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Abstract 7 

Drying is largely used in food industry, since it allows prolonging the product shelf 8 

life by inhibiting microorganisms’ growth and enzyme activity. Traditional drying techniques, 9 

such as air drying and freeze drying, suffer from several drawbacks, mainly long processing 10 

time, low rehydration capacity and change in food properties. Some pre-treatments, such as 11 

osmotic dehydration, can be applied prior to conventional techniques in order to produce 12 

an intermediate moisture product and, therefore, to improve the drying process. In this 13 

work, the influence of osmotic dehydration on oven drying and freeze drying performance 14 

was evaluated. Firstly, the effects of the main osmotic dehydration parameters were 15 

investigated in order to find the best conditions for water desorption. Secondly, 16 

experiments with oven drying, freeze drying and their combination with osmotic pre-17 

treatment were carried out. Results of each technique in terms of final moisture content, 18 

water activity, rehydration ability, textural properties and microstructure were compared 19 

and discussed. It has been observed that the application of the pre-treatment allows 20 

reducing considerably the processing time and better retaining the food properties. 21 

 22 

Keywords: Food drying, Osmotic dehydration, Oven drying, Freeze drying, Rehydration.  23 

          



1. Introduction 24 

Food market increasingly requires the development of techniques able to extend 25 

foodstuffs shelf-life, since consumers demand fresh-quality products without the use of 26 

preservatives (Maskan, 2001). 27 

Fruits and vegetables are highly perishable foods, since they easily undergo 28 

degradation reactions by bacteria proliferation, because of their elevated moisture content 29 

(Dev & Raghavan, 2012). For this reason, several industrial processes have been developed 30 

for their preservation. Among them drying is the most common method, since water 31 

removal inhibits microorganisms’ growth and enzyme activity and decreases the weight of 32 

the product, simplifying also its transport and storage (de Bruijn et al., 2016). For these 33 

purposes, dried foods should have water content lower than 25 g/100 g and water activity 34 

lower than 0.6 (de Bruijn et al., 2016; Stevenson et al., 2015). Water activity (aw) is a 35 

measure of the quantity of water that is available for chemical and biological reactions, so it 36 

represents an indication of food stability with respect to microbial growth (Oliveira, 37 

Brandão, & Silva, 2016). On the other hand, downstream the drying process, it should be 38 

possible to recover the properties of the fresh food rehydrating the dried. Rehydration 39 

ability depends on the degree of cellular and structural disruption; therefore, it is 40 

considered as a measure of the damage caused by drying to the food structure (Vega-Gálvez 41 

et al., 2015). 42 

Different drying processes have been proposed in literature. The most popular and 43 

ancient dehydration technique is air drying, in which moisture is removed by evaporation 44 

(Ratti, 2001). However, several authors reported that this process can cause several adverse 45 

effects on food attributes such as case hardening, shrinkage, poor rehydration ability and 46 

the alteration of the sensory features (Maskan, 2000). Another common technique is 47 

          



represented by freeze drying, which consists in the freezing of the product and then water 48 

removal by sublimation. This technique allows to retain food quality and structure better 49 

than other dehydration processes , but it suffers from some drawbacks, such as high energy 50 

costs and very long processing times, which restricts its applicability to high-value products 51 

(Karam, Petit, Zimmer, Baudelaire Djantou, & Scher, 2016). 52 

In order to optimise moisture desorption, some pre-treatments have also been 53 

proposed, with the aim to produce an intermediate moisture product. Among them, 54 

osmotic dehydration has received much attention due to its low cost and complexity. This 55 

process consists of the immersion of the foodstuff in a hypertonic solution: in this way 56 

moisture diffuses from the food towards the solution thanks to the semi-permeability of the 57 

cell membrane and, in the opposite way, the solute used as osmotic dehydrator flows from 58 

the solution to the food, even if in minor extent (da Costa Ribeiro, Aguiar-Oliveira, & 59 

Maldonado, 2016). Different authors (Rastogi & Raghavarao, 1997; Tsotsas & Mujumdar, 60 

2014) reported that this method allows reducing water content up to 50 % weight. In order 61 

to complete the drying, other methods, as those mentioned above, need then to be applied. 62 

In literature many papers are focused on osmotic  dehydration and its application 63 

prior to microwave drying (Botha, Oliveira, & Ahrné, 2012; Corrêa, Dev, Gariepy, & 64 

Raghavan, 2011; de Bruijn & Bórquez, 2014; Prothon et al., 2001), but limited studies have 65 

been performed till date on osmotic dehydration + oven drying and osmotic dehydration + 66 

freeze drying. In these studies, the authors focused their attention on water desorption, but 67 

rarely on the effects of drying on water activity, rehydration capacity and food 68 

microstructure in order to have a comprehensive overview of the process. De Costa Ribeiro 69 

et al. (da Costa Ribeiro et al., 2016) observed that when osmotic dehydration was applied 70 

prior to conventional oven drying, a reduction of 41.8 % of the drying time was possible to 71 

