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Abstract
In the early 2000s, several phase change results from distributional convergence to distributional
non-convergence have been obtained for shape parameters of random discrete structures. Re-
cently, for those random structures which admit a natural martingale process, these results have
been considerably improved by obtaining refined asymptotics for the limit behavior. In this work,
we propose a new approach which is also applicable to random discrete structures which do not
admit a natural martingale process. As an example, we obtain refined asymptotics for the num-
ber of leaves in random point quadtrees. More applications, for example to shape parameters in
generalized m-ary search trees and random gridtrees, will be discussed in the journal version of
this extended abstract.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases Quadtree, number of leaves, phase change, stochastic fixed-point equa-
tion, central limit theorem, positivity of variance, contraction method

Digital Object Identifier 10.4230/LIPIcs.AofA.2018.23

Acknowledgements We thank Ralph Neininger for pointing out the problem to us.

1 Introduction and Result

In this extended abstract, we investigate shape parameters of random discrete structures
whose distributional behavior is known to undergo a phase change as a structural characteristic
of the structure varies. Several such phase change phenomena, in particular with a change
from distributional convergence to distributional non-convergence, have been found in the
early 2000s. We start by recalling a particular nice and surprising result in this direction
which was obtained by Janson in [11]: the phase change of the number of nodes with depth
in a fixed congruent class in random recursive trees.

First, we recall the definition of random recursive trees. Starting from a root, nodes are
added consecutively where the n-th node is attached uniformly at random as left-most child

1 Partially supported by MOST under the grants MOST-104-2923- M-009-006-MY3 and MOST-105-2115-
M-009-010- MY2.
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23:2 Refined Asymptotics for Quadtrees

Table 1 A summary of shape parameters and discrete structures for which the distributional
behavior changes from normal to non-convergence.

structure parameter non-convergence refined asymptotics

recursive trees nodes with depths
divisible by m

m ≥ 7 [16, 17]

m-ary search trees size m ≥ 27 [15]
d-dimensional
quadtrees number of leaves d ≥ 9 this paper

to one of the existing nodes. In such a tree with n nodes, let Mn denote the number of nodes
with depth (distance from the root) divisible by m where m ≥ 2 is fixed. Set

ωn =
{
n, if 6 - m;
n logn, if 6 | m.

Then, in [11], the following result was proved: if 2 ≤ m ≤ 6, we have

Mn − n/m√
ωn

d−→ N(0, σ2
m), (1)

where σm > 0; for all other m, we have that Mn with the standard normalization, i.e.,
(Mn − n/m)/

√
Var(Mn), does not converge to a fixed limit law.

A similar result holds if the depths of nodes are required to fall into another residue
class. Moreover, the same phase change phenomenon is present in random binary search
trees, too; see [11]. Also, several other shape parameters in diverse families of random trees
have been proved to exhibit a similar phase change behavior from distributional convergence
to distributional non-convergence, e.g., the size of m-ary search trees proved by Chern and
Hwang [4] (see also Mahmoud and Pittel [14] and Lew and Mahmoud [13] for preliminary
results) and the number of leaves in random point quadtrees proved by Chern, Fuchs, and
Hwang [2]; see Table 1 for a summary of these results and [2, 4] for many more examples.

After the above results have been published, subsequent research has focused on clarifying
the stochastic behavior in the non-convergence regime; e.g. see [2], Chern, Fuchs, Hwang,
and Neininger [3], Chauvin and Pouyanne [1], Fill and Kapur [6], and [11]. This line of
research has recently culminated in the realization that subtracting a sufficiently large number
of suitable random variables leads to a central limit theorem. To give some more details,
consider again the above random variable Mn. Set r = b(m− 1)/6c and

ζk := cos
(

2πk
m

)
and ηk := sin

(
2πk
m

)
.

Following a technique developed by Neininger [18] in a refined analysis of the complexity of
the randomised Quicksort algorithms, it was proved by the second author of this extended
abstract and Neininger [16, 17] that there exist complex random variables Ξ1, . . . ,Ξr such
that

1
√
ωn

(
Mn −

n

m
− 2

r∑
k=1
<
(
Ξkniηk

)
nζk

)
d−→ N(0, σ2

m)

with σm > 0. Note that this result yields (1) as a special case.
The proof of the above result made use of a natural martingale process related to random

recursive trees. Moreover, another proof method (also using the martingale process) was
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Table 2 Value of p in (3) for small values of d.

d 1, . . . , 8 9, . . . , 17 18, . . . , 26 27, . . . , 34
p 0 1 2 3

proposed by the second author in [15], where the above result was extended to generalized
Pólya urns; see Janson [10] for background. The latter result contains both the above result
and a similar result for m-ary search trees; see Table 1.

The purpose of this work is to propose yet another approach which does not make use of
the martingale process (the possibility of such an approach was already announced in [17]).
The advantage of such a method is that it can be applied to random discrete structures
which do not admit such a process. This is for instance the case for random point quadtrees
which we use in this work as guiding example. Other applications of our approach in the
context of, e.g., generalized m-ary search trees and gridtrees (where there are again no natural
martingale processes) will be discussed in the journal version of this extended abstract.

