Images obtained
using a simulator are first being implanted with real background, and then
CycleGAN [6] is used to synthesize realistically looking “sim2real” images.
These are used as inputs to a deep neural network along with the head joints
obtained from the simulator. The aim of the deep network is to estimate the
arm joint configuration.

within the images acquired from the robot cameras. This
is usually performed given a single image or a stereo pair
of images [3]. In the stereo vision case, visual features are
extracted to find the position of the end-effector in 2D space,
and the disparity between the left and right images is used
to find the 3D position with respect to the reference frame
of the camera. Using the kinematic model obtained in the
first step, this position can then be expressed in the robot’s
root reference frame.

However, the two-steps approach outlined above has sev-
eral drawbacks. As highlighted in [7], there are various error
sources involved in both steps. Within the first step, even if
an accurate kinematic model exists, precise position control
is hard to achieve using a cable driven robot like the iCub.
Furthermore, some mechanical pieces such as the iCub eyes
need to be re-calibrated at each startup of the robot. Similarly,
the visual-based pose estimation step is often inaccurate as
the end-effector appearance in an image is highly dependent
on the head pose that itself underlies uncertainties for the
same reasons as outlined above. The visual-based pose
estimation step also relies on precise estimates of the camera
parameters, which is tackled elsewhere [8]. To minimize the
effect of these inaccuracies, an additional calibration step
has been suggested to find a set of offsets specifically for
hand-eye coordination [3], [8]–[10].

We propose to find the visuomotor mapping in a single
step rather than considering the two problems independently
and finding an offset mapping subsequently as outlined



above. More specifically and as shown in Figure 1, we
suggest to learn the mapping from an imprecise model
in simulation using two components: 1) A deep neural
network estimates the arm’s joint configuration given images
captured with the two eyes of the simulated robot and the
corresponding head configuration. 2) To allow application
of the deep neural network in the real world, the domain
gap needs to be bridged as the image statistics between
simulation and real world differ significantly. We propose
to use an image-to-image translation method to bridge the
domain gap.

The efficiency of our proposed visuomotor mapping
method is exemplified on the robot calibration task. Based
on the visuomotor mapping, we build a compensation model
using the difference between the predicted joint values and
the measured values of the joint encoders. We show that
this ensures coordinated control of eye movement with hand
movement on the physical robot. Our work could thus be
used to sidestep the manual calibration that is needed for
many manipulation tasks such as reaching as grasping.

II. RELATED WORKS

Learning a visuomotor mapping: Some methods closely
follow the classical approach for visuomotor mapping out-
lined in the introduction, but use machine learning methods
to make the mapping more robust and adaptable. For exam-
ple, [11] relies on several radial basis functions. However, the
method is limited in the sense that markers are required for
feature extraction and the disparity is assumed to be known.

To find the end-effector pose using visual information,
it has been suggested to compare the hand perceived by
the robot’s camera with a realistically rendered hand from
simulation [12], [13]. A particle filter is then used to predict
the 6D pose of the robot’s hand, which is used for a visual
servoing reaching task.

The hand-eye coordination task has also been investigated
within the developmental robotics domain. Aguilar and Perez
[14] propose a method which allows for coordination of
the visual and tactile modalities, i.e. the robot’s hand is
equipped with tactile sensors which can perceive the presence
of objects using touch. The focus of this method is on the
emergence of higher-level behaviors such as the exploration
of various objects and following objects using attentional
processes. Similarly, Hwang et al. [15] investigate the emer-
gence of a mirror neuron system for imitation learning
using such a developmental approach. While [15] is limited
to imitation learning using the same robot, Chang et al.
[16], [17] present a method that allows to find body shape
correspondence between a number of robots and humans in
images. However, this method relies on motion information
and is not suited to finding matches of images where the
bodies are in the same pose.

Simulation to real transfer learning: One of our aims is
to transfer skills from simulation to real robots, and several
previous works have shown that this approach is viable. Rusu
et al. [18] focus on a reaching task using reinforcement
learning. They use a concept called progressive networks

that allow to train parts of the network in simulation and
then using these parts to bootstrap another network that
is applied on the physical robot. Interestingly, the method
learns directly from raw visual input, and is capable of using
additional input modalities of the real robot that are not
present in the simulator. Tzeng et al. [19] propose to use a
domain confusion loss for end-effector pose estimation. The
idea is to enforce the same feature representation regardless
whether the input is from simulation or the real robot. This is
implemented using a discriminator that attempts to classify
whether the feature originated from a simulated or real
image.