          



achieve a pear final moisture content of 0.25 kg/kg dry solids; however, they did not report 72 

the samples’ final water activity and rehydration capacity. Patil et al. (Patil, Kalse, & Jain, 73 

2012) also observed that the application of the pre-treatment to convective drying allowed 74 

to reduce onion drying time by approximately 40 % but the effect on samples’ water activity 75 

and microstructure was omitted. Ruiz-Lόpez at al. (Ruiz-López, Huerta-Mora, Vivar-Vera, 76 

Martínez-Sánchez, & Herman-Lara, 2010) pointed out that the osmotic dehydration pre-77 

treatment led to a significant decrease in chayote moisture content, allowing to reduce air-78 

drying time up to 65 % depending on the used dehydrator; however, also in this case, 79 

information about water activity, rehydration ability and structural properties were missing. 80 

In the present work, osmotic dehydration was applied prior to oven drying and 81 

freeze drying in order to improve their performances. The model food chosen for the 82 

experimentation was strawberry, since it is one of the most consumed fruits, thanks to its 83 

enjoyable organoleptic characteristics and its healthy properties. First, an optimisation of 84 

the pre-treatment operating conditions was carried out in order to identify the best 85 

conditions for the highest water desorption. Several experiments were then performed 86 

using oven drying, osmotic dehydration + oven drying, freeze drying and osmotic 87 

dehydration + freeze drying. The results in terms of samples’ final moisture content, water 88 

activity, rehydration ability and quality retention were compared and discussed. 89 

2. Materials and methods 90 

2.1 Materials 91 

Fructose (purity ≥ 99 %), Maltodextrin (purity ≥ 99.5 %), Maltose (purity ≥ 95 %) and 92 

Sucrose (purity ≥ 99.5 %) were supplied by Sigma Aldrich (UK). All materials were used as 93 

received. Fresh strawberries (Malling centenary) were purchased by a local supermarket 94 

          



and stored in a refrigerator at 5 °C. After washing in tap water and draining with blotting 95 

paper, strawberries were cut into cubes of 1 cm3. 96 

 97 

2.2 Osmotic  dehydration 98 

Osmotic dehydration experiments were carried out by immersion of 10 g of 99 

strawberry cubes in the osmotic solution, at fixed temperature, under stirring at 250 rpm. 100 

The fruit to solution ratio (F:OS) was fixed at 1:10. At the end of each experiment, samples 101 

were taken and blotted with paper. 102 

 103 

2.3 Oven drying  104 

Conventional drying tests were carried out introducing strawberry cubes in an oven 105 

(Fistreem International Co. Ltd, Leicestershire, UK) with no flow air, at room pressure and 106 

fixed temperature.  107 

 108 

2.4 Freeze drying  109 

Fresh cubic samples were frozen at -20 °C and then lyophilised using a bench top 110 

Freeze Dryer (SCANVAC CoolsafeTM, model 110-4, Lynge, Denmark), condenser 111 

temperature-110 °C, pressure 10 Pa.  112 

 113 

2.5 Moisture content analysis 114 

Moisture content (MC) analyses were carried out using a moisture analyser (model 115 

MB 25, OHAUS, Nanikon, Switzerland). Two grams of sample were placed within the 116 

aluminium pans and located over the pan support of moisture meter. Halogen element 117 

inside the moisture meter provides uniform infrared heating. It heats the sample at a set 118 

          



temperature of 120 °C until the sample weight becomes constant. Moisture percentage as a 119 

function of weight change is recorded and displayed. Strawberry initial moisture content 120 

was found to be equal to 86.4 g/100 g. 121 

 122 

2.6 Water activity analysis 123 

Water activity (aw) of fresh and dried samples was measured using an AquaLab® dew 124 

point water activity meter (model 4TE, Decagon Devices Inc., Pullman, WA, USA). The 125 

temperature controlled sample chamber was set to 25 °C. The water activity of the fresh 126 

samples was found to be equal to 0.988. 127 

 128 

2.7 Soluble solids gain determination 129 

Total solids content (SS) was determined by direct reading using an automatic 130 

refractometer (Model J357, Rudolph Research Analytical, Hackettstown, NJ, USA). The solids 131 

gain (SG %) was calculated using the following equation (Campos, Sato, Tonon, Hubinger, & 132 

Cunha, 2012): 133 

𝑆𝑆𝑆𝑆 % =  
(𝑆𝑆𝑆𝑆𝑓𝑓 ∙ 𝑤𝑤𝑓𝑓 − 𝑆𝑆𝑆𝑆0 ∙𝑤𝑤0)

𝑤𝑤0
 

Where: SSf is the soluble solid content (° Bx) after osmotic dehydration; wf is the sample 134 

weight after osmotic dehydration (g); SS0 is the initial soluble solid content (° Bx); w0 is the 135 

sample initial weight (g). Strawberry initial solid content (SS0) in 10 g (w0) of fruits was found 136 

to be equal to 2.05 ° Bx. 137 

 138 

 139 

 140 

          



