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Suspensions of self-motile, elongated particles are a topic of

significant current interest, exemplifying a form of ‘active

matter’. Examples include self-propelling bacteria, algae and

sperm, and artificial swimmers. Ericksen’s model of a transver-

sely isotropic fluid (Ericksen 1960 Colloid Polym. Sci. 173, 117–

122 (doi:10.1007/bf01502416)) treats suspensions of non-motile

particles as a continuum with an evolving preferred direction;

this model describes fibrous materials as diverse as extracellu-

lar matrix, textile tufts and plant cell walls. Director-dependent

effects are incorporated through a modified stress tensor with

four viscosity-like parameters. By making fundamental con-

nections with recent models for active suspensions, we

propose a modification to Ericksen’s model, mainly the

inclusion of self-motility; this can be considered the simplest

description of an oriented suspension including transversely

isotropic effects. Motivated by the fact that transversely isotro-

pic fluids exhibit modified flow stability, we conduct a linear

stability analysis of two distinct cases, aligned and isotropic

suspensions of elongated active particles. Novel aspects

include the anisotropic rheology and translational diffusion.

In general, anisotropic effects increase the instability of small

perturbations, while translational diffusion stabilizes a range

of wave-directions and, in some cases, a finite range of wave-

numbers, thus emphasizing that both anisotropy and

translational diffusion can have important effects in these

systems.
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1. Introduction
Fluids containing suspensions of particles are found in numerous industrial and biological applications.

Examples involving passive particles include (but are not limited to) solutions of DNA [1], fibrous pro-

teins of the cytoskeleton [2,3], synthetic bio-nanofibres [4], extracellular matrix [5] and plant cell walls [6].

Suspensions comprising self-propelling bacteria or other microorganisms are termed active [7]; these sus-

pensions exhibit phenomena such as collective behaviour [8–14] and, as observed recently, superfluidity

[15]. Collections of artificial swimmers may also exhibit the properties of active matter [16–20]. In order

to understand these phenomena, it is vital to develop tractable and accurate continuum theories that cap-

ture the essential physics of suspensions of self-motile particles.

A range of techniques for modelling the collective behaviour of elongated active particles exist,

including active suspension theory, for example, as proposed by Pedley & Kessler [8] and Simha &

Ramaswamy [21], through to the active nematics as described in [22]. In this paper, we link active sus-

pension models of solutions containing swimming microorganisms with the mathematically simpler

(inactive) transversely isotropic fluid first described by Ericksen [23], commonly used to describe

fibre-reinforced media [5,6,24–27] and a simplification of the active nematics model [28]. Ericksen’s

model consists of mass and momentum conservation equations together with an evolution equation

for the fibre director field. The stress tensor depends on the fibre orientation and linearly on the rate

of strain; it takes the simplest form that satisfies the required invariances.

By linking these models of active and inactive suspensions, we propose a modification to the fibre

evolution equation, of the transversely isotropic model, which allows for the inclusion of swimming

particles. Alongside this, the connection between the two models reveals the importance of non-isotropic

terms in the stress tensor, when the suspended particles are elongated; these terms are known to

influence the dynamics of fibre-laden flows [26,27,29–31].

Motivated by these anisotropic terms, we then analyse the linear stability of suspensions of

elongated particles, with zero imposed background flow, in two distinct cases, following the analysis under-

taken in [32]: when the particles are nearly aligned and when the suspension is isotropic, i.e. when particles

have nearly zero dispersion at each point in space, and when the particles are perfectly randomly orientated,

respectively. We extend the analysis of Saintillan & Shelley [32] by including translational diffusion in the

analysis of the aligned case, and anisotropic effects in both cases. We find that the inclusion of translational

diffusion does have a stabilizing effect in the aligned case; however, the magnitude of this effect is not uni-

form for all wave-directions. In general, the stabilizing effect is strongest for wave-directions near

perpendicular to the aligned direction and weakest for near parallel. The importance of the non-isotropic

stress has been identified in the transversely isotropic research literature [5,26,33].

The structure of this paper is as follows: in §2, we propose the governing equations for an active sus-

pension of elongated particles; in §3, we show that the active description of a uniformly distributed,

perfectly aligned suspension is equivalent to Ericksen’s model [23] with a modified director evolution

equation; in §4, we analyse the linear stability of the two distinct cases of aligned and isotropic suspen-

sions of elongated particles, taking into account transversely isotropic rheology and translational

diffusion, before giving a brief summary of our findings in §5.
2. Governing equations for an active suspension
Consider a collection of particles suspended in a viscous, Newtonian fluid. The suspension is sufficiently

dilute that particles do not interact directly, only through their influence on the fluid. Each particle is

modelled as a prolate spheroid with major axis r�1, minor axis r�2, aspect ratio G ¼ r�1/r�2 and shape par-

ameter a0 ¼ (G2 2 1)/(1 þ G2). The particle number density in physical and orientation space is

denoted N�(x�, p̂, t�) where x� denotes the particle position, p̂ is orientation and t� is time [34], visualized

in figure 1. This function is normalized such that

1

V�

ð
V�

ð
S

N�(x�, p̂, t�) dp̂ dx� ¼ n�d, ð2:1Þ

where V� is the volume of the spatial domain, S is the surface of the unit sphere in orientation space and

n�d is the mean number density of particles in the suspension. The local particle director and concentration

fields a ¼ hp̂i and c� are defined such that

a ¼ hp̂i(x�, t�) ¼ 1

c�(x�, t�)

ð
S

p̂N�(x�, p̂, t�) dp̂, ð2:2Þ

http://rsos.royalsocietypublishing.org/
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Figure 1. A schematic diagram showing the coordinate system used to model the particle distribution function N� . The particle’s
position in space is given by the vector x� ¼ (x� , y� , z� ) and its orientation is given by the unit vector p̂.
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where

c�(x�, t�) ¼
ð

S
N�(x�, p̂, t�) dp̂: ð2:3Þ

The bracket operator is defined over other quantities similarly.