Several works tackle the problem that the control policy
learned on simulation data does not directly map to the real
robot. Christiano et al. [20] use a deep inverse model trained
on the behavior of the real robot to find the action that
resembles the high-level properties of the policy found in
simulation, while abstracting away the low-level properties
that differ between the simulation and the real environment.
This approach was extended by Sadeghi et al. [21] who focus
on finding a viewpoint-invariant control policy. Zhang et al.
[22] propose a modular deep network for robot reaching.
A perception module estimates the target object location,
which is then used by a control module that issues velocity
commands to reach that target. They improve hand-eye
coordination accuracy by end-to-end fine-tuning of these
modules.

A completely different approach is taken by Tobin et al.
[23] and James et al. [24] who propose that generalization
abilities can be achieved by alterations of the rendered im-
ages of the simulator in terms of textures, lighting conditions,
camera position and other factors. A distinct property of
these methods is that they do not require any fine-tuning
on real images. This is in stark contrast to [25] where it is
proposed to map the real world images back to the simulator
domain rather than the more common method of finding a
mapping into the real domain.

The work most similar to ours is that of Bousmalis et al.
[26]. As in our method, a generator is trained to produce
realistic images from synthetic images, and a discriminator
is trained to distinguish synthetically created images from
real images. However, their proposal is constrained to the
grasping task as an estimate of the grasping success is used
as semantic input when training the generator. As only the
grasping success is considered, this relaxes the requirement
of accurately estimating the state of each joint. Our method is
complementary to these task specific methods, as our method
aims to sidestep the manual calibration that is required in
complex robots like the iCub, while being agnostic to the
specific manipulation task.

III. METHODOLOGY

In this section, we first present the Imperial-sim2real
dataset that contains both images obtained in simulation and
from the physical robot (Section III-A). We then introduce an
image-to-image translation method that maps images from
the simulation domain to the real domain (Section III-B).



Finally, we show that these realistically looking images can
be used to learn the visuomotor mapping (Section III-C). All
code is available on our GitHub repository1.

A. Action-based dataset generation

To create the Imperial-sim2real dataset, we use the iCub
humanoid robot [27]. The iCub has the size of a three to
four year old child and was designed to study embodied
cognition and autonomous exploration. In total, the iCub has
53 Degrees of Freedom (DoF), and in the scope of this paper
we focus on the 7 DoFs of each arm and the 6 DoFs of the
iCub’s head. Both eyes are equipped with a RGB camera
that allows for stereo vision capabilities [8].

Dataset overview: The Imperial-sim2real dataset (doi:
10.5281/zenodo.1186943) contains the following elements:

1) Sim: Stereo vision image pairs of the robot’s arm in
simulation, along with the corresponding head joint
and arm joint configurations.

2) Background: Background images collected using the
physical robot without the robot arm in the visual field
of view, with corresponding head joint configuration.

3) TrainA: Images created by combining Sim images and
Background images of similar head configurations.
Here the Background image with most similar head
configuration to the Sim image is used.

4) TrainB: Stereo vision image pairs of the physical
robot’s arm.

5) sim2real: Synthetic images that were translated from
the simulation domain into the real domain using
an image-to-image translation method. Specifically,
TrainA images are translated using CycleGAN as de-
scribed in Section III-B.

Motor babbling for randomized actions: As we want
to find the mapping of the visual and motor spaces in one
shot, we aim to acquire data from the corresponding sensor
sources (stereo vision image pairs, head configuration and
arm configuration) in the whole working space of the robot’s
arm using a motor babbling scheme.

More precisely, we cover the working space by issuing
random actions to the relevant joints of the kinematic chain
(i.e. from the eyes to the robot’s hand) and store the stereo
image pair as well as the measurements of the joint encoders
(7 arm joints and 6 head joints). For simplicity, we only find
the visuomotor mapping for the right hand and ensure that
the left hand is out of the field of view (the mapping for the
left hand can be found in the same way). We generate the arm
motions using a velocity controller following the proposal of
Zambelli and Demiris [4], as shown in Eq. (1), and extend
their method to also move the head joints using a position
controller, as shown in Eq. (3). We utilize the superscripts a
and h for arm and head respectively.