2.8 Rehydration 141 

Rehydration experiments were performed by immersing a weighed amount of dried 142 

samples into distilled water at room temperature. The samples were removed at regular 143 

intervals, blotted with paper to eliminate the surface water and then reweighed.  144 

Rehydration capacity (RC) was measured for all the samples using the following 145 

equation (de Bruijn & Bórquez, 2014): 146 

𝑅𝑅𝑅𝑅 =  
(𝑤𝑤 (𝑡𝑡) −𝑤𝑤𝑑𝑑)

(𝑤𝑤0−𝑤𝑤𝑑𝑑)
 100 

Where: w(t) is the sample weight at time t (g) and wd is the dried sample weight (g). Then, 147 

the rehydration behaviour was determined plotting RC as a function of the time. 148 

 149 

2.9 Texture analysis 150 

A texture analyser (TA.XT plus, Stable Micro System Ltd, Surrey, UK) with a cylinder 151 

probe (2 mm diameter) was used for puncture penetration test analysis. The probe was 152 

used to measure the maximum force required to penetrate an individual rehydrated piece 153 

of strawberry, to a depth of 2 mm, positioned horizontally over a heavy duty platform. The 154 

speed of approach of the probe was 2 mm/s and a 5 kg load cell was used. For each 155 

experiment the mean maximum penetration force (N) was recorded. 156 

 157 

2.10 Confocal scanning laser microscopy 158 

The microstructure of the strawberry samples was visualised at room temperature 159 

using a confocal scanning laser microscope (Leica TCS SPE, Heidelberg, Germany) equipped 160 

with laser operating at a wavelength of 532 nm. To study how the strawberry structure is 161 

affected by drying, samples were first rehydrated and then a cross section with a thickness 162 

          



equal to 1 mm was cut for observation with the microscope. Before imaging, samples slices 163 

were stained with Nile red solution and covered with a cover slip. 164 

 165 

2.11 Statistical analysis 166 

All measurements were performed in triplicate and are reported as mean and 167 

standard deviation. Data were analysed by one-way analysis of variance (ANOVA) and 168 

Tukey’s multiple comparison tests, using SigmaPlot 12.5 Statistical Software. The level of 169 

significance was defined as p ≤ 0.05. 170 

 171 

3. Results and discussion 172 

In the first part of the experimentation, an optimisation of the osmotic dehydration 173 

operating parameters was carried out in order to identify the conditions that assure the 174 

highest water desorption. Afterwards, experiments were performed with oven drying, 175 

freeze drying and their combination with osmotic dehydration, in order to verify the 176 

effectiveness of the pre-treatment. 177 

 178 

3.1 Osmotic dehydration 179 

Osmotic dehydration experiments were carried out investigating the following 180 

effects: type of osmotic agent, concentration of the osmotic solution, temperature  and 181 

processing time. In Table 1, a list of the experiments is reported with the indication of the 182 

operating conditions employed, the percentage of moisture content in the pre-treated 183 

samples, their water activity and solid gain .  184 

 185 

          



3.1.1 Effect of the type of osmotic agent 186 

The first set of experiments was performed at 25 °C, with a fruit to solution ratio 187 

(F:OS) equal to 1:10, a processing time equal to 3 h and a concentration of 40 °Bx, varying 188 

the kind of osmotic agent, since it has been observed to have a major influence on the mass 189 

transfer rate (Atarés, Chiralt, & González-Martínez, 2008). Dehydrators must be effective, 190 

convenient, non-toxic, with a good taste and should not react with the product (Yadav & 191 

Singh, 2014). In this work, Fructose, Maltose, Sucrose and Maltodextrin were tested as 192 

osmotic agents (runs #1-4 in Table 1) in order to investigate which one lead to a more 193 

efficient dehydration. 194 

Comparing the data obtained from these experiments, it was observed that when 195 

Fructose was used as osmotic agent, samples showed the lowest moisture content (58.9 196 

g/100 g) and water activity (0.951), as reported in Table 1. Therefore, this osmotic agent 197 

was chosen for the further experiments. 198 

According to Panagiotou et al. (Panagiotou, Karathanos, & Maroulis, 1999), during 199 

osmotic dehydration low molecular weight solutes lead to higher water loss and higher solid 200 

uptake than high molecular weight solutes. Our results confirmed their observation since, 201 

among the investigated sugars, Fructose has the lowest molecular weight (as shown in Table 202 

2) and the soluble solid content, that in the fresh strawberry was equal to 2 °Bx, was 203 

increased up to 2.15 % in the samples osmotically treated with this sugar (run #4 in Table 1). 204 

 205 

3.1.2 Effect of the osmotic solution concentration 206 

The second effect taken into account was the concentration of the osmotic solution, 207 

which was varied from 20 to 60 °Bx and compared to 40 °Bx discussed above, keