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Abstract 

 

Introduction: Inflammation is associated with the accumulation of lactate at sites of tumour growth 

and inflammation. Lactate initiates tissue responses contributing to disease. We discuss the 

potential of targeting lactate transporters in the treatment of cancer and inflammatory conditions. 

Areas covered: Lactate is the product of glycolysis, which is considered to be a waste metabolite and 

a fuel for oxidative cells. It is also an active signalling molecule with immunomodulatory and 

angiogenic properties. They are the consequence of lactate binding to membrane receptor(s) or 

being transported through specific carrier-mediated transporters across the cellular membrane. 

Carriers are distinct in proton-linked monocarboxylate transporters (MCTs) and Na+-coupled 

electrogenic transporters (SMTCs), expressed by several tissues including immune system, 

endothelium and epithelium. Several tumours and inflammatory sites (i.e., arthritic synovium, 

atherosclerotic plaque) show accumulation of lactate and altered expression of its transporters, thus 

suggesting a role of this metabolite in cancer and inflammatory disorders. We review the most 

recent evidence on lactate biology, focusing on transporter expression and function in health and 

disease. 

Expert opinion: Lactate-initiated signalling is gaining attention for its implications in cancer and 

inflammation. This review deals with the therapeutic potential of targeting lactate transporters and 

drugs that are already in clinical use for cancer and discusses the opportunity to develop new 

therapeutics for inflammatory disease based on recent findings. 
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Article Highlights:  

1. Lactate is a main carbon source for biosynthetic pathways 

2. Lactate is an immunomodulatory metabolite 

3. Lactate transporters are expressed at different levels in immune, endothelial, epithelial and 

cancer cells 

4. Expression of lactate transporters is up-regulated in some cancers and inflammatory 

disorders 

5. Targeting lactate transporters is a therapeutic avenue that may lead to reduced 

inflammation and promote anti-cancer immunotherapy 
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1. Introduction - Lactate biology 

Lactate is produced from pyruvate by the enzyme lactate dehydrogenase (LDH) in an NADH-

dependent reaction. Its production occurs mainly in the cytoplasm under hypoxic conditions 

(fermentation) or even in the presence of normal oxygen concentration as a consequence of high 

glycolytic activity, such as in proliferating cells (we refer to this phenomenon as aerobic glycolysis, or 

Warburg effect, from the name of the scientist who first described it in cancer cells (1)). The 

production of lactate is important to replenish the pool of NAD+ necessary to maintain the flux of 

glycolysis. Lactate can be oxidised back to pyruvate and fed in to the TCA cycle or used as a fuel 

source for gluconeogenesis in the liver (2). 

Lactate is present in solution in two distinct forms: as acid (i.e. lactic acid) at low pH, or as an ion salt 

(i.e. sodium lactate) at higher pH, with a dissociation constant (pKa) of 3.86. Lactate transfer across 

the plasma membrane happens through specific solute carrier transporters that we describe in more 

details in a separate section of this review. The physiological concentration of lactate, in blood and 

healthy tissues, is about 1.5-3mM (3), but in pathological conditions, such as atherosclerosis, 

rheumatoid arthritis and cancer, can peak at 10-30mM (4-6). 

For many years lactate has been regarded merely as a waste product. Nowadays, emerging evidence 

has rehabilitated it to a major carbon source fuelling metabolic pathways as well as a proper 

signalling molecule able to orchestrate a variety of biological processes. 
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Many recent findings come from the field of cancer biology, because of the observation that in the 

cancer microenvironment lactate concentration can rise up to 20-30 mM (4, 5). Lactate is able to 

promote migration and growth of cancer cells (7, 8) and, in some cancerous cells, is also utilized as a 

substrate for the synthesis of lipids (9). 

In a paper published in Cell in 2017, Faubert et al. investigated the fate of lactate in human lung 

cancer. Using intra-operative infusions of 13C-labeled nutrients, they were able to analyse the 

pattern of enrichment of labelled metabolites directly within the tumour (in this case lung tumours). 

The infusion of [U-13C] glucose showed a different pattern of enrichment in the cancer tissue as 

compared to the benign lung, with an excess of labelled lactate (rather than other upstream 

glycolytic metabolites) within the tumour. Interestingly, the infusion of 13C-lactate caused not only 

the accumulation of labelled lactate itself in the tumour, but also of labelled pyruvate, alanine and 

TCA cycle intermediates, showing that lactate was actively being used to supply the TCA cycle. The 

authors confirmed these findings in xenograft mouse models, but we believe the most important 

conclusion of the research was that comparing the contributions of lactate and glucose to the TCA 

cycle in the grafted tumours, the former turned out to make a much larger contribution than the 

latter. This effect was more dramatic when tumours were grown orthotopically in the lung rather 

than subcutaneously, suggesting a specific contribution of the tissue of residence of the tumour. 