The particle distribution function is assumed to be governed by a Fokker–Planck equation [7], giving

a conservation law for N� :

@N�

@t�
þ rrrrr�x � (U

�N�)þrrrrrp � (V�N�) ¼ 0, ð2:4Þ

where rrrrr�x denotes the gradient operator in physical space and rrrrrp denotes the gradient operator on the

unit sphere in orientation space. The particle translational velocity U� is represented by the linear com-

bination of the particle swimming velocity relative to a background flow U�s p̂, the local fluid velocity u�

and translational diffusion (with diffusivity constant D�T) [11,32]:

U� ¼ U�s p̂þ u� �D�Trrrrr�x( ln N�): ð2:5Þ

In this paper, we will treat D�T as a free parameter. Translational diffusivity will in general be anisotropic

for the nearly aligned case considered in §4.2, and isotropic in the unaligned case of §4.4 [8]. For simpli-

city of analysis and to explore the effect of translational diffusion on stability of the nearly aligned case,

we will treat this term as isotropic in the present study.

Jeffery’s equation [35] models the angular velocity of the particle, in the absence of rotational diffu-

sion, as

V� ¼ (I � p̂p̂) � [(a0e� þv�) � p̂], ð2:6Þ

where we denote the rate-of-strain tensor e� ¼ (rrrrr�xu� þ rrrrr�xu�T)/2, the vorticity tensor v� ¼ (rrrrr�xu� 2

rrrrr�xu�T)/2 and the identity tensor I.

Finally, the fluid velocity u� (x� , t� ) is governed by the Cauchy momentum equations

r�

 
@u�

@t�
þ (u� � rrrrr�x)u�

!
¼ rrrrr�x � s�

and rrrrr�x � u� ¼ 0,

9>>=
>>; ð2:7Þ

where r� is the fluid density and s� is the stress tensor, which must be prescribed by a constitutive law.

Although the fluid containing the particles is assumed to be Newtonian and isotropic, the presence of the

particles will induce anisotropic behaviour.

Most models currently found in the literature take account of the isotropic (s �I ) and active (s�S)

contributions to the stress, but neglect the interaction of the particle with the surrounding fluid (s�P).

We therefore follow Pedley & Kessler [8] and take an expression for the stress tensor of the form

s� ¼ s�I þ s�S þ s�P: ð2:8Þ

The isotropic component takes the form

s�I ¼ ��p� I þ 2�m� e�, ð2:9Þ

where �p� is the hydrostatic pressure and �m� is the solvent viscosity.

http://rsos.royalsocietypublishing.org/
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Active behaviour of force-free Stokesian swimmers is modelled by an equal and opposite propulsive

force/drag pair acting along, and infinitesimally displaced in, the +p̂ direction. By differentiating the

Oseen tensor, the resulting flow field is of the form of a symmetric Stokes dipole (stresslet) with tensorial

strength proportional to (p̂p̂� I=3). As shown by Batchelor [36], this flow contributes proportionally to

the bulk stress. Averaging over orientation space, the contribution to the stress due to active swimming is

therefore of the form

s�S ¼ a�1c� p̂p̂� I

3

� �
, ð2:10Þ

where a�1 is a parameter, which could be positive (puller) or negative (pusher), quantifying the active

stresslet strength.

The components of the stress tensor that arise from the presence of suspended particles in the solvent

take the form [36,37]

s�P ¼ 4�m�V�c a2e�:

ð
S

p̂p̂p̂p̂N� dp̂þ a3 e� �
ð

S
p̂p̂N� dp̂þ

ð
S

p̂p̂N� dp̂ � e�
� ��

þa4e�
ð

S
N� dp̂þ a5 I e�:

ð
S

p̂p̂N� dp̂

�
, ð2:11Þ

where V�c ¼ 4pr�1r�2
2/3 is the particle volume and ai (i ¼ 2 . . . 5) are constants. The terms in a2 and a5 can

be identified with eqn (17) in the extensional flow study of [38]. Note that while a�1 is dimensional, a2–a5

are dimensionless.

The full model thus consists of a normalization condition for N� (2.1), where N� is governed by the

Fokker–Planck equation (2.4), with fluxes (2.5) and (2.6). The fluid velocity obeys conservation of mass

and momentum (2.7), with a constitutive relation for stress given by equations (2.8)–(2.11).
3. Transversely isotropic fluid
In this section, we show how the model, proposed in §2, may be related to the model of a transversely

isotropic fluid, proposed by Ericksen [23]. Consider a uniform suspension c� (x� , t� ) ¼ n�d which is per-

fectly aligned, with director field a(x� , t� ), and where angular and translational diffusion are

neglected; the particle distribution function is then of the form

N�(x�, p̂, t�) ¼ n�dd (p̂� a), ð3:1Þ

where d denotes the Dirac delta function [32]. In this section only, we set the translational diffusion

coefficient to zero; in §4, we will reintroduce translational diffusion to consider its effect on stability.

In this case, we need only to consider how the (perfectly aligned) direction of the particles a evolves,

and not the full distribution function N� . The evolution equation for a is derived by multiplying

equation (2.4) by p̂ and integrating over p̂, to give [32]

@a

@t�
þ (U�s aþ u�) � rrrrr�xa�v� � a ¼ a0(e� � a� e�: aaa): ð3:2Þ

The fibre evolution equation of Ericksen [23] for a passive transversely isotropic fluid can then be

recovered by setting the swimming speed to zero (U�s ¼ 0).