Arm velocity controller: The velocity command va is
found as follows:

va = K ·
(
pa

ref − pa
t

)
, (1)

1https://github.com/robotology/
visuomotor-learning
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Fig. 2. Approximation of the right arm coverage achieved by issuing
random motor commands in simulation. The z-axis points upward, and the
y-axis points left to right. The motion in the x-axis (pointing towards the
robot) is negligible with regards to the other two directions and is not shown
for simplicity. The dashed red line shows the coverage of the babbling
algorithm, while the blue dots represent individual data points of the end-
effector position.

with pa
t being a vector of values containing the measure-

ments of arm joints at time t, K is the proportional gain,
and the reference values pa

ref of the arm joints are generated
by:

pa
ref = pa

0 + Ã · sin
(
2πf̃t

)
· 1, (2)

where 1 duplicates a scalar into a vector of the appropriate
size. The initial guess pa

0 ensures that the right arm is
visible in the whole motion sequence, and Ã ∼ N (0, A)
and f̃ ∼ N (0, f) are normally distributed parameters for the
amplitude and frequency respectively.

Head position controller: The head position ph is deter-
mined according to

ph = ph
0 + H̃ · 1, (3)

where ph
0 denotes the random initial head configuration and

H̃ ∼ N (0, H) is the normally distributed gain of the position
controller. For safety reasons, the final control value sent to
each joint is constrained by the firmware’s bounding value.

Workspace coverage: Covering a sufficiently large work-
ing space requires setting large values for A, H and f .
While this is feasible in simulation, lower values have to
be used on the real robot due to mechanic stress constraints.
For this work, we set the parameters as following: A = 5,
f = 0.2 and H = 10 in simulation or H = 5 for the
physical robot. Thus using the iCub simulator [28] has the
additional benefit that it allows the collection of a larger,
more diverse dataset compared to the physical robot. The
resulting arm coverage in the simulated workspace is shown
in Figure 2, with the arm’s sweeping volume approximated
as V ≈ Sconvex · d̄ = 0.39m3 (where Sconvex is the area
covered by the convex hull spanned in the plane of the y-
and z-axes, and d̄ is the average distance between the robot’s
end-effector and the robot’s shoulder in direction of the x-
axis [motion in the x-axis is negligible]).

https://doi.org/10.5281/zenodo.1186943
https://doi.org/10.5281/zenodo.1186943
https://github.com/robotology/visuomotor-learning
https://github.com/robotology/visuomotor-learning


B. Image-to-image translation from the simulator to the real
domain

In this section we learn a mapping function that maps im-
ages containing the iCub’s arm from the simulation domain
to the real domain. In the computer vision domain, image-to-
image translation has been addressed as learning a mapping
function between an input image {ai}Ni=1 ∈ TrainA and an
output image {bi}Ni=1 ∈ TrainB by training aligned image
pairs [29]. In the following, we will abbreviate TrainA with
A and TrainB with B for brevity. However, in our task we
only have two independent sets of images, where one consists
of simulation arm images A and the other consists of real
robot arm images B – there is no paired data indicating how
a simulated image could be translated to a corresponding real
image. In fact, as outlined in the introduction, we cannot rely
on the joint configuration obtained by the physical robot as
there are various unavoidable sources of errors.

Recently, generative adversarial network (GAN) [30]
based methods have shown good performance in generating
realistic images, and some variants utilizing GANs have
been applied to the image translation task without requiring
aligned image pairs [6]. In this work, we adopt a state-
of-the-art image-to-image translation method called Cycle-
Consistent Adversarial Network (CycleGAN) [6]. The Cy-
cleGAN is based on a combination of adversarial loss LGAN
and cycle consistency loss Lcyc in order to learn two mapping
functions GB : A→ B and GA : B→ A. In the following,
we briefly describe the architecture and implementation of
CycleGAN in our work.