Importantly, MCT1-deficient tumours showed a lower labelling of lactate-derived metabolites, 

underlining the importance of this lactate transporter (10). 

Later in 2017, Hui et al. published another important piece of research in Nature demonstrating the 

role of lactate in fuelling the TCA cycle, both in normal and cancerous tissues. Analysis of the flux of 

circulating metabolites in mice showed that lactate is a major source of carbon for the TCA cycle; the 

infusion of 13C-lactate, in fed and fasted mice, showed extensive labelling of TCA cycle metabolites 

in all tissues, and in lung and pancreatic tumours the contribution of circulating lactate to the activity 

of TCA cycle was greater than that of glucose. These findings demonstrate that lactate is a substrate 
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of the TCA cycle both in normal and cancerous tissues, as well as that glycolysis and TCA cycle are 

uncoupled at the level of lactate, thus allowing the independent regulation of the two processes 

which also happen in a tissue-specific manner (11). 

The effects of lactate are not only due to its ability to feed metabolic pathways, but also to its ability 

to trigger a signalling pathway via its receptor Gpr81. This is a surface lactate receptor involved in 

the regulation of lipolysis (12) but also in cancer cell survival (13). Feng et al., recently showed that 

lactate, through Gpr81, is able to regulate the expression of PD-L1 in human lung cancer cells. PD-L1 

is the ligand of PD1, a receptor expressed on the membrane of activated T cells, responsible for 

reduced proliferation and effector function of T cells, and a major target for cancer immunotherapy 

(14). The authors show that lactate upregulates the expression of PD-L1 at a transcriptional level, in 

a Gpr81-dependent manner, and this upregulation leads to suppression of the effector function of T 

cells in co-culture experiments. Overall, the data point to a role for lactate in the tumour escape 

from immune-surveillance (15). 

The ability of lactate to interfere with the response of the immune system against tumours was 

previously reported by the Kreutz’ group. In 2007 they showed how tumour derived-lactic acid 

inhibits the proliferation and cytokine production of cytotoxic CD8+ T cells, while also dampening 

their cytolytic activity (16). The same group later showed that lactic acid also inhibits the production 

of TNF by human monocytes and decreases their glycolytic activity (17). More recently they 

published in Cell Metabolism a comprehensive analysis of the effects of lactic acid on immune 

surveillance against cancer (18). The authors generated melanoma cell lines with reduced expression 

of Ldha and observed a reduced rate of tumour growth as compared to controls. Upon analysis of 

the immune infiltrate, they found Ldha-low tumours bearing more immune cells, particularly CD8+ T 

cells producing IFNγ and granzyme B. This increase in the activity of CD8+ T cells was due to reduced 

production of lactic acid. Indeed the authors showed that lactic acid impairs both function and 

survival of T and NK cells. They went on to address a mechanism behind this phenotype. The lactic 
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acid produced by the tumour was taken up by T cells, causing a decrease in their intracellular pH that 

led to a drop in ATP production. This caused an impairment of the T cell functions, as a consequence 

of reduced NFAT activity, which is involved in the transcriptional control of IFNγ (18).  

Along similar lines, the work published by Colegio et al. in 2014 showed that the lactic acid produced 

by tumours (lung carcinoma and melanoma) is able to induce the expression of Vegf and Arg1 in 

tumour-associated macrophages (TAMs), in a HIF1α-dependent manner. Moreover, lactic acid was 

also able to polarize TAMs toward a M2-like phenotype, thus enabling the establishment of a 

permissive microenvironment for tumour growth (5). 

In the context of the tumour microenvironment, lactate plays a role not just in the crosstalk between 

cancer and immune cells, but also between cancer cells on one side and endothelium and stromal 

fibroblasts on the other side. Vegran and co-workers demonstrated that in the tumour 

microenvironment the lactate produced in large part by the cancer cells is taken up by endothelial 

cells (EC) leading to NFkB activation and consequent production of IL8, which in turn drives EC 

migration and neo-angiogenesis supporting tumour growth (19). Similarly and in agreement with (5), 

Sonveaux et al. showed that lactate is also able to activate HIF1 in EC, increasing the production of 

pro-angiogenic factors (bFGF and VEGFR2), thus overall stimulating angiogenesis; the inhibition of 

MCT1 is sufficient to abrogate the pro-angiogenic effect of lactate (20). Lactate is also important in 

the interplay between cancer and stromal cells. Fiaschi et al. have identified a lactate shuttle 

between human prostate cancer cells and cancer associated fibroblasts (CAF): the physical 

interaction between cancer cells and fibroblasts leads to the differentiation of the latter to CAF; 

these cells show high glycolytic activity with generation of lactate, elevated expression of MCT4 and 

stabilisation of HIF1. The lactate produced and released by CAF is then taken up by cancer cells 

through the transporter MCT1 and it is metabolised in the mitochondria, sustaining cancer growth. 