The governing equations for the background flow (equations (2.7)) remain unchanged. However, the

stress tensor is now given by

s� ¼ �p�I þ 2m�e� þ m�1aaþ m�2aaaa:e� þ 2m�3 (aa � e� þ e� � aa), ð3:3Þ

where the pressure has been modified such that

p� ¼ �p� þ n�da
�
1

3
� 4�m�fa5aa : e�, ð3:4Þ

and the viscosity-like parameters are given by

m� ¼ �m�(1þ 2fa4), m�1 ¼ n�da
�
1, m�2 ¼ 4�m�fa2 and m�3 ¼ 2�m�fa3: ð3:5Þ

The non-dimensional parameter f ¼ n�dV�c denotes the volume fraction of the particles. These parameters

may be interpreted in turn as follows: m� is the shear viscosity in the direction transverse to the particles,

which is equivalent to the solvent viscosity enhanced by the volume fraction of particles [6]; m�1 implies

http://rsos.royalsocietypublishing.org/
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Figure 2. Schematic diagrams of (a) an aligned suspension and (b) an isotropic suspension of rod-like particles.
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the existence of a stress in the fluid even if it is instantaneously at rest generated via an active stresslet; m�2
and m�3 are the anisotropic extensional and shear viscosities respectively due to the presence of the par-

ticles [5,6,24,26,29].

When the suspension is dilute the non-dimensional parameters m ¼ 1 þ 2fa4, a2 and a3 may be

approximated from Jeffery [35] (via [8,36,39–41]); these approximations are shown in appendix A.

We have therefore recovered, from a description of an active suspension of aligned elongated par-

ticles, the model for a transversely isotropic fluid proposed by Ericksen [23], with a modification to

the fibre evolution equation to account for the swimming velocity. When the fibre evolution equation

is not modified, Ericksen’s transversely isotropic model corresponds to a non-swimming ‘shaker’ suspen-

sion [42], and as such offers a simple model of, for example, the dynamics of suspensions of microtubule

bundles that extend in length due to motor-protein activity [43]. By analogy with recent findings in the

transversely isotropic field [6,24,26,33], this correspondence suggests that the transversely isotropic stress

will have a significant impact on the dynamics of suspensions of active elongated particles, via the

rheological parameters a2 and a3.

In the next section, we examine the role of these transversely isotropic effects, along with translational

diffusion, in the stability analysis of both aligned and isotropic suspensions of elongated particles.
4. Stability of nearly aligned and isotropic suspensions
In this section, we examine the linear stability of suspensions of elongated particles, with zero back-

ground flow, in two distinct cases, when (1) the particles are nearly aligned and (2) the suspension is

isotropic (a schematic diagram is given in figure 2).

We adopt the model described in §2. To derive a governing equation for the concentration field c� (x� ,
t� ), equation (2.4) is integrated with respect to p̂ over orientation space; after substituting for the transla-

tional flux velocity U� (equation (2.5)) this yields [32]

@c�

@t�
þ u� � rrrrr�xc� ¼ D�Trrrrrx

�2c� �U�srrrrr�x � (c�a): ð4:1Þ

The above equation is an advection–diffusion equation for the local concentration field c� , with a source

term 2U�srrrrr�x . (c�a).

4.1. Non-dimensionalization
The governing equations are made dimensionless using the following scaling [32]:

u� ¼ U�s u, x� ¼ x

n�dr�21

, t� ¼ t
n�dr�21 U�s

, �p� ¼ �m�U�s n�dr�21 p, N� ¼ n�dN and c� ¼ n�dc, ð4:2Þ

where n�d is the mean number density of particles in the suspension. Note that n�dr�2
1 ¼ V�e/V�r�1, where V�e ¼

Mr�3
1 is the effective volume taken up by the total number of swimming particles (M). These scalings are

http://rsos.royalsocietypublishing.org/
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appropriate to problems where the characteristic velocity is of the order of the swimming speed, as opposed

to, for example, problems where the characteristic velocity is given by non-zero background flow.

The particle distribution function (equation (2.1)) is now normalized as

1

V

ð
V

ð
S

N(x, p̂, t) dp̂ dx ¼ 1, ð4:3Þ

and the governing equation (equation (2.4)) becomes

@N
@t
¼ �rrrrrx � (UN)�rrrrrp � (VN), ð4:4Þ

where the non-dimensional translational and rotational velocities of the particles (equations (2.5) and

(2.6)) are given by

U ¼ p̂þ u� f
�Pe
rrrrrx( ln N) ð4:5Þ

and

V ¼ (I � p̂p̂) � [(a0eþv) � p̂]: ð4:6Þ

Here e ¼ (rrrrrxu þ rrrrrxuT)/2 is the rate-of-strain tensor, v ¼ (rrrrrxu 2 rrrrrxuT)/2 is the vorticity tensor, f ¼

n�dV�c is the volume fraction of particles in solution, and �Pe ¼ 3U�s r�1=4pD�TG
2 is the modified Péclet

number, which is the dimensionless ratio of the advection time scale to the diffusion time scale [4],

divided by the square of the aspect ratio.

The local particle director and concentration fields (equations (2.2) and (2.3)) are

a(x, t) ¼ hp̂i ¼ 1

c(x, t)

ð
S

p̂N(x, p̂, t) dp̂ ð4:7Þ

and

c(x, t) ¼
ð

S
N(x, p̂, t) dp̂, ð4:8Þ

where the concentration field (equation (4.1)) is governed by

@c
@t
þ (u � rrrrrx)c ¼ f

�Pe
r2

xc�rrrrrx � (ca): ð4:9Þ

Finally, in the zero Reynolds number limit the momentum and continuity equations (2.7) simplify as

rrrrrx � s ¼ 0 and rrrrrx � u ¼ 0, ð4:10Þ

where the constitutive relation for stress (2.11) becomes

s ¼ �pI þ 2eþ a1

ð
S

p̂p̂� I

3

� �
N dp̂þ 4fc a2e:

ð
S

p̂p̂p̂p̂N dp̂

�

þa3 e �
ð

S
p̂p̂N dp̂þ

ð
S

p̂p̂N dp̂ � e
� �

þ a4e

ð
S

N dp̂þ a5e:

ð
S

p̂p̂N dp̂I

	
: ð4:11Þ

Here a1 ¼ a�1=�m�U�s r�21 is the non-dimensional stresslet strength.
4.2. Stability of a nearly aligned suspension
First consider the case when the particles are perfectly aligned at each point x and the imposed back-

ground flow is zero to leading order. This situation may arise after particles have been orientated by a

background flow, followed by the flow being instantaneously turned off.