Firstly, two adversarial discriminative networks DA

and DB are introduced. DA distinguishes between
real images {a} and translated images {GA(b)} and sim-
ilarly DB distinguishes between images {b} and {GB(a)}.
The generators GA and GB try to generate images GA(b)
and GB(a) that look similar to images from the A and B
domains respectively. The adversarial loss for the mapping
GB : A→ B is

LGAN(GB, DB,A,B) = Ea∼Pa

[
log
(

1−DB

(
GB(a)

))]
+ Eb∼Pb

[
logDB(b)

]
, (4)

and the mapping GA : B → A is similarly designed as
LGAN(GA, DA,B,A).

Secondly, the cycle consistency loss is designed to reg-
ularize the mappings, i.e. translation from one domain to
the other, by ensuring that translating an already translated
image back to the original domain should resemble the
original image: a→GB (a)→GA

(
GB(a)

)
≈ a. The cycle

consistency loss is formulated as

Lcyc(GB, GA) = Ea∼Pa

[ ∥∥GA

(
GB(a)

)
− a
∥∥
1

]
(5)

+ Eb∼Pb

[ ∥∥GB

(
GA(b)

)
− b

∥∥
1

]
,

where ‖·‖1 indicates the l1-norm. By merging the adversarial
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Fig. 3. Visuomotor deep neural network model. Yellow, blue and green lay-
ers denote batch normalization, ReLU and tanh respectively. We abbreviate
fully-connected layers with “FC” and “concat” stands for concatenation.

losses and cycle consistency loss, the full loss becomes

L(GA, GB, DA, DB) = LGAN (GB, DB,A,B)

+ LGAN (GA, DA,B,A)

+ λLcyc(GB, GA),

(6)

where λ controls the relative weight of the adversarial losses
and the cycle consistency loss.

We want to emphasize the importance of experimentally
finding the correct value for λ in our setting. If λ is
chosen too high, the CycleGAN tends to remember the
learned images rather than generating new ones (in terms of
interpolation and extrapolation). On the other hand, if λ is
chosen too low, the arm pose is not closely resembled in the
synthesized images. We experimentally found that λ = 10
represents a good compromise.

We implement the model in Tensorflow and train it with
the Adam optimizer [31] using a learning rate of 0.0002 for
both generators and discriminators.

C. Learning the visuomotor mapping

We treat the visuomotor learning as a regression problem,
where given a pair of images containing the robot’s arm
(from the stereo-vision system) and the head joint config-
uration of the robot (neck-eyes), the aim is to estimate
the corresponding joint configuration of the arm. Therefore,
an input sample (x ∈ X) contains two images and six
measurements of the head joints, while a corresponding
output sample (y ∈ Y) contains seven measurements of
the robot’s arm joints. We assume that there is only one
of the robot’s two arms contained in the input samples. The
regression problem is then to approximate the function f to
map the input and output, i.e. Y = f(X).

To estimate the mapping function f , we propose a deep
neural network model as depicted in Figure 3. It contains the
following components:

• Two identical VGG19 [32] networks to extract features
from images obtained by the left eye camera and right



eye camera respectively. The feature vector of each
VGG19 network is first routed to a dense layer of 1024
fully connected units, followed by a batch normalization
layer and a ReLU activation layer. The dense layers are
then concatenated and integrated by a dense layer of
512 units. This deep visual output can be considered as
implicit 3D estimate from the raw stereo image pair.

• The head joint configuration is concatenated to this deep
visual output, and then further processed in a densely
connected network composed of three layers with 512,
256 and 7 units respectively. Finally, the predicted joint
values Ŷ are obtained after applying a tanh activation
layer.

Contrary to the classical approach, which maps a visually
perceived object to Cartesian space, and then from Cartesian
space to the motor space, our mapping f directly infers the
configuration of the arm joints in motor space from the spa-
tial relation of pixels in raw images. Thus our method does
not suffer from the infinite solution problem of the inverse
kinematics transformation (in redundancy manipulators) as in
the latter step of the classical approach. In other words, our
method considers a robot’s arm in the visual space as a whole
rather than as a single, representative point in Cartesian space
(also called tool center point).

The training process consists of two steps. First, to boot-
strap the network, we only use the Sim dataset which contains
the unmodified simulator images. This results in the sim pre-
dictor. We then fine-tune this network further using samples
from the sim2real dataset (obtained using CycleGAN) which
results in the real predictor. We chose this training scheme
as the sim2real dataset is significantly smaller compared to
the Sim dataset (some images are discarded in the sim2real
dataset as described in Section IV-B).