The disruption of this shuttle via pharmacological inhibition or genetic silencing of MCT1 inhibits 

cancer proliferation both in vitro and in vivo (21). 
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Diverse subsets of T cells show different metabolic requirement, with cytotoxic and effector T cells 

relying more on glycolysis for proliferation and cytokines production (22, 23) and, conversely, 

regulatory T cells (Tregs) being more dependent on oxidative phosphorylation (OXPHOS) (24, 25). 

Recently, Angelin et al. demonstrated that Foxp3 is able to reprogram the metabolism of Tregs, 

allowing them to cope better in low-glucose, high-lactate microenvironments. They found that the 

transcription factor Foxp3 promotes the increase of the oxygen consumption rate in inducible Tregs 

(iTregs) and also the production of reactive oxygen species (ROS); moreover Foxp3 is able to 

suppress the activity of Myc by binding to its promoter and reducing the expression of Myc-

dependent transcripts, most of which are involved in the regulation of glycolysis. Foxp3 was also 

found to be able to regulate the direction of the LDH reaction in favour of the oxidation of L-lactate 

to pyruvate, leading to decreased production of lactate by Tregs (as compared to conventional T 

cells). Tregs can sustain exposure to lactate with better efficiency than effector and cytotoxic T cells, 

which are instead impaired by it: effector cells require NAD+ replenishment to sustain the flux of 

glycolysis, but the excess of utilization of lactate by LDH depletes the available pool of NAD+, leading 

to a decreased glycolytic flux; Tregs instead possess higher levels of NAD+ and due to their intrinsic 

metabolism are less affected by reduced glycolysis. The authors discuss that this adaptation could be 

detrimental in the tumour microenvironment, where the high concentration of lactate may inhibit 

anti-tumour immunity without affecting the regulatory component, which can further dampen the 

immune response against the tumour (26). 

Recent evidence shows that lactate plays a crucial role also in the orchestration of the immune 

response in inflammatory conditions. In 2016, Peng et al. formally demonstrated that LDHA activity 

is necessary in CD4+ T cells to sustain aerobic glycolysis and express interferon-γ (IFN-γ), thus 

allowing a proper differentiation to the T helper 1 (Th1) subset. The authors found that genetic 

deletion of LDHA in CD4+ T cells reduced significantly glucose consumption, promoting a shift 

towards an oxidative metabolism, and, more importantly, led to a reduction of IFN-γ expression. The 

reduction of INF-γ transcripts (along with many others), was due to an overall decrease of histone 
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acetylation. Histone acetylation requires acetyl-coenzyme A (acetyl-CoA), but in the absence of 

LDHA, the consequent increased flux of the TCA cycle does not allow the export of acetyl-CoA from 

the mitochondria to the cytosol, reducing the pool of acetyl groups. These data demonstrate that 

LDHA regulates INF-γ production in Th1 cells through a fine-tuned epigenetic mechanism of histone 

acetylation coupled with the cellular metabolism (27). 

Lactate is also involved in the production of IL17 and differentiation to the Th17 subset. In 2011, 

Yabu et al. showed how lactic acid enhances the production of IL23/IL17 by CD4+ T cells, acting as a 

pro-inflammatory signal (28). More recently, Haas et al. showed that sodium lactate is able to 

modulate T cell effector function by promoting the up-regulation of IL17 expression. They also 

showed that lactate affects the migratory capabilities of CD4+ T cells, thus causing their retention in 

the site of inflammation. These findings have an important impact on the understanding of the role 

of lactate in the inflammatory site, such as the inflamed synovium in rheumatoid arthritis, where 

lactate may act as an inflammatory signal leading to entrapment of CD4+ T cells and stimulation of 

IL17, thus perpetrating the inflammatory process. Interestingly, all these effects are mediated via a 

specific sodium lactate transporter, SLC5A12, which is expressed on the membrane of CD4+ T cells 

(6). 

Overall lactate may induce an immune suppressive response in cancer yet act as an inflammatory 

signal in inflammatory conditions. The different response may be due to the context-dependent 

availability of nutrients and competition for them by the cellular constituents of the 

microenvironment (further discussed in Expert Opinion Section).  

Lactate is also important in the physiology of the brain, through the astrocyte-neuron lactate shuttle 

(ANLS). This lactate exchange was first described in 1994 and highlights the existence of lactate-

producing cells (astrocytes) and lactate-consuming cells (neurons): in this model, the 

neurotransmitter glutamate released in the synapse triggers glucose uptake and therefore lactate 

production by astrocytes; lactate is then utilised by neurons as a source of energy (29). For a more 
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detailed description of the role of lactate in the brain, both as a metabolite and a signalling 

molecule, we point the reader to a recent review (30). 

Taken together, it is clear that lactate is not just an end-product of metabolism, but rather a source 

of carbons and, more importantly, a signal that affects the behaviour and the differentiation of many 

different cell types, especially at the interface between cancer and immune cells and in 

inflammatory diseases. In the following sections of this review we focus on the role of the different 

lactate transporters for their biological roles and as putative therapeutic targets. 

 

2. Lactate transporters 

2.1 Monocarboxylate transporters (MCTs) 

Monocarboxylate transporters (MCTs) include 14 transmembrane proteins encoded by the 

SLC16A gene family. According to the Milton Saier classification (http://www.tcdb.org), MCTs belong 

to the monocarboxylate porter (MCP) family, which in turn is part of the facilitator superfamily 

(MFS). MCTs have been identified in all eukaryotic organisms and can transport a wide variety of 

substrates (31) (Table 1).  

MCT1-4 are proton-linked transporters responsible for transport across the plasma membrane of 

several monocarboxylate metabolites, such as pyruvate, L-lactate and ketone bodies (acetoacetate 

and D-β-hydroxybutyrate) together with a proton (32, 33). Other identified MCTs are MCT8 which 

shows high affinity for the thyroid hormones T3 and T4, and MCT10/TAT1, a transporter of aromatic 

amino acids (33, 34). MCT6 has been reported to facilitate the proton-linked transport of 

bumetanide (35). MCT7 has been implicated in the export of ketone bodies by hepatocytes (36).  

MCT9 has been identified as a sodium- and pH-independent carnitine efflux transporter upon 

expression in Xenopus oocytes injected with [3H]-carnitine (37). The substrates and functions of the 

other MCT family members are yet not known. 
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MCTs are expressed in a wide range of tissues (such as brain, skeletal muscle, heart, bowel and liver) 

and display many physiological functions. In particular they play a pivotal role in the control of the 

central metabolism of glucose, gluconeogenesis, and activation of T-lymphocytes, spermatogenesis, 

pancreatic β cell activity, thyroid hormone metabolism and drug transport (31). 

Among other functions, MCTs are important regulators of intracellular lactate and pH. Indeed, highly 

glycolytic cells, such as inflammatory and tumour cells, utilize MCT transporters to export lactate. 

Lactate is one of the main substrates of MCT1–4. This metabolite is generated from pyruvate 

(produced from glycolysis and glutaminolysis) during lactic fermentation. In most normal tissues 

where lactate is produced, MCT1 (SLC16A1) is responsible for its export across the plasma 

membrane in to the extracellular space (33, 38).  

Lactate can be taken up from the extracellular space and used as a substrate to fuel metabolic 

pathways such as lipogenesis, gluconeogenesis, TCA cycle and oxidative phosphorylation (OXPHOS) 

(28, 10). Cells that utilize lactate may express different MCTs depending on tissues and species (33, 

39-42). 

In many cancer cells with an oxidative metabolic fingerprint, MCT1 is the most expressed MCT 

isoform (40, 43). However, in glycolytic cancer cells and other specific tissues such as white muscle 

fibres and astrocytes, MCT4 is expressed at higher level than MCT1 and mediates lactate export (40, 

43, 45). Accordingly, there is increasing evidence in support of the shuttling of this metabolite 

between cells with different metabolic behaviours within the same tissue. Such phenomenon has 

been described in the skeletal muscle where glycolytic/white fibres export lactate through MCT4 and 

oxidative/red fibres import lactate through MCT1 to fuel the TCA cycle (46). A similar mechanism has 

been proposed to account for a metabolic symbiosis between glycolytic/hypoxic cancer cells and 

oxidative/oxygenated cancer cells in tumours (40). Notoriously in the brain, glycolytic 
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oligodendrocytes and astrocytes export lactate through MCT1 and MCT4 to fuel oxidative neurons 

expressing MCT2 (47-50).  