We first recall the definition of random point quadtrees (which for brevity will be called
random quadtrees in the sequel). Fix a dimension d and consider an infinite sequence of
stochastically independent points chosen uniformly at random from the d-dimensional unit
cube. Then, the first point is stored in the root which has 2d subtrees that correspond to
the 2d quadrants into which the d-dimensional unit cube is split by the first point. These
subtrees contain the points which fall into these quadrants respectively. Moreover, subtrees
are built recursively via the same process. The resulting tree after n steps is called random
quadtree of size n.

In such a tree of size n, let Ln denote the number of leaves. Then, in [2], the following
phase change result was proved: if 1 ≤ d ≤ 8, then

Ln − κdn√
n

d−→ N(0, σ2
d),

where σd > 0 and

κd = 1− 2
d
ξ′(1), (2)

where ξ(s) is given in (4); for all other d, we have that Ln with the standard normalization
does not converge to a fixed limit law. (For d = 1, the result goes back to Devroye [5].)

The main result of this extended abstract is the following extension of this result which
gives an asymptotic expansion of the limit behavior in the style of [15, 16, 17].

I Theorem 1. Let d ≥ 1. Then, there exist complex random variables Z1, . . . ,Zp such that

1√
n

(
Ln − κdn− 2

p∑
k=1
<(Zkniβk )nαk

)
d−→ N(0, σ2

d), (3)

where σd > 0. Here,

αk := 2 cos
(

2πk
d

)
− 1 and βk := 2 sin

(
2πk
d

)
and p is the largest number in {0, . . . , bd/2c} with αk > 1/2; see Table 2.

AofA 2018



23:4 Refined Asymptotics for Quadtrees

We conclude the introduction with a discussion of the proof of Theorem 1 and an outline
of the manuscript. Following [18, 16], the proof relies on the following three steps:
(i) the construction of the limiting random variables Z1, . . . ,Zp,
(ii) an expansion of the variance of the residual Ln − κdn− 2

∑p
k=1 <(Zkniβk )nαk , and

(iii) general techniques to deduce the asymptotic normality (3) from (ii) from a distributional
recurrence for the sequence of residuals.

In the literature, step (iii) in the present context has been carried out relying on two
different techniques which both apply with straightforward modifications in our setting: the
contraction method [18, 16] and the method of moments [9]. As this part does not involve
significantly new arguments, we refrain from discussing the details in this extended abstract
and refer the reader to the journal version of this work (to come).

The remainder of the manuscript is organized as follows. In Section 2, we give an explicit
construction of the quadtree sequence and state known asymptotic expansions for the mean
number of leaves. Section 3 is dedicated to step (i) and uses contraction arguments; the
proofs are found in Appendix A.

The most technical part of the work, step (ii), crucially relies on a recursive distributional
decomposition of the residual sequence and asymptotic transfer theorems developed in Chern,
Fuchs, and Hwang [2] for general parameters in quadtrees. This part, worked out in Section
4, is based on conceptually novel ideas since second moments cannot be computed by direct
means exploiting a martingale structure. Proofs of technical lemmas required here are
collected in the Appendix B.

2 Preliminaries

Let us start with an explicit construction of the quadtrees. To this end, let Y (i), i ≥ 1 be a
sequence of independent random variables following the uniform distribution on [0, 1]d. We
define a sequence of 2d-ary trees T0, T1, . . . where Ti stores the values Y (1), . . . , Y (i) as follows:
initially, we start with an empty tree T0 consisting of a placeholder associated with the unit
cube. Y (1) replaces the placeholder thereby creating a tree T1 consisting of a root node to
which we associate 2d placeholders which are assigned the 2d rectangular regions in which the
components of Y (1) partition the unit cube. (In computer science, these placeholders are often
called external nodes.) Inductively, having constructed the tree Tn storing Y (1), . . . , Y (n)

with 1 + (2d − 1)n placeholders corresponding to 1 + (2d − 1)n regions partitioning the
unit cube, we obtain the tree Tn+1 by storing Y (n+1) in the placeholder associated with the
rectangle containing Y (n+1) and adding 2d placeholders which are assigned the rectangular
regions in which Y (n+1) partitions the aforementioned rectangle.

We let Ln denote the number of leaves in the random quadtree Tn. Set µn := E[Ln]. To
describe the asymptotic behavior of µn, it is necessary to introduce some terminology from
[7]: first, for s ∈ C \ {0}, let [s] := 1− 2d

sd . Then, for n ∈ N, n ≥ 3, we define the d-analogue
of the factorial as

[n]! := [3] · [4] · · · [n] and [2]! := 1.

Let A := {2ωk − j : k ∈ {0, . . . , d− 1}, j ∈ N}. The definition of [n]! extends holomorphically
to complex numbers s ∈ C \A through

[s]! :=
∞∏
j=1

[j + 2]
[j + s] , and [∞]! := [3] · [4] · [5] · · · .
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Flajolet et al. [7], showed that, for all n ≥ 2,

µn =
n∑
k=0

(
n

k

)
(−1)kµ∗k with µ∗k =


0, k = 0
−1, k = 1
−
∑k
j=2

[k]!
[j]! , k ≥ 2.

From here, standard techniques relying on Nörlund-Rice integrals for meromorphic functions
arising in the analysis of finite differences such as, e.g. [8, Theorem 2], allow to derive
asymptotic expansions of µn (as n→∞) of arbitrary precision. In particular, following the
notation in [7], with

ξ(s) := s− 1
[∞]! +

∞∑
j=2

(
1

[j]! −
1

[s+ j − 1]!

)
, (4)

one finds

µn = κdn− 2
∑

1≤k≤bd/2c,αk>0

<
(
γkn

iβk
)
nαk +O(1), (5)

where κd is given in (2) and, with λk = αk + iβk for k = 1, . . . , bd/2c with αk > 0,

γk = −λk + 1
d

Γ(−λk)ξ(λk)[λk + 1]!.

Here, Γ(·) denotes the Gamma function. The details of the argument show that γk 6= 0 for all
k ≥ 1, αk > 0, so no term in the asymptotic expansion (5) vanishes. For later purposes, note
that αk 6= 1/2 for all k = 1, . . . , d− 1, since the converse would imply the existence of a k-th
root of unity with real part 3/4. But any rational real part of a root of unity takes values in
the set {0,−1/2, 1/2, 1,−1} since, with ω := α1 + iβ1, the value 2<(ωk) = ωk + ωd−k is an
algebraic integer for any 1 ≤ k ≤ d.

3 A family of limiting random variables

As opposed to the applications discussed in [18, 16, 17], there is no natural martingale
process associated with the sequence Ln, n ≥ 1. Therefore, it is necessary to construct the
limiting random variables Z1, . . . ,Zp in Theorem 1 in an ad-hoc way guided by the recursive
distributional decomposition of Ln. In this section, we give the details of this construction.

Let T be the complete infinite 2d-ary tree represented in standard Ulam-Harris notation
by

T =
⋃
i≥0
{0, . . . , 2d − 1}i.

Through the canonical embedding of the sequence T0, T1, . . . of increasing trees into T, to
any v ∈ T, we shall associate a random integer `(v) ≥ 1 such that Y (`(v)) is stored at node
v. (Clearly, as the fill-up level of Tn grows to infinity, `(v) exists for all nodes v ∈ T.) For
` ≥ 1, let I` be the rectangle corresponding to the placeholder in T`−1 which contains Y (`).
Define Ỹ(`) as the vector of components of Y (`) relative to the boundaries of I`. Formally,
with I` = [i∧1 , i∨1 ]× · · · × [i∧d , i∨d ], we set

Ỹ(`)
k =

Y
(`)
k − i∧k
i∨k − i∧k

, k = 1, . . . , d.

AofA 2018



23:6 Refined Asymptotics for Quadtrees

Finally, for v ∈ T, let

U (v) := Ỹ(`(v)).

By construction, {U (v) : v ∈ T} is a family of independent random variables with the uniform
distribution on [0, 1]d. While the placeholders associated with the nodes in the tree Tn give
rise to a partition of the unit cube, the construction of the limiting random variables relies
on different decompositions of the unit cube traversing T level-wise. To this end, to every
v ∈ T and 0 ≤ j ≤ 2d − 1, writing j =

∑d
k=1 εk2k−1 with ε1, . . . , εd ∈ {0, 1}, we associate

the random variables ∆(v)
j := V

(v)
1 · · ·V (v)

d , where

V
(v)
k :=

{
U

(v)
k , if εk = 0

1− U (v)
k , if εk = 1.

Note that
∑2d−1
j=0 ∆(v)

j = 1. Subsequently, write ∆(v) = (∆(v)
0 , . . . ,∆(v)

2d−1).
Let k ∈ {1, . . . , d − 1} with αk > 1/2 and define a family of random variables {Z(v)

n,k :
n ≥ 0, v ∈ T} as follows: first, set Z(v)

0,k = γk for all v ∈ T. Then, for n ≥ 1 and v ∈ T, we
recursively define

Z(v)
n,k :=

2d−1∑
j=0

(
∆(v)
j

)λk

· Z(vj)
n−1,k.

Note that, for all n ≥ 0, we have Z(v)
n,d−k = Z(v)

n,k. Let Π∅ := 1, and, recursively, for v ∈ T
and j = 0, . . . , 2d − 1,

Πvj = ∆(v)
j Πv.

Then, we have the following forward expression for Z(∅)
n,k :

Z(∅)
n,k = γk

∑
|v|=n

Πλk
v .

Analogous expansions can be stated for Z(v)
n,k, v ∈ T. Let F−1 be the trivial σ-field, and, for

n ≥ 0, set Fn = σ
(
U (v) : v ∈ T, |v| ≤ n

)
. It follows immediately from the previous display

that Z(∅)
n,k, n ≥ 0 is a martingale with respect to the filtration Fn, n ≥ −1.

This martingale has the following important property.

I Proposition 2. For all v ∈ T there exists a random variable Z(v)
k such that, almost surely

and with respect to all moments,

Z(v)
n,k → Z

(v)
k . (6)

We have
(i) the random variables Z(v)

k , v ∈ T are identically distributed,
(ii) Z(v0)

k , . . . ,Z(v(2d−1))
k ,∆(v) are stochastically independent and

Z(v)
k =

2d−1∑
j=0

(
∆(v)
j

)λk

· Z(vj)
k ,
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(iii) the law of Z(∅)
k is the unique distribution satisfying E[Z(∅)

k ] = γk,E[|Z(∅)
k |2] <∞ and

Z(∅)
k

d=
2d−1∑
j=0

(
∆(∅)
j

)λk

· Z∗,(j)k , (7)

where Z∗,(0)
k , . . . ,Z∗,(2d−1)

k are independent copies of Z∗,(∅)k , independent of ∆(∅).
In the remainder of the manuscript, we agree to drop the upper index ∅ when referring to
the quantities Z(∅)

k , k = 1, . . . , p and ∆(∅)
j , j = 0, . . . , 2d − 1 and U (∅)

j , j = 1, . . . , d.
Below, we will need the following property of the Zk’s which follows from Leckey [12];

see Appendix A.

I Proposition 3. Let 1 ≤ k ≤ p. The vector (<(Zk),=(Zk)) has a Schwartz density f on
R2, that is, f is infinitely differentiable, where f and all its derivatives decay faster to zero
at infinity than any polynomial.

4 The variance of the residual

In the final chapter of the manuscript, we discuss the techniques to prove step (ii) outlined
in the introduction. Let

L∗n := Ln − κdn− 2
p∑
k=1
<
(
Zkniβk

)
nαk + δn,

where δn is deterministic such that E[L∗n] = 0. (Exact scaling simplifies arguments in the
following.) By (5), we have δn = O

(
nmax(αp+1,0)). (One actually has αp+1 > 0 for all

d > 11.) For j = 0, . . . , 2d − 1, let Nj be the size of the j-th subtree of the root and
L

(j)
n be the number of leaves it contains. Given ∆0, . . . ,∆2d−1, the vector (N0, . . . , N2d−1)

has the multinomial distribution with parameter (n− 1; ∆0, . . . ,∆2d−1). We now set up a
distributional recurrence for L∗n. As Zk =

∑2d−1
j=0 ∆λk

j Z
(j)
k it follows that

L∗n =
2d−1∑
j=0

(
L(j)
n − κdNj + δNj − 2

p∑
k=1
<
(
Z(j)
k N iβk

j

)
Nαk
j

)
+ rn +Dn

=:
2d−1∑
j=0

L(j)
n + rn +Dn, (8)

where

rn := δn −
2d−1∑
j=0

δNj − κd, and Dn := 2
2d−1∑
j=0

p∑
k=1
<
(
Z(j)
k

(
Nλk
j − (∆jn)λk

))
.

By the construction of the quadtree,
(
L(0)
n , . . . ,L(2d−1)

n

)
d=
(
L̄

(0)∗
N0

, . . . , L̄
(2d−1)∗
N2d−1

)
, where(

L̄
(0)∗
k

)
k≥0

, . . . ,
(
L̄

(2d−1)∗
k

)
k≥0

are independent copies of the process (L∗k)k≥0. Note that

(N0, . . . , N2d−1) and {U (v) : v ∈ T \ {∅}} are independent. Note however, that Dn and(
L(0)
n , . . . ,L(2d−1)

n

)
are not stochastically independent, not even given (∆, N0, . . . , N2d−1),

since both quantities involve Z(j)
k , j = 0, . . . , 2d − 1, k = 1, . . . , p.

AofA 2018



23:8 Refined Asymptotics for Quadtrees

4.1 An asymptotic expansion for the variance
The remainder of this extended abstract is devoted to the proof of the following proposition.

I Proposition 4. There exists 0 < σd <∞ such that, as n→∞,

Var(L∗n) = σdn+ o(n).

Of course, as δn = o(
√
n), the same asymptotic expansion applies to the variance of the

residual sequence L∗n − δn. To prove the proposition, note that, from (8), straightforward
calculations reveal that, with a(n) := E

[
(L∗n)2

]
, we have

a(n) = 2dE[a(N0)] + E
[
r2
n

]
+ E

[
D2
n

]
+ 2E [Dnrn] + 2E

[
Dn

2d−1∑
j=0

L(j)
n

]
=: 2dE[a(N0)] + b(n). (9)

This is the quadtree recurrence (see Lemma 5 below). Our aim is to apply the asymptotic
transfer theorems for it developed in Chern, Fuchs, and Hwang[2]. To this end, we need to
understand the asymptotic behavior of the additive sequence b(n) in the last display. In
particular, we would like to use the following result from [2].

I Theorem 5 ([2], Theorem 2(i)). Consider the quadtree recurrence

an = bn + 2d
∑

0≤j<n
πn,jaj , (n ≥ 1),

where a0 = 0 and

πn,j = P (N0 = j) =
(
n− 1
j

)∫ 1

0
uj(1− u)n−1−j (− log u)d−1

(d− 1)! du.

If bn = o(n) and the series
∑
n≥1 bn/n

2 converges, then an = κn+ o(n) for some κ ∈ R.

For infinite sum representations of the limiting constant κ, we refer to [2]. The theorem does
not exclude the case that κ = 0, which explains the necessity of the following lemma, whose
proof is deferred to the Appendix B.

I Lemma 6. In the set-up of the previous theorem, assume that
(a) (i) bn is non-negative for all n, and (ii) bn is positive for at least one n, or
(b) (i) an is non-negative for all n, and (ii) bn is positive for all n large enough.
Then, an = Ω(n).

We also need the following two lemmas, where the first is a straightforward implication
of the multivariate central limit theorem for (N0, . . . , N2d−1), while the technical proof of
the second lemma is given in the Appendix B.

I Lemma 7 (Multivariate central limit theorem). Let z ∈ C with 1/2 ≤ <(z) < 1. In
distribution, in C2d ,(

Nz
0 − (∆0n)z

nz−1/2 , . . . ,
Nz

2d−1 − (∆2d−1n)z

nz−1/2

)
→ X,

where Xi = z · ∆z−1
i Yi with Y = Σ1/2 · N , where N = (N0, . . . ,N2d−1) has the standard

multivariate normal distribution, (∆0, . . . ,∆2d−1) and N are stochastically independent, and
the covariance matrix Σ satisfies

Σi,j =
{

∆i(1−∆i) if i = j,

−∆i∆j if i 6= j.
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I Lemma 8. We have the following asymptotic expansions:
(i) for any z ∈ C with 0 < <(z) < 1 and ε > 0, we have, as n→∞,

E[Nz
0 ] = E [∆z

0]nz + z(z − 1)
2 E

[
(1−∆0) ∆z−1

0
]
nz−1 +O(nε−1).

(ii) For any z ∈ C with 1/2 < <(z) < 1 and fixed p ∈ N \ {0}, we have

‖Nz
0 − (∆0n)z‖p = |z|

∥∥∥∆<(z)/2
0

√
1−∆0

∥∥∥
p
‖N0‖p n

<(z)−1/2 + o(n<(z)−1/2).

(iii) For any z ∈ C with 0 < <(z) < 1/2 and fixed p ∈ N \ {0}, we have

‖Nz
0 − (∆0n)z‖p = O(1).

The first step to show Proposition 4 is to verify that the contribution of the mixed term
in b(n) is asymptotically negligible.

I Lemma 9. As n→∞, we have E
[
Dn

∑2d−1
j=0 L(j)

n

]
= O(nα1−1/2).

Proof. First of all, note that E
[
r2
n

]
= O(n2 max(αp+1,0)) since δn = O

(
nmax(αp+1,0)) and

Nj ≤ n for all j = 0, . . . , 2d − 1. As Z(j)
k and (Nj ,∆j) are stochastically independent, it

follows from part (ii) of the previous lemma that

E
[ ∣∣∣Z(j)

k

(
Nλk
j − (∆jn)λk

)∣∣∣2 ] = E
[
|Zk|2

]
E
[ ∣∣∣Nλk

0 − (∆0n)λk

∣∣∣2 ] = O(n2αk−1).

A standard application of the Cauchy-Schwarz inequality shows that E
[
D2
n

]
= O(n2α1−1).

Next, by independence of quantities defined in subtrees, we obtain

E
[
Dn

2d−1∑
j=0

L(j)
n

]
= 2

2d−1∑
j=0

E
[
L(j)
n

p∑
k=1
<
(
Z(j)
k

(
Nλk
j − (∆jn)λk

)) ]
. (10)

Conditionally on {N0 = n0, . . . , N2d−1 = n2d−1} where n0 + · · ·+ n2d−1 = n− 1, we have
(i) the random variables (∆0, . . . ,∆2d−1), (Z(j)

1 , . . . ,Z(j)
p ,L(j)

n ) are stochastically independ-
ent, and

(ii) (Z(j)
1 , . . . ,Z(j)

p ,L(j)
n ) is distributed like (Z1, . . . ,Zp, L∗nj

).
To estimate (10), consider the terms

E
[
L(j)
n <(Z(j)

k (Nλk
j − (∆jn)λk ))

]
=
n−1∑
`=0

P (Nj = `)E [L∗`<(Zk)]E
[
<
(
`λk − (∆jn)λk

)]
−
n−1∑
`=0

P (Nj = `)E [L∗`=(Zk)]E
[
=
(
`λk − (∆jn)λk

)]
.

By the trivial bound E[(L∗n)2] = O(n2), it follows from the Cauchy-Schwarz inequality that
there exists a constant C > 0 such that

max {E [L∗n<(Zk)] ,E [L∗n=(Zk)]} ≤ Cn.

Therefore,∣∣∣E [L(j)
n <(Z(j)

k (Nλk
j − (∆jn)λk ))

]∣∣∣ ≤ 2Cn
∣∣∣E [Nλk

j − (∆jn)λk

]∣∣∣ . (11)

AofA 2018



23:10 Refined Asymptotics for Quadtrees

From part (i) of the previous lemma, it follows that the right hand side of (11) grows at
most of the order nαk . Overall, this shows that

E
[
Dn

2d−1∑
j=0

L(j)
n

]
= O(nα1).

Combining the bounds on E
[
r2
n

]
,E
[
D2
n

]
and the last display, Theorem 5 yields Var(L∗n) =

O(n). Repeating the last steps using this improved bound concludes the proof. J

The previous proposition suggests that the order of magnitude of the additive term in (9)
is max{n2 max(αp+1,0), n2α1−1}. For most values of d, we have 2α1 − 1 > 2αp+1. Indeed, for
9 ≤ d ≤ 10, 000, there exist only 31 values ranging from d = 15 to d = 8598 for which the
converse is true. It is important to note that, for all d ≥ 9, we have 2α1 − 1 6= 2αp+1 since
the contrary would imply that ω + ωd−1 − ωp+1 − ωd−p−1 = 1/2 which is impossible since
the left hand side is an algebraic integer. In particular, in light of Theorem 5 and Lemma 6,
the following two propositions verifying that b(n)→∞ are the missing pieces to conclude
the proof of Proposition 4.

I Proposition 10. Let αp+1 > 0, that is, d > 11 and

W :=
2d−1∑
i=0

∆λp+1
i =

d∏
i=1

(
U
λp+1
i + (1− Ui)λp+1

)
.

For x ∈ R, let

Φ(x) := 2<
(
γ2
p+1E

[
(1−W )2] e2iβp+1x

)
+ 2|γp+1|2E

[
|1−W |2

]
.

Φ is a smooth periodic function with period π/βp+1, amplitude 2|γp+1|2|E
[
(1−W )2] | and

min
x∈R

Φ(x) = 2|γp+1|2
[
E
[
|1−W |2

]
−
∣∣E [(1−W )2]∣∣] > 0.

As n→∞,

E
[
r2
n

]
= Φ(logn)n2αp+1 +O(nαp+1+αp+2).

I Proposition 11. Let (∆, Y ) be as in Lemma 7 and stochastically independent of
Z(0)

1 , . . . ,Z(2d−1)
1 . Set

W =
2d−1∑
j=0

λ1Z(j)
1 ∆λ1−1

j Yj .

For x ∈ R, define

Ψ(x) := 2<
(
E
[
W2] e2iβp+1x

)
+ 2E

[
|W|2

]
.

Ψ is a smooth periodic function with period π/βp+1, amplitude 2|E
[
W2] | and

min
x∈R

Ψ(x) = 2
(
E
[
|W|2

]
−
∣∣E [W2]∣∣) > 0.

As n→∞, we have

E[D2
n] = Ψ(logn)n2α1−1 + o(n2α1−1).
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The proofs of these propositions are very similar and we only present the proof of Proposition
11 which is more involved.

Proof of Proposition 11. By definition, Ψ has period π/βp+1. Next, for any z ∈ C, it is
easy to see that the global maximum and minimum of the function x 7→ <(z exp(ix)) are |z|
and −|z|. This implies the remaining claims on the shape of Ψ. minx∈R Ψ(x) > 0 follows
from triangle inequality upon verifying that arg(W) is not almost surely constant. This, in
turn follows from that fact that, for any given (affine) line L ⊆ C, we have P (Z1 ∈ L) = 0.
This is an immediate corollary of the fact that (<(Z1),=(Z1)) admits a density on R2 (see
Proposition 3). For the asymptotic expansion of Dn, note that, following the steps involving
the Cauchy-Schwarz inequality and the bounds stated in the proof of Proposition 9, it is
straightforward to verify that

E
[
D2
n

]
= 4E


2d−1∑

j=0
<
(
Z(j)

1

(
Nλ1
j − (n∆j)λ1

))2
+O(nα1+α2−1).

By the multivariate central limit theorem stated in Lemma 7, the first term is asymptotically
equivalent to Ψ(logn)n2α1−1 which proves the expansion. J
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A Appendix A

Proof of Proposition 2. These arguments are well-known. By construction,

Z(v)
n+1,k −Z

(v)
n,k =

2d−1∑
j=0

(
∆(v)
j

)λk

·
(
Z(vj)
n,k −Z

(vj)
n−1,k

)
,

and therefore

∆(v)
n := E

[∣∣∣Z(v)
n+1,k −Z

(v)
n,k

∣∣∣2]

= E
[∣∣∣Z(v)

n,k −Z
(v)
n−1,k

∣∣∣2] 2d−1∑
j=0

E
[(

∆(v)
j

)2αk
]

=: q ·∆(v)
n−1,

where we used that the claims of part (i) and part (ii) of this proposition also hold if
Z

(v)
k is replaced by Z(v)

n,k (from construction). As 0 < q < 1, it immediately follows that
E
[∣∣Z(v)

n,k

∣∣2], n ≥ 1 is a bounded sequence. Since Z(v)
n,k, n ≥ 1 is a martingale, the sequence

converges almost surely and in L2 by the L2-convergence theorem for martingales. This
shows (6).

(i) and (ii) follow from the construction (see the comment succeeding the above display).
(iii) follows from a standard contraction argument for probability measures on C with

mean γk and finite second moment. Convergence of p-th moments is proved inductively using
p = 2 as base case; details will be given in the journal version of this paper. J

Proof of Proposition 3. Leckey [12] recently established a set of conditions under which
solutions of fixed-point equations such as (7) admit Schwartz densities. More precisely,
since we have already seen that Zk has finite moments of all orders, applying [12, Theorem
4.2] in conjunction with Remark 4.9 only requires to verify conditions (A1) - (A5) from
Definition 4.1. The only condition which is not trivially satisfied is (A4): the support of Zk
ought to be in general position, that is, contain three points z1, z2, z3 which do not lie on a
line. For all x ∈ [0, 1], the vector (x, 1− x, 0, 0, . . . , 0) lies in the support of ∆. Therefore,
(xλk , (1− x)λk , 0, 0, . . . , 0) lies in the support of ∆λk . Hence, for any z in the support of Zk,
also (xλk + (1− x)λk )z lies in the support of Zk. As the support of Zk contains a non-zero
element and βk 6= 0, this concludes the proof. J

B Appendix B

Proof of Lemma 6. We start with part (a). Let n0 be the first index such that bn0 > 0. Set

b̃n =
{

0, if 1 ≤ n ≤ n0

bn + 2dπn,n0bn0 , if n ≥ n0 + 1

https://arxiv.org/abs/1604.02964
https://arxiv.org/abs/1612.08930
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and denote by ãn the corresponding sequence. Obviously, an ≥ ãn and thus it suffices to
prove the claim for the sequence ãn. Note that by the above definition

b̃n ≥ c
logd n
n

, (n ≥ n0 + 1)

for some positive c > 0 since

πn,j = 1
d! ·

logd n
n

(
1 +O

(
1

logn

))
for fixed j (see Lemma 4 in [7]). We now claim that

ãn ≥ d
(
n+ 1

2d − 1

)
, (n ≥ n0 + 1) (12)

for some d > 0 which will be chosen below. We prove this claim by induction. Clearly, the
claim is true for n = n0 + 1. Next, in order to prove the induction step, plug the above claim
into the recurrence for ãn. This yields

ãn ≥ d2d
∑

0≤j<n
πn,j

(
j + 1

2d − 1

)
− d2d

∑
0≤j<n0+1

πn,j

(
j + 1

2d − 1

)
+ c

logd n
n

≥ d
(
n− 1 + 2d

2d − 1

)
+ (c− dK) logd n

n

≥ d
(
n+ 1

2d − 1

)
,

where in the second estimate we used

2d
∑

0≤j<n
j · πn,j = E

2d−1∑
`=0

N`

 = n− 1

and

2d
∑

0≤j<n0+1
πn,j

(
j + 1

2d − 1

)
≤ K logd n

n

which follows from (12). Moreover, the last estimate follows if d is chosen such that
0 < d ≤ c/K. This concludes the induction step and thus also the proof.

(b) Assume that bn > 0 for all n ≥ n0. The claim follows from part (a) by setting

b̃n =
{

0, if 1 ≤ n < n0,

bn, if n ≥ n0

and noting that the corresponding sequence ãn satisfies an ≥ ãn. J

Proof of Lemma 8. Throughout the proof, let α = <(z). Further, here, and subsequently,
we write Bin(n − 1, u) for a random variable with binomial distribution with parameters
n− 1 and u.

(i) By construction, ∆0 is distributed as exp(−Γ∗(d)), where Γ∗(d) is a random variable
with the Gamma distribution with density ((d− 1)!)−1td−1 exp(−t) for t > 0. It follows that
∆0 has density ((d− 1)!)−1(− log t)d−1 for t ∈ (0, 1). Hence,∣∣E [Nz

0 1[0,n−1+ε](∆0)
]∣∣ ≤ E

[
Bin(n, n−1+ε)

]α P (∆0 ≤ n−1+ε) ≤ Cn−1+ε logn.
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Next, by part (i) of the (well-known) postponed Lemma 12 below, we have

E
[
Nz

0 1[n−1+ε,1](∆0)
]

= E
[
∆z

01[n−1+ε,1](∆0)
]
nz

+ z(z − 1)
2 E

[
(1−∆0) ∆z−1

0 1[n−1+ε,1](∆0)
]
nz−1 +O(nε−1).

Dropping the indicators on the right hand side only adds a negligible error term as∣∣E [∆z
01[0,n−1+ε)(∆0)

]∣∣ ≤ n(−1+ε)<(z)−1+ε logn with a similar computation for the second
summand.

(ii) We have

E
[∣∣Nz

0 − (∆0n)z
∣∣p]

≤ 2p((d− 1)!)−1(E [Bin(n− 1, 1/n)αp] + 1)
∫ 1/n

0
(− log u)d−1du

+ ((d− 1)!)−1
∫ 1

1/n
(− log u)d−1E

[
|(Bin(n− 1, u))z − (un)z|p

]
du.

Part (ii) of Lemma 12 below shows that the integral in the second summand is bounded by

C

∫ ∞
1/n

(− log u)d−1
(

(un)p(α−1/2) + (un)pαe−Cun
)
du = O(np(α−1/2)).

As ∫ 1/n

0
(− log u)d−1du = 1

n
(logn)d−1(1 +O((logn)−1)),

it follows that

‖Nz
0 − (∆0n)z‖p = O

(
nα−1/2

)
.

This shows that the marginals in the mutivariate central limit theorem stated in Lemma 7
converge with respect to all moments. This shows (ii). (iii) follows along similar lines. J

I Lemma 12. Let z ∈ C with 0 < α := <(z) < 1. We have the following asymptotic
expansions:
(i) for any ε > 0 sufficiently small, as n→∞, uniformly in n−1+ε ≤ u ≤ 1,

E[Bin(n, u)z] = (nu)z + z(z − 1)
2 (1− u) (nu)z−1 +O(nε−1).