For a nearly aligned suspension, the distribution function takes the form

N(x, p̂, t) ¼ c(x, t)d(p̂� a(x, t)), ð4:12Þ

where d denotes the Dirac delta function [32]. This is similar to the form of the distribution function

chosen in §3, but with non-uniform concentration. In this case, we may reduce the evolution equation

for the full distribution function (4.4) to a pair of equations for the concentration and director fields.

http://rsos.royalsocietypublishing.org/
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These latter equations now only have x and t as independent variables, rather than x, p̂ and t, reducing

the dimensionality of the problem. The equation for concentration (equation (4.9)) is given by

@c
@t
þrrrrrx � [(aþ u)c] ¼ f

�Pe
r2

xc: ð4:13Þ

The evolution equation for the director field a is derived by multiplying equation (4.4) by p̂ and

integrating with respect to p̂, yielding [32]

@a

@t
¼ �(aþ u) � rrrrrxaþ (I � aa) � [(a0eþv) � a], ð4:14Þ

where the concentration is assumed non-zero everywhere.

The governing equations for the fluid velocity remain unchanged (equations (4.10)). However, the

stress tensor is now given by

s ¼ �pI þ 2eþ a1c(x, t) aa� I

3

� �
þ 4fc(x, t) a2e : aaaaþ a3(e � aaþ aa � e)þ a4eþ a5e : aaIð Þ: ð4:15Þ

In line with the transversely isotropic fluid literature, we define a2 and a3 as the anisotropic extensional

and shear viscosities, respectively, and note that 4fca4 and 4fca5e : aa may be combined with the sol-

vent viscosity and hydrostatic pressure respectively.

The model consists of equations for the evolution of concentration (4.13) and director (4.14) fields of

the particles, as well as conservation of mass and momentum statements for the fluid velocity (4.10), with

the constitutive relation for stress (4.15).

As no external body forces act upon the fluid flow, we may analyse the linear stability of a suspension of

particles aligned in the ẑ-direction (i.e. a(0) ¼ ẑ) without loss of generality [32]. A base state exists when the

fluid is motionless (u(0) ¼ 0), the particles are uniformly distributed (c(0) ¼ 1), and the pressure is constant

(p(0) ¼ p0, where p0 is some arbitrary pressure). We consider the stability of this state via the perturbation

c(x, t) ¼ 1þ 1c(1)(x, t)þO(12),

a(x, t) ¼ ẑþ 1a(1)(x, t) þO(12),

u(x, t) ¼ 1u(1)(x, t)þO(12)

and p(x, t) ¼ p0 þ 1p(1)(x, t)þO(12),

9>>>>>>=
>>>>>>;

ð4:16Þ

where j1j � 1. We require a(1) � ẑ ¼ 0, so that a remains a unit vector to order 12.

Expanding equations (4.13) and (4.14), and retaining only terms of order 1 only, we find [32]

@c(1)

@t
þ ẑ � rrrrrxc(1) ¼ f

�Pe
rrrrr2

xc(1) �rrrrrx � a(1) ð4:17Þ

and

@a(1)

@t
þ ẑ � rrrrrxa(1) ¼ (I � ẑẑ) � (a0e(1) þv(1)) � ẑ, ð4:18Þ

where e(1) ¼ (rrrrrxu(1) þ rrrrrxu(1)T)/2 and v(1) ¼ (rrrrrxu(1) 2 rrrrrxu(1)T)/2. The momentum equations are given

at order e by

� mr2
xu(1) þrrrrrxq(1) ¼ rrrrrx � s(1), rrrrrx � u(1) ¼ 0, ð4:19Þ

where m ¼ 1 þ 2fa4 is the enhanced shear viscosity due to the presence of the particles, the effective

pressure is q(1) ¼ p(1) � a1c(1)=3� 4fa5e(1) : ẑẑ, and the constitutive relation for stress is given by

s(1) ¼ a1(a(1)ẑþ ẑa(1) þ c(1)ẑẑ)þ 4f{a2e(1) : ẑẑẑẑþ a3(e(1) � ẑẑþ ẑẑ � e(1))}: ð4:20Þ

When the suspension is dilute the parameters m, a2 and a3 may be approximated from Jeffery [35] (via

[8,36,39–41]), see appendix A.

We seek plane-wave solutions of the form

c(1) ¼ c0(k) eik�xþst, a(1) ¼ a0(k) eik�xþst,

q(1) ¼ q0(k) eik�xþst, u(1) ¼ u0(k) eik�xþst,

)
ð4:21Þ
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and

e(1) ¼ e0(k) eik�xþst, s(1) ¼ s0(k) eik�xþst, ð4:22Þ

where k is the wavevector and s the growth rate. Under this ansatz the equations for the first-order

concentration and alignment field (equations (4.17) and (4.18)) are given by

sþ iẑ � kþ f

�Pe
r2

x

� �
c0 ¼ �ik � a0 ð4:23Þ

and

(sþ iẑ � k)a0 ¼ (I � ẑẑ) � (a0e0 þv0) � ẑ, ð4:24Þ

where e0 ¼ i(ku0 þ u0k)/2 and v0 ¼ i(ku0 2 u0k)/2, while the conservation of mass and momentum

equations become [32]

mk2u0 þ ikq0 ¼ ik � s0, k � u0 ¼ 0: ð4:25Þ

The constitutive relation for stress is now given by

s0 ¼ a1(a0ẑþ ẑa0 þ c0ẑẑ)þ 4f{a2e0 : ẑẑẑẑþ a3(e0 � ẑẑþ ẑẑ � e0)}: ð4:26Þ

Using the constitutive relation for stress (4.20) and eliminating the effective pressure q0 allows the con-

servation of momentum statement (4.25) to be written as

1þ 2fa3

m
(k̂ � ẑ)2

� �
u0 þ 2f

m
(u0 � ẑ)(2a2(k̂ � ẑ)2 þ a3)(ẑ� (k̂ � ẑ)k̂)

¼ ia1

mk2
(I � k̂k̂) � (a0ẑþ ẑa0 þ c0ẑẑ) � k: ð4:27Þ

Similar to the case identified by Saintillan & Shelley [11,32], the velocity is only non-zero if the wave-

vector k lies in the (ẑ, a0) plane, therefore we may assume without loss of generality that k lies in this

plane and define u as the angle between k and ẑ, i.e. k ¼ k( cos uẑþ sin ua0=a0) (where a0 ¼ ja0j). Assuming

this form for the wavevector, the concentration and alignment equations become

l0c0 ¼ �ika0 sin u ð4:28Þ

and

l ¼ i

2
((a0 þ 1)uak cos uþ (a0 � 1)uzk sin u), ð4:29Þ

where l0 ¼ sþ ik cos uþ fk2=�Pe and l ¼ s þ ikcos u, chosen for notational convenience. Here the

components of velocity are given by

u0a ¼
ia1a0(mþ 2fa3 cos 2u)(l0 cos u cos 2uþ ik sin2 u cos2 u)

kl0(mþ f(a2 sin2 2uþ 2a3))(mþ 2fa3 cos2 u)
ð4:30Þ

and

u0z ¼
�ia1a0(l0 sin u cos 2uþ ik cos u sin3 u)

kl0(mþ f(a2 sin2 2uþ 2a3))
, ð4:31Þ

where we have made use of equation (4.28) to eliminate c0.
Substitution of the velocity components (4.30) and (4.31) into equation (4.29) leads to the dispersion

relation

ll0 � f(u) (l0 cos 2uþ ik sin2 u cos u) ¼ 0, ð4:32Þ

where

f(u) ¼ �a1

2
(A1(a0 þ 1) cos2 u� A2(a0 � 1) sin2 u), ð4:33Þ

A1 ¼
mþ 2fa3 cos 2u

(mþ f(a2 sin2 2uþ 2a3))(mþ 2fa3 cos2 u)
ð4:34Þ

and A2 ¼
1

mþ f(a2 sin2 2uþ 2a3)
: ð4:35Þ
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Equation (4.32) is an eigenvalue problem for the growth rate s (via l and l0 ), the solution for which is

obtained as
sos.royalsocietypubli
s+ ¼ �ik cos u� fk2

�Pe
þ 1

2

fk2

�Pe
þ f(u) cos 2u

� �
1 + 1þ 2ikf(u) sin u sin 2u

(fk2=�Pe þ f(u) cos 2u)2

 !1=2
2
4

3
5: ð4:36Þ
shing.org
R.
We note the solution of the eigenvalue problem derived by Saintillan & Shelley [11,32] is recovered by

setting f ¼ 0.
Soc.open
sci.5:180456
4.3. Results (nearly aligned)
This section will examine the growth rate of instability in a nearly aligned suspension of pushers (a , 0),

given by equation (4.36), as translational diffusion, quantified by the Péclet number, volume fraction and

shape parameter are varied.

First, consider the case when there are no anisotropic effects (i.e. A1 ¼ 1 and A2 ¼ 1), the volume frac-

tion, shape parameter and stresslet strength are held constant (f ¼ 0.2, a0 ¼ 0.8, a1 ¼ 2 1), and the Péclet

number is varied (�Pe ¼ 10�2, 10�1, 1, 101, 102). This variation in Péclet number corresponds to changes

from large to small diffusion coefficient, with swimming velocity and length scale held constant. The cor-

responding results for this set-up are shown in figure 3. When k ¼ 0.01, figure 3a shows that changes to

the Péclet number have no effect on the growth parameter s. However, for higher wavenumbers the

inclusion of diffusion stabilizes some wave-directions, for example, in figure 3b–c and e– f . Diffusive

effects may change the most unstable value of k. In figure 3d– f , when translational diffusion is suffi-

ciently large, instead of growth rate being strictly increasing with k there is now a finite positive

maximum. Diffusion therefore has a stabilizing effect, as predicted by Saintillan & Shelley [11,32].

This effect is highlighted more clearly in figure 3g– i, in which the solid black lines separate the stable

and unstable regions in k–u space.

For small Péclet number, there is a range of wave-directions (u [ (p/4, 3p/4)) for which R(s) , 0 for

all wavenumbers; this can be identified by taking the small Péclet number limit of equation (4.36). How-

ever, there is always a range of wave-directions for which all wavenumbers are unstable (u [ [0, p/4) and

u [ (3p/4, p]). Therefore, translational diffusion does not significantly dampen high wavenumber

instability (in contrast with the suggestion of Saintillan & Shelley [32]). As Péclet number is increased

(diffusion decreased) the range of stable wave-directions and corresponding wavenumbers is decreased

(figure 3g– i), until the limit 1=�Pe ¼ 0, corresponding to Saintillan & Shelley [32], is found where the

perturbation is unconditionally unstable.

In figure 4, we consider the effect of translational diffusion when anisotropic effects are included. As

in figure 3, we choose f ¼ 0.2, a0 ¼ 0.8 (i.e. G ¼ 3), a1 ¼ 2 1 and vary �Pe ¼ 10�2, 10�1, 1, 10, 102, but now

determine the values of A1 and A2 in equation (4.33) from equations (4.34)–(4.35), (A 1)–(A 4). We ident-

ify qualitatively similar results when anisotropic effects are included (figure 4) as when they are

neglected (figure 3). However, anisotropic effects increase the corresponding value of R(s) and therefore

instabilities will grow more quickly (or decay more slowly). This is most evident for angles close to 0 and

p; see, for example, the contour values in (g– i), and the difference in maximum value (a–d ). The bound-

ary between stability and instability remains unchanged.

In figure 5, we identify the importance of the volume fraction f when diffusion is negligible

(1=�Pe ¼ 0), a0 ¼ 0.8, a1 ¼ 2 1 and anisotropic effects are included. The growth curves are shown for

f ¼ 0, 0.1, 0.2. We observe in figure 5a–c that there is always a positive growth rate; therefore, aligned

suspensions are always unstable to concentration and orientation perturbations. This agrees with

the results presented by Saintillan & Shelley [11,32] which correspond to f ¼ 0 (the dashed line in

figure 5). However, our model predicts that the perturbations will grow more quickly as the volume frac-

tion of particles is increased. Therefore, the inclusion of the extra stress sP has the greatest effect on

instabilities with wave-direction similar to the fibre alignment, and little to no effect on instabilities

with wave-direction perpendicular to the fibre direction (figure 5d– f ). This trend is observed across all

wavenumbers. For the parameter range considered, anisotropic effects more pronounced than shape

effects (figure 6).
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4.4. Stability of an isotropic suspension
We now examine the stability of a suspension of randomly orientated particles by perturbing a uniform

steady state, where the background fluid is stationary:

u(x, t) ¼ 1u(1)(x, t)þO(12),

N(x, p̂, t) ¼ 1

4p
[1þ 1N(1)(x, p̂, t)]þO(12)

and p(x, t) ¼ p0 þ 1p(1)(x, t)þO(12):

9>>>>=
>>>>;

ð4:37Þ

The following quantities may then be found:

hp̂i(0) ¼ 0, hp̂p̂i(0) ¼ I

3
, e(1) :

ð
S

p̂p̂p̂p̂ dp̂ ¼ 2

15
e(1), ð4:38Þ
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where e(1) ¼ (rrrrrxu(1) þ rrrrrxu(1)T)/2 is the rate-of-strain tensor at order 1, k . l(0) is defined according to (2.2)

taking the leading-order components of c and N, and we have used that the integrals are isotropic [24,44].

Note that the ‘average’ direction a is not defined for a uniformly oriented suspension.

Using relations (4.38), the Fokker–Planck equation (4.4) may be simplified to

@N(1)

@t
¼ �p̂ � rrrrrxN(1) þ f

�Pe
r2

xN(1) þ 5a0p̂p̂ : e(1)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
(�)

: ð4:39Þ

We note the final term (� ) differs from Saintillan & Shelley [32], due to an error made when calculating dii

(appendix B).

Using equation (4.38) and the constitutive equation for stress (4.11), the governing equation for the

flow velocity (4.10) becomes

rrrrrx � u(1) ¼ 0 ð4:40Þ
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and

� ~mr2
xu(1) þrrrrrxp(1) ¼ rrrrrx �

a1

4p

ð
S

p̂p̂� I

3

� �
N(1) dp̂

� �
, ð4:41Þ

where ~m ¼ 1þ 4f(2a2=15þ 2a3=3þ a4). We note that equation (4.41) is identical to that presented by

Saintillan & Shelley [11,32] by setting f ¼ 0.

A dispersion relation for the growth parameter s may be derived by following a similar method to

Saintillan & Shelley [32]. We summarize the steps here. We look for plane-wave perturbations of the form

N(1) ¼ ~N(k, p̂) eik�xþst, ð4:42Þ
u(1) ¼ ~u(k) eik�xþst ð4:43Þ

and p(1) ¼ ~p(k) eik�xþst, ð4:44Þ

where k is the wavevector and s is the growth rate. The rate of strain tensor e(1) ¼ ~e(k) eik�xþst and active

swimming stress s(1)
S ¼ ~sS(k) eik�xþst may then be expressed such that

~e ¼ i

2
(~ukþ k~u) ð4:45Þ

and

~sS ¼
a1

4p

ð
S

p̂p̂� I

3

� �
~N dp̂: ð4:46Þ

Substituting (4.42) and (4.43) into (4.41), dotting with I � k̂k̂, where k̂ ¼ k=k for k ¼ jkj, we find

~u ¼ i

k~m
(I � k̂k̂) � ~sS � k̂, ð4:47Þ

since ~u must be perpendicular to k̂.
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Substituting equations (4.46) and (4.45) into equation (4.44), using the fact that k̂ is a unit vector and

finally substituting the ansatzes into equation (4.39) yield the eigenvalue relation

F[ ~N] ¼ �5a0a1

4p~m

ð
S

(k̂ � p̂0)2(I � k̂k̂) � p̂0p̂0 � F[ ~N]

sþ ik � p̂0 þ fk2=�Pe
dp̂0, ð4:48Þ

where the operator F is defined as

F[ ~N] ¼ (I � k̂k̂) �
ð

S
p̂0(p̂0 � k̂) ~N dp̂0: ð4:49Þ

Note F[ ~N] has its p̂ dependence integrated out and therefore cancels on both sides of equation (4.47).

By noting the eigenvalue relation (4.47) is invariant under rotation we may choose k̂ ¼ ẑ without loss

of generality. After evaluating the surface integrals the dispersion relation is given as

5ia0a1

4k~m
2~l

3 � 4

3
~lþ (~l

4 � ~l
2
) log

~l� 1
~lþ 1

� �� �
¼ 1, ð4:50Þ

where ~l ¼ �i(sþ fk2=�Pe). Equation (4.49) differs from that found by Saintillan & Shelley [32] through the

additional anisotropic contribution to the viscosity ~m, and the leading numerical factor, which arises from

correction discussed in appendix B. Equation (4.49) is a dispersion relation for the growth rate s (via ~l)

and may be solved numerically using Newton’s method.

4.5. Results (nearly isotropic)
This section will examine the growth rate of instability in a nearly isotropic suspension of pushers (a1 , 0),

given by equation (4.49), as the volume fraction and shape parameter are varied.

Figure 7 shows the real and imaginary parts of the growth parameter s, as a function of wavenumber k for

selected values of the shape parameter a0 (i.e. particle aspect ratio G) and volume fraction f. The results are

qualitatively similar to those of Saintillan & Shelley [32] in the limit f! 0; however they do not agree quan-

titatively due to the numerical prefactor correction in equation (4.49). We observe for small wavenumbers
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Figure 7. Linear stability analysis of a nearly isotropic suspension, for variations in volume fraction (f ) and shape parameter (a0),
when mechanically anisotropic effects are included but translational diffusivity is neglected. Note that in the limit f! 0, this does
not agree quantitatively with Saintillan & Shelley [32] due to the numerical prefactor correction in equation (4.49). The real (a – c)
and imaginary (d – f ) parts of the dispersion relation for changing volume fraction f ¼ 0, 0.05, 0.1, where the arrow shows the
direction of increase, for fixed shape parameters (a,d ) a0 ¼ 0.75 (equivalent to G ¼ 2.646), (b,e) a0 ¼ 0.85 (G ¼ 3.512), (c,f )
a0 ¼ 0.95 (G ¼ 6.245).
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the growth rate is real and positive; therefore, small wavenumber disturbances will grow exponentially

in suspensions of pushers. For higher wavenumbers, the two branches of the growth parameter become a

complex conjugate pair with R(s) . 0, implying that any disturbances will grow and also oscillate.

For more elongated particles (i.e. increases in the shape parameter a0), the real part of the growth rate is

higher (figure 7a–c); this is equivalent behaviour to that seen in figure 6 for the nearly aligned suspension.

As the volume fraction is increased the growth rate decreases for corresponding wavenumbers, but

will oscillate more as the imaginary part of s increases. We observe that the plot of the dispersion relation

takes the same form, becoming dampened as f increases. This means a smaller range of wavenumbers

will become unstable for each particle size.
5. Conclusion
In this paper, we have linked models of active suspensions of elongated motile particles to the transver-

sely isotropic fluid proposed by Ericksen [23], using a Fokker–Planck equation for the particle

distribution function and the stress tensor of Pedley & Kessler [8], which includes the influence of

non-spherical particles on the bulk stress. Under the assumption that the suspension is of spatially uni-

form volume fraction and has perfect but perhaps spatially varying alignment, Ericksen’s four viscosity-

like parameters may be determined in terms of fundamental physical quantities. These quantities include

the active stresslet, particle aspect ratio, particle volume, mean number density of the particles and sol-

vent viscosity. This linkage yields a physical basis for inferring these crucial mechanical parameters used

in models such as [5,24,25]. The shear-independent term parametrized by m1 is found to model active

behaviour. The transversely isotropic fluid of Ericksen may therefore be used to model actively motile

‘fibres’ by a simple modification to the fibre evolution equation. Linking these two frameworks provides

a basis to extend Ericksen’s model to include effects such as dispersion about the preferred direction.

Our modification to Ericksen’s model can be considered as the simplest describing an orientated

active suspension and including transversely isotropic effects; more refined approaches take into account

fibre-dispersion formulated via the Q-tensor which is defined as the nematic moment kpp 2 I/3l [45,46].
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It will be of interest to see to what extent the ‘active Ericksen fluid’, which can be viewed as a simpler

representation of an active nematic liquid crystal [28], is able to provide insight into real systems.

Motivated by this linkage between transversely isotropic fluids and active suspension modelling, we

examined the linear stability of the active suspension in two special cases, the first when the particles are

uniformly distributed and perfectly aligned, and the second when the particles are uniformly randomly

orientated (an isotropic suspension), both with no imposed background flow. We found the results of

Saintillan & Shelley [11,32] are the zero-volume-fraction limit of the model, up to a numerical factor.

To investigate the linear stability of an aligned suspension, we found a base state in which the distri-

bution is similar to that of a transversely isotropic fluid, except with non-constant distribution of

particles. We then assumed the perturbation to the base state was of the form of a plane wave, and

noted that the first-order velocity was only non-zero when the wavevector lay in the (ẑ, a0)-plane.

Here ẑ is the direction of the base state alignment while a0 is the alignment of the first-order perturbation.

We hence found the dispersion relation, and identified the range of wavevectors which are unstable for

suspensions of pusher particles. If translational diffusion is neglected, the growth rate increases with

wavenumber, as predicted by Saintillan & Shelley [11,32]. Even in the presence of translational diffusion,

some wave-directions remain unstable for all wavenumbers, i.e. diffusion selects a bounded range of

unstable wavenumbers. Anisotropic effects do not change the unstable wavevectors; however they do

increase the growth rate of perturbations. In future, it may be of interest to explore the effect of anisotropy

in the translational diffusion tensor, which may be important for aligned suspensions.