 

2.2 Sodium-coupled transporter (SMCTs) 

In contrast to MCTs, which function as H+-coupled electroneutral transporters, SMCTs 

function as Na+-coupled electrogenic transporter. The transport process is electrogenic as more 

than 1 Na+ is transported per transport cycle with a Na+/monocarboxylate substrate ratio of ≥2. Two 

members of the sodium-coupled monocarboxylate transporter family (SMCT) have been identified 

so far, the high-affinity transporter SMCT1 (SLC5A8) and the low-affinity SMCT2 (SLC5A12) (51, 3). 

The SMCT1/SLC5A8 gene was originally identified from a library of kidney cDNA as a close structural 

relative of the human Na/I symporter (SLC5A5) (51). Other than in the kidney, SLC5A8 has been 

subsequently detected in intestine, salivary gland, thyroid gland, brain, and retina (52). Substrates of 

SLC5A8 are similar to those of MCTs (53, 54). SLC5A8 mediates the transport of monocarboxylic 

acids such as lactate, pyruvate, propionate, butyrate, nicotinate, and short-chain fatty acids (Table 

2). 

The affinity of the transporter for these monocarboxylates is quite high, with a Michaelis constant in 

the range of 200–400 μM.  

Less is known about SMCT2/SLC5A12. mRNA expression of SLC5A12 was detected in kidney, small 

intestine, and skeletal muscle and to a lesser level in brain and retina. Functional characterization of 

SLC5A12 suggested a substrate specificity similar to that of SLC5A8. However, the affinities of 

SLC5A12 for monocarboxylate substrates are approximately 35- to 80-fold lower than those of 

SLC5A8 (3). 

In the kidney, SLC5A8 is expressed in the apical membrane of tubular epithelial cells in the S2-S3 

proximal tubule segments. Here SLC5A8 is involved in renal reabsorption of lactate and pyruvate in a 
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sodium-dependent transport (55-58). Indeed, SLC5A8-deficient or knockout mice exhibit increased 

urinary excretion of lactate (59). Renal SLC5A12 is localized at the brush border with higher 

expression in the initial part of the proximal tubules and gradually decreasing toward the S3 

segment. Thus, the proximal convoluted tubules provide low and high affinity transporters in the 

upper and lower proximal tubules, respectively. 

In the brain, SLC5A8 exhibits a neuron-specific distribution and may mediate cellular uptake of 

lactate and ketone bodies, the primary energy substrates of neurons (60), while SLC5A12 is 

specifically expressed by astrocytes. Besides its physiological functions, several reports suggested a 

tumour suppressing role for SLC5A8. High frequency of aberrant methylation or down-regulation of 

the SLC5A8 gene has been observed in human colon cancer, papillary thyroid carcinomas, pancreatic 

cancer, prostate tumour, acute myeloid leukemia, and glioma formation (52, 61, 62).  Interestingly, 

Li et al. found that the exogenous SLC5A8 was able to suppress the proliferation of colon cells 

carrying the defective allele, thus suggesting that SLC5A8 inactivation confers a selective advantage 

to neoplastic colon epithelial cells (62). The mechanisms of this effect remain to be explored. 

In the bowel, SLC5A8 is expressed differentially in the lumen-facing apical membrane of colonic and 

intestinal epithelial cells, while SLC5A12 is expressed primarily in the small intestinal tract (63, 53).  

Recently these transporters have been also linked with the function of immune cells. Interestingly, 

SLC5A12 has been identified to be expressed by human and murine lymphocytes. In particular it was 

found that SLC5A12 is selectively expressed on the surface of CD4+ but not of CD8+ T cells (6, 64, 65). 

Whether immune cells express SLC5A8 is yet not known.  

3. MCTs in cancer and immunity  

MCTs, especially MCT1 and MCT4, are widely expressed in a variety of immune and cancer 

cells. In the tumour microenvironment, cancer cells produce high amount of lactate, which is 

extruded in the intercellular space via MCT4. Released lactate is then taken up by macrophages via 
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MCT1, promoting their polarization toward a TAM phenotype via the induction of HIF1� and 

arginase 2. These effects induce neo-angiogenesis, via vascular endothelial growth factor (VEGF) 

production, and ultimately promote tumour growth (5).  

MCT1 expression has been reported in a variety of human malignancies including head and neck, 

lung, stomach, colon, prostate and cervix, as well as gliomas (40, 66-68). MCT1 has also been 

proposed to be the most important isoform responsible for lactate transport across the plasma 

membrane in breast and bladder cancer, non-small cell lung carcinomas (NSCLC) and ovarian 

carcinomas (69,70).  