(ii) For p ∈ N \ {0}, there exists a constant C > 0 such that

E
[∣∣Bin(n, u)z − (nu)z

∣∣p]
≤ C

(
1(0,1/n)(u) + 1[1/n,1](u)

(
(un)p(α−1/2) + (un)pαe−Cun

))
.

Proof. (i) On [1/2, 3/2], we have

xz = 1 + z(x− 1) + z(z − 1)
2 (x− 1)2 + γ(x)(x− 1)3,
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for some function γ which is bounded on [1/2, 3/2]. Let A = {Bin(n, u)/(nu) ∈ [1/2, 3/2]}.
Plugging x = Bin(n, u)1A/(nu) into the last display and taking the expectation gives

E[Bin(n, u)z1A]
(nu)z = 1 + zE

[
Bin(n, u)1A

nu
− 1
]

+ z(z − 1)
2 E

[(
Bin(n, u)1A

nu
− 1
)2
]

+O
(
E

[(
Bin(n, u)1A

nu
− 1
)3
])

.

By Chernoff’s inequality, since u ≥ n−1+ε, we have P (A) ≤ C1 exp (−C2n
ε) for some

universal constants C1, C2 > 0. Hence, dropping the indicator 1A in all expectations in the
last display adds a negligible error term.

(ii) For u ≤ 1/n, we can bound E
[
Bin(n, u)αk

]
≤ E

[
Bin(n, 1/n)αk

]
→ E

[
Pαk

]
as

n→∞. (Here, P denotes a random variable with the Poisson distribution and mean one.)
Obviously, (nu)αk ≤ 1. This shows one part of the inequality. For the more interesting case
u ≥ 1/n, first observe that

E
[∣∣Bin(n, u)z − (nu)z

∣∣p]
≤ 2k

(
E [|Bin(n, u)α − (nu)α|p] + E

[∣∣∣∣Bin(n, u)α · log Bin(n, u)
nu

∣∣∣∣p])
=: 2k(f1(u, n) + f2(u, n)).

Set En = {Bin(n, u) > (nu)/2} and define

f1(u, n) = E [|Bin(n, u)α − (nu)α|p 1En
] + E

[
|Bin(n, u)α − (nu)α|p 1Ec

n

]
=: g1(u, n) + h1(u, n),

and

f2(u, n) = E
[∣∣∣∣Bin(n, u)α · log Bin(n, u)

nu

∣∣∣∣p 1En

]
+ E

[∣∣∣∣Bin(n, u)α · log Bin(n, u)
nu

∣∣∣∣p 1Ec
n

]
=: g2(u, n) + h2(u, n),

We now give bounds on g1, g2, h1 and h2. Let %(t) = (1 + t)α. Then, |%′(t)| ≤ α21−α for all
t ≥ −1/2. Thus, by the postponed Lemma 13 below,

g1(u, n) = (nu)αpE
[∣∣∣∣%(Bin(n, u)− nu

nu

)
− 1
∣∣∣∣p 1En

]
≤ (α21−α)p(nu)p(α−1)E [|Bin(n, u)− nu|p] ≤ C(un)p(α−1/2)

for some C > 0. Next, we consider g2. Let ψ(t) = tα| log t|. As ψ′ is bounded on [1/2,∞),
by, say C1 > 0, we have

g2(u, n) = (nu)αpE
[
ψ

(
Bin(n, u)− nu

nu

)p
1En

]
≤ C1(nu)p(α−1)E [|Bin(n, u)− nu|p] ≤ C2(un)p(α−1/2).
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for some C2 > 0. Next, by the Cauchy-Schwarz inequality and the postponed Lemma 13
below,

h1(u, n) ≤ E
[
|Bin(n, u)− nu|2pα

]1/2
P (Ecn)1/2

≤ C1(nu)pα/2e−Cun

for some C > 0. Since ψ in bounded on [0, 1] by, say C > 0, we also have

h2(u, n) ≤ (nu)αpE
[
ψ

(
Bin(n, u)

nu

)p
1Ec

n

]
≤ (nu)αpe−Cun.

This concludes the proof. J

I Lemma 13. For any real r ≥ 1 there exists a constant C > 0 such that, for all n ≥ 1 and
u ∈ [0, 1], we have

E [|Bin(n, u)− nu|r] ≤ C(nu)r/2.

Proof. By Jensen’s inequality, we may restrict ourselves to the case of integer r. Using
Bernstein’s inequality, we obtain

E [|Bin(n, u)− nu|r] = r

∫ ∞
0

yr−1P (|Bin(n, u)− nu| ≥ y) dy

≤ r
∫ ∞

0
yr−1 exp

(
− y2

2nu+ 2y/3

)
dy

≤ r
∫ 6nu

0
yr−1 exp

(
− y2

6np

)
dy + r

∫ ∞
6nu

yr−1e−ydy.

Sustituting x = y/
√

6nu, one finds that the first term is bounded by C(nu)k/2 for all n ≥ 1
and u ∈ [0, 1]. The second summand is O(exp(−αnp)) for any α < 6. J
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