Considering an initially randomly oriented (isotropic) suspension at rest, the base state corresponds to a

constant particle distribution function and zero fluid velocity, giving isotropic integrals for the first, second

and fourth moments of the distribution function, which may be evaluated analytically. By following a similar

method to Saintillan & Shelley [11,32], we found a dispersion relation for the growth rate. For a suspension of

pushers, low wavenumber perturbations (k [ [0, 0.15]) grow exponentially with no oscillations, while

medium wavenumber (k [ [0.15, 0.6]) perturbations oscillate and grow more slowly. Once the wavenumber

is large enough perturbations are dampened. The inclusion of the extra stress due to interactions between

elongated particles and the surrounding fluid simply decreases the growth rate for corresponding wavenum-

bers as the volume fraction of particles is increased. This leads to a smaller range of wavenumbers when

the perturbation is unstable when compared with results for an isotropic stress tensor.

Active suspensions and transversely isotropic fluids are both biologically relevant and physically fas-

cinating states of matter. Linking these two fields of research enables knowledge transfer, enabling

extension of the transversely isotropic model and identifying important components of the active suspen-

sion model. Transversely isotropic effects were found to produce some changes to linear stability analysis

of nearly aligned and isotropic active suspensions in the absence of background flow. We argue that these

aspects should be included in future modelling studies.
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Appendix A. Viscosity parameters for a dilute suspension
For a dilute suspension, the parameters m, a2 and a3 may be approximated from Jeffery [35] (via

[8,36,39–41])

m ¼ 1þ 2f

I1
, ðA 1Þ

a2 ¼
1

I1
1þ L1

L2
� 2

I1

I2

� �
ðA 2Þ
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and a3 ¼
1

I1

I1

I2
� 1

� �
: ðA 3Þ

The quantities I1, I2, L1 and L2 are ellipsoidal integrals, given in terms of the aspect ratio G:

I1 ¼
G 2(2G 2 � 5þ 3g)

2(G 2 � 1)2
, ðA 4Þ

I2 ¼
(G 2 þ 1)(G 2 þ 2� 3G 2g)

(G 2 � 1)2
, ðA 5Þ

L1 ¼
G 2[2G 2 þ 1� g(4G 2 � 1)]

4(G 2 � 1)2
, ðA 6Þ

L2 ¼ I1 � 2L1 ðA 7Þ

and g ¼ cosh�1 G

G(G 2 � 1)1=2
: ðA 8Þ
Appendix B. Derivation of the first-order Fokker – Planck equation
Equation (4.4) may be simplified by noting the rate-of-strain and vorticity tensors are zero at leading

order and the fluid is incompressible,

@N(1)

@t
¼ �rrrrrx � (p̂N(1))þ f

�Pe
rrrrr2

xN(1) �rrrrrp � [(I � p̂p̂) � (a0e(1) þv(1)) � p̂]: ðB 1Þ

The final term of equation (B 1) may be simplified further. To see this we use index notation

rrrrrp � [(I � p̂p̂) � (a0e(1) þv(1)) � p̂] ¼ @

@ p̂i
[(dij � p̂ip̂j)(a0e(1)

jk þ v
(1)
jk )pk]

¼ �(a0e(1)
ik þ v

(1)
ik )

@p̂k

@p̂i
þ a0e(1)

jk
@

@p̂i
(p̂ip̂jp̂k)þ @

@pi
(p̂i[p̂jp̂kv

(1)
jk ]): ðB 2Þ

The first term in equation (B 2) is zero via the incompressibility condition (4.10) and since the vorticity

tensor is traceless, i.e.

(a0e(1)
ik þ v

(1)
ik )

@p̂k

@p̂i
¼ (a0e(1)

ik þ v
(1)
ik )dki

¼ a0e(1)
ii þ v

(1)
ii

¼ a0
@u(1)

i

@xi
þ 1

2

@u(1)
i

@xi
� @u

(1)
i

@xi

 !

¼ 0: ðB 3Þ

The final term is also zero. To see this we write the vorticity tensor in terms of velocity gradients

and simplify:

2p̂jp̂kv jk ¼
@u(1)

j

@xk
p̂jp̂k �

@u(1)
k

@xj
p̂jp̂k

¼
@u(1)

j

@xk
p̂jp̂k �

@u(1)
j

@xk
p̂kp̂j

¼ 0: ðB 4Þ
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Therefore, equation (B 2) is given by

rrrrrp � [(I � p̂p̂) � (a0e(1) þv(1)) � p̂]

¼ a0e(1)
jk
@

@p̂i
(p̂ip̂jp̂k)

¼ a0e(1)
jk [p̂ip̂jdki þ p̂ip̂kd ji þ p̂jp̂kdii]

¼ a0e(1)
jk [p̂jp̂k þ p̂jp̂k þ 3p̂jp̂k]

¼ 5a0e(1) : p̂p̂: ðB 5Þ

Substituting equation (B 5) into equation (B 2) gives the first-order Fokker–Planck equation

@N(1)

@t
¼ �p̂ � rrrrrxN(1) þ f

�Pe
r2

xN(1) þ 5a0p̂p̂ : e(1)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
(�)

: ðB 6Þ

We note the final term (� ) differs from Saintillan & Shelley [32], since dii ¼ 3 when summed over

all indices.
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References

1. Marrington R, Dafforn TR, Halsall DJ, MacDonald

JI, Hicks M, Rodger A. 2005 Validation of new
microvolume Couette flow linear dichroism cells.
Analyst 130, 1608 – 1616. (doi:10.1039/
b506149k)

2. Dafforn TR, Rajendra J, Halsall DJ, Serpell LC,
Rodger A. 2004 Protein fiber linear dichroism for
structure determination and kinetics in a low-
volume, low-wavelength Couette flow cell.
Biophys. J. 86, 404 – 410. (doi:10.1016/S0006-
3495(04)74116-8)
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