MCT4 is also widely distributed in different cancer types. Its expression has indeed been reported in 

breast, colon, bladder, and prostate cancers, as well as in cancers of the gynecologic tract and 

gliomas (66-69).  

Recently, Pertega-Gomes and Baltazar (71) reported a correlation between the expression of MCT1, 

MCT2 and MCT4 and the different stages of prostate cancer progression. MCT1 and MCT2 play a role 

in tumour maintenance, whereas MCT4 increases tumour aggressiveness. MCT2 was also proposed 

as a biomarker for prostate cancer (71). In another study focused at NSCLC, Eilertsen et al. proposed 

MCT1 as a biomarker for prognostic and survival (70). The co-expression of GLUT1 and MCT1 and of 

GLUT1 and MCT4 was found to be a negative prognostic factor associated with poor disease-specific 

survival. 

MCT2 and MCT4 show a high intracellular expression. This suggests a possible role of these 

transporters in mediating lactate and/or pyruvate transport across the membranes of intracellular 

vesicles or organelles (45, 69).  

Lactate transporters have been described in inflammatory sites such as rheumatoid arthritis (RA) 

synovium (6, 65). Here lactate is produced by highly glycolytic local cells such as fibroblast-like 

synovial cells as well as infiltrating immune cells (i.e. lymphocytes, and macrophages). 

Unlike in tumours where lactate plays a key role in promoting cancer cell migration and growth, in 

inflammatory sites lactate activates a stop migration signal leading to the local entrapment of  T cells 
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(72, 6). This phenomenon is due to the interaction of sodium lactate and lactic acid with the 

transporters SLC5A12 and SLC16A1/MCT1 which are selectively expressed on the surface of CD4+ 

and CD8+ subsets, respectively (6) (Figure 1). Sodium lactate-mediated inhibition of CD4+ T cell 

migration is regulated via lactate interference with metabolic pathways (64, 72). Sodium lactate via 

SLC5A12 prompts CD4+ T cells to start producing higher amounts of pro-inflammatory cytokines, in 

particular IL17A, while lactic acid causes impairment of CD8+ T cell-mediated killing through 

SLC16A1/MCT1 (6, 16, 73). Lactate also promotes T cell retention in the inflamed tissue and 

exacerbates the process of chronic inflammation (i.e. synovial tissue) (6) (Figure 1). 

Similar to cancer cells, highly proliferating RA synovial fibroblasts (RASFs) express high levels of 

MCT4, thus promoting synovial fluid acidification (74) (Figure 1). Silencing of MCT4 led to inhibited 

proliferation of RASFs and reduced the severity of arthritis in the mouse model of collagen-induced 

arthritis (CIA) (74). Accordingly, other authors found that MCT4 is required for macrophage 

activation upon TLR2 and TLR4 stimulation. MCT4 knockdown led to enhanced intracellular 

accumulation of lactate and decreased glycolysis in LPS-treated macrophages reducing their active 

response during inflammation (Figure 1) (75). This evidence suggests a potential role of lactate 

transporter inhibitors in the therapy of RA. 

4. MCT/SMCT Inhibitors 

Targeting lactate transporters has become a promising therapeutic avenue in oncology (76) 

and is also gaining attention in inflammatory disorders. A recent study found that blocking the 

lactate transporter MCT1 reduces the proliferation of breast cancer cells co-expressing MCT1 and 

MCT4 (77, 78) and reduces HIF-1 induced angiogenesis and tumour growth (20). 

Several MCT inhibitors have been identified, although with only relative specificity for the various 

MCT isoforms. The first inhibitors identified were phloretin, flavonoids such as quercetin, stilbene 

disulphonates (including DIDS and 4,4′-dibenzamidostilbene-2,2′-disulphonate [DBDS]), and α-cyano-

4-hydroxycinnamate (CHC) and its analogues (32). Other inhibitors with a higher affinity for MCTs, 
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have been developed more recently (79). In this regard, AZD3965 is a dual MCT1 and MCT2 inhibitor, 

currently evaluated as an anticancer agent in Phase I clinical trials for patients with prostate cancer, 

gastric cancer or diffuse large B cell lymphoma (78, 80). Draoui et al. have recently identified several 

new compounds belonging to the 7-aminocarboxycoumarine family that potently inhibit MCTs (82). 

Interestingly, 7-(N-benzyl-N-methylamino)- 2-oxo-2H-chromene-3-carboxylic acid (7ACC2) was 

further reported to be an inhibitor of lactate uptake that does not inhibit lactate export (82).  

Samuvel et al. reported that alpha-cyano-4-hydroxycinnamic acid, an inhibitor of monocarboxylate 

transporters, blocks lactate-augmented inflammatory gene expression and NFkB activity in human 

macrophages, indicating that lactate transport through monocarboxylate transporters is required for 

macrophage effector functions (83). Besides MCTs, proton-sensing GPCRs such as T cell death-

associated gene 8 (TDAG8) have been shown to be important for the modulation of T cells in an 

acidic tumour environment and during inflammation (84, 85). 

Lonidamine is an anti-spermogenic agent with anti-neoplastic activity; recently, it has been 

demonstrated that this drug inhibits lactate transport by MCT1, MCT2 and MCT4, providing an 

explanation to its anti-tumour effect (86, 87). Immunomodulatory drugs, such as thalidomide and its 

derivatives (lenalidomide and pomalidomide), have also been shown to act on the expression of 

MCT1 in myeloma cells, in vitro and in vivo: Eichner et al. demonstrated that these drugs destabilise 

the transmembrane complex CD147-MCT1, which is important in sustaining angiogenesis, 

proliferation and invasion of cancer cells, pointing out to the importance of lactate export and the 

efficacy of MCTs inhibition as an anti-cancer therapy (88). 

Much less is known about SMCT inhibitors. Blocking SLC5A12 with a commercial antibody has 

revealed a great potential in promoting T cell egress from the inflamed site in a murine model of 

zymosan-induced peritonitis. More specifically, Phloretin (MCT1 inhbitor), an anti-Slc5a12 antibody 

or an isotype control antibody were injected intra-peritoneally in mice. Anti-Slc5a12 antibody caused 
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a significant reduction of CD4+ T cells in the peritoneum in comparison to an isotype control 

antibody, while having no effect on CD8+ T cells. In contrast, phloretin promoted a significant 

decrease of CD8+ T cells in the peritoneum but did not show any effect on CD4+ T cells. This suggests 

a peculiar specificity of these lactate transporter inhibitors targeting different T cells subsets (6). 

Non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen and salicylic acid, and uricosuric 

drugs like probenecid, have also shown some inhibitor effects over MCT/SMCT substrates, such as 

hydroxybutyric acid (GHB), limiting their uptake (89, 90). 

5. Expert opinion 

For many years lactate has been considered a bystander product of glycolysis, produced 

during hypoxia or by highly proliferative cells. Only recently it has become to receive some 

consideration as a signalling metabolite. Its role in cancer biology and immunity is getting into the 

spotlight nowadays. The breakthrough that lactate plays an important role in the interplay between 

inflammation, cancer, metabolism and immunity together with the characterization of lactate 

transporters being expressed by a variety of cells (i.e. immune, stromal and cancer cells) has opened 

a new area of research and novel potential therapeutics. The emerging evidence that solid cancers 

deprive the tumour environment of glucose and enrich it with lactate which in turn depresses 

effector and cytotoxic T cell functions while promoting suppressive Treg cells, has also shed lights on 

new immunosuppressive therapy approaches, based on potentiating Treg cell activity, in conditions 

where Treg cell functionality is overthrown (i.e. autoimmunity, transplantation). On the other side, 

in cancer this can offer a new potential therapeutic approach based on targeting cancer metabolism 

that can reduce detrimental Treg cells in favour of effector T cells enhancing anti-tumour response 

(26) (Figure 1). 

Different is the context of inflammatory disorders where the competition for nutrients 

between stromal and immune cells may be more even and lead to a different response to lactate. 
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Indeed, in the presence of high concentration of lactate, such as in the rheumatoid arthritis 

synovium, T cells are unable to egress ending up "entrapped" in the inflammatory site (6, 64, 65). 

Here, T cells produce a high amount of pro-inflammatory cytokines contributing to the 

establishment of chronic inflammation. Indeed, the effect of lactate on T cells recapitulates the 

typical characteristics of inflammatory infiltrates, in particular tissue retention, local production of 

inflammatory cytokines and loss of cytolytic activity (6) (Figure 1). 

A selective lactate transporter expression by CD4+- and CD8+-activated T cells may orchestrate their 

differential distribution in the inflamed tissues as well as affect their functional and migratory 

responses depending, for example, on the nature of the inflammatory exudate (i.e., more lactic acid 

versus sodium lactate) (91-93). Thus, modulating selective T cell subsets via targeting specific lactate 

transporters may provide novel tools to reduce inflammation and help to better understand the 

pathogenesis of inflammatory disorders. 

The development of specific or pan-MCT/SMCT inhibitors capable of tissue specificity may be the 

ultimate goal to achieve targeted therapy. Little is currently known about the regulation of 

MCT/SMTCs expression and activity in different tissues and their regulation during inflammation or 

tumours. The generation of tissue/cell-specific MCT/SMTCs-deficient mice will enable exploiting 

MCT physiopathology and toxicity. MCTs/SMTCs substrate transport is another interesting area that 

should be further explored. Indeed, the discovery that MCTs can transport anticancer agents (i.e. 3-

bromopyruvate, dichloroacetate and iodoacetate) across cell membranes (45) suggests that those 

substrates can also act as anticancer compounds. This can also lead to the identification and 

validation of biomarkers capable of predicting therapeutic responses. 

Overall, we have provided a summary of the potential role of lactate that, via a distinctive signalling 

network, may promote pathogenic characteristic typical of the inflammatory or tumour “milieu”. 

Thus targeting lactate transporters may provide a promising tool to reduce inflammation and induce 

anti-cancer responses. 
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Table 1 - MCT transporters 

 

 

 

 

  

MCT 
transporter 

Common 
name 

Substrate Distribution 

SLC16A1 MCT1 Lactate, pyruvate, 
ketone bodies 

Ubiquitous 

SLC16A2 MCT8 T2, rT3, T3, T4 Ubiquitous 
SLC16A3 MCT4 Lactate, ketone 

bodies 
Skeletal muscle, chondrocytes, leucocytes, 
testis, lung, brain, ovary, placenta, heart,  
leucocytes 

SLC16A4 MCT5 N/A 
 

Brain, muscle, liver, kidney, lung, ovary, 
placenta, heart 

SLC16A5 MCT6 Bumetanide 
probenecid 
nateglinide 

Kidney, muscle, brain, heart, pancreas, 
prostate, lung, placenta 

SLC16A6 MCT7 Ketone bodies Liver, brain, pancreas, muscle, prostate 
SLC16A7 MCT2 Pyruvate, lactate, 

ketone bodies 
High expression in testis, moderate to low 
in spleen, heart, kidney, pancreas, skeletal 
muscle, brain and leucocytes 

SLC16A8 MCT3 Lactate Retinal pigment epithelium, choroid plexus 
SLC16A9 MCT9 Carnitine 

 
Endometrium, testis, ovary, breast, brain, 
kidney, spleen, retina 

SLC16A10 MCT10 N/A 
 

Kidney (basolateral), intestine, muscle, 
placenta, heart 

SLC16A11 MCT11 N/A Skin, lung, ovary, breast, lung, pancreas, 
retinal pigment epithelium, choroid plexus 

SLC16A12 MCT12 N/A Kidney, retina, lung testis 
SLC16A13 MCT13 N/A Breast, bone marrow stem cells 
SLC16A14 MCT14 N/A Brain, heart, muscle, ovary, prostate, breast, 

lung, pancreas liver, spleen, thymus 
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Table 2 - SMCT transporters 

 

 

 

 

 

 

 

HUGO 
nomenclature 

Common 
name 

Function Distribution 

SLC5A1 SGLT1 Na+/glucose or 
Na+/galactose 

 
Gastrointestinal tract, liver, kidney, 
male tissues 

SLC5A2 SGLT2 Na+/glucose Kidney, male tissues 
SLC5A3 SMIT1 Na+/myoinositol 

 
Ubiquitous 

SLC5A4 SGLT3 Glucose-sensitive 
Na+-channel 
 

Gastrointestinal tract 

SLC5A5 NIS Na+/iodide 
 

Gastrointestinal tract, endocrine tissues, 
female tissues 

SLC5A6 SMVT Na+/biotin or 
Na+/pantothenate 
 

Ubiquitous 

SLC5A7 CHT1 Na+/Cl−/choline 
 

Low expression  in gastrointestinal 
tract, kidney, endocrine tissues, female 
and male tissues 

SLC5A8 SMCT1 Na+/monocarboxylate
 

Intestin, kidney (apical membrane of 
tubular epithelial cells), brain, salivary 
gland, thyroid gland 

SLC5A9 SMT Na+/mannose 
 

Gastrointestinal tract 

SLC5A10 N/A Unknown 
 

Kidney 

SLC5A11 SMIT2 Na+/myoinositol 
 

Gastrointestinal tract, kidney, female 
tissues, brain 

SLC5A12 SMCT2 Na+/monocarboxylate Small intestin, kidney, brain, retina, 
male tissues,  
lymphoid organs,  leucocytes 
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