The deep neural network model is implemented in Keras
with Tensorflow back-end, and is trained with the mean
squared error loss function using the Adam optimizer [31].
We use a batch size of 160 and a learning rate of 0.0001.

IV. EXPERIMENTS & RESULTS

In this section, we evaluate our proposed method in a
number of settings. The first experiment purely evaluates
the deep neural network used for the visuomotor mapping
(Section IV-A). The second experiment evaluates the image-
to-image translation method and shows that realistic images
can be generated from simulation while maintaining the
semantic information of the arm pose (Section IV-B). The
third experiment is a combination of the first two, and eval-
uates the visuomotor mapping in the real domain, i.e. using
the physical robot and the sim2real dataset (Section IV-C).
Finally, we show that a simple calibrator using the offsets
between the measured joint values and predicted joint values
can be used in an object reaching scenario (Section IV-D).

A. Robot hand visual tracking in simulation

In the first experiment, we evaluate the visuomotor deep
neural network that was presented in Section III-C in sim-
ulation. The model is trained with N = 34000 training
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Fig. 4. Arm joint estimation from visual input in the iCub simulator. Each
plot corresponds to one of the seven arm joints of the iCub and shows the
measured joint value (red) and predicted joint value (blue) over time. As
all joints are estimated accurately, this figure validates the efficiency of the
proposed visual-motor deep neural network.

samples obtained by the proposed motor babbling scheme.
The training input consist of a stereo image pair with the
corresponding head configuration, and the network is trained
to estimate the arm’s joint values.

The trained model is then tested on a testing set sepa-
rate from the training and validation sets (containing 6000
samples). If the model is able to generalize to new joint
configurations, the error between the measured joints of the
simulator and the predicted joints should be small. Indeed,
Figure 4 confirms that this is the case. The average error is
1.85± 1.32 degrees.

This result also demonstrates that the proposed deep
network can be used as a component within action planning
without having to rely on inverse kinematics methods. For
example, the network can be used to find the corresponding
joint configuration of the robot’s arm touching an object.
Then, it is straightforward to issue motor commands to
achieve this joint configuration.

Another advantage of the proposed visuomotor deep neu-
ral network is that the inference only takes ≈10ms (on a
NVIDIA GTX 1080Ti), which is significantly faster than
other approaches for hand-eye coordination on the iCub
(e.g. > 100ms in [12]).

B. Imperial-sim2real dataset

The synthetic images presented in this section are gen-
erated by the image-to-image translation method described
in Section III-B. The Sim element contains approximately
40000 training samples collected using the simulator, and
there are over 8000 images in the Background and TrainA el-
ements of the dataset. The TrainB element, which is collected
using the physical robot, contains more than 4000 stereo
image pairs. Originally we collected 18000 stereo image
pairs, however we found that using fewer pairs provides
sufficient training data for the CycleGAN, reduces training
time and avoids overfitting. The sim2real element contains
approximately 9000 synthetic images. While theoretically we
could obtain as many synthetic images as there are in the



Fig. 5. Image-to-image translation results. Left: simulator images where
the background was replaced with random background images of the real
domain (TrainA set). Middle: corresponding realistically looking images
synthesized using CycleGAN (sim2real set). The pose of the synthesized
arm closely resembles that of the simulator arm. Right: the real images that
are most similar to the synthesized ones in the middle column (TrainB set).

Sim image set, we manually discard images which are too
blurry or where the synthetic arm has an unrealistic pose. In
Figure 5, we show some examples of images acquired using
the iCub simulator (TrainA images), and their correspond-
ing images in the real domain acquired using CycleGAN
(sim2real images). The Imperial-sim2real dataset is made
available to the public (doi: 10.5281/zenodo.1186943).

C. Robot hand visual tracking on the physical robot

In our third experiment, we investigate whether the track-
ing also performs well on the real robot. Compared to
experiment in Section IV-A, the visuomotor deep network
is trained with synthetic images obtained using CycleGAN
as described in Section III-B (sim2real images). The network
is then tested on the physical robot, and Figure 6 shows the
error between the predicted and measured joint states. As
expected, there are some discrepancies due to the imprecise
calibration of the physical robot. Importantly, however, in
the next section we show that the discrepancies are system-
atic, and we construct a calibrator to compensate for these
discrepancies.

D. Joint calibration on the physical robot

While the papers main contribution is to learn the vi-
suomotor mapping as described in Section III, here we
investigate the accuracy of our mapping using a simple
calibrator. The idea is as follows: the motor babbling scheme
(Section III-A) is performed on the physical robot, and the
images of the arm are recorded alongside the measured joint
values y. Using the collected images and the real predictor
(Section III-C), we obtain (paired) predicted joint values ŷ.
We then map the measured joint values to the predicted joint
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Fig. 6. Arm joint estimation from visual input on the physical robot using
our proposed visuomotor deep neural network trained on samples produced
by the CycleGAN. The small discrepancies are due to inaccurate calibration
of the real robot, and can be compensated by a calibrator (see Section IV-D).

values using a simple polynomial. One example application
shown in this section is object touching. Specifically, the
polynomial can be used to map a target joint configuration
y∗ obtained from inverse kinematics to the corrected joint
configuration ŷ∗ that is used to touch the object (rather than
using y∗ directly).

The calibrator is implemented as polynomial ŷ = c0+c1�
y + c2 � y2 + c3 � y3, where ŷ denotes the predicted joint
values, y denotes the measured joint values and � denotes
the Hadamard product2. The ci are constant vectors that are
approximated using the collected data in Section IV-C by
applying the least squares polynomial fitting method. This
procedure can be fully automated and has to be repeated
every time the mechanical properties of the robot change,
e.g. after a cable has been replaced.

This calibrator can then be used to accurately touch objects
in a table-top scenario. Using the stereo-vision and the
eyes-to-root transformation of the robot [8], we obtain the
Cartesian coordinates (x,y,z) of a known object in the root ref-
erence frame. The Cartesian coordinates are then converted
to the corresponding target joint configuration y∗ using the
inverse kinematic library of the robot (iKin, see [33]). We
want to emphasize that the inverse kinematics library is
only used to obtain the joint configuration corresponding to
Cartesian coordinates, but not to control the robot. We use
the calibrator to obtain the corrected joint configuration ŷ∗

that is then issued to the robot.
We evaluate the reaching accuracy by varying the target

object’s position and comparing the success with and without
using the proposed calibration method. Figure 7 shows that
the robot fails to touch the object when directly using y∗

(i.e. without usage of the proposed calibrator). When the
corrected joint values ŷ∗ are used, the robot can successfully
touch the object. The supplementary video provides further
details on this validation3.

2We abuse notation and denote y�y as y2 and y�y�y as y3.
3https://youtu.be/VMw8sVztcKA

https://doi.org/10.5281/zenodo.1186943
https://youtu.be/VMw8sVztcKA


Fig. 7. Touching trial with and without calibration in different target position: First row–no calibration; Second row–with calibration

V. CONCLUSIONS

In this paper, we have introduced a new way of using
data obtained using a simulator in the real domain. We have
shown that synthesized data can be used to predict the robot’s
arm configuration given a pair of stereo images and the head
configuration. The discrepancies between these predictions
and the measured arm joint values can be used to train a
calibrator, which is then used in a reaching task.

Our next step will be applying the learned visuomotor
mapping in vision-based action planning, including reaching
with obstacle avoidance and object grasping. For the reaching
with avoidance task, we plan to use the proposed method to
produce imagined images of the robot’s arm, which can be
checked against collisions with objects. An advantage of our
method is that the planning problem is mapped from vision
space to joint space in real-time, where well-established
motion planning techniques such as Rapidly exploring Ran-
dom Trees (RRT*) and Probabilistic RoadMap (PRM*) [34]
can be applied. Another benefit of our framework is the
feasibility of integrating the touch modality using the tactile
sensors of the iCub.

One limitation of our method is that it is currently con-
strained to setups where the background closely resembles
that of the dataset. We will overcome this limitation using
domain randomization techniques [23], [24]. Other future
works include the simultaneous learning of the visuomotor
mapping for both arms, extending the framework to learn
directly from uncalibrated images, and simultaneously learn-
ing the joint state and end-effector position. To achieve these
goals we will be using methods from the multi-task learning
[35] and transfer learning [36] fields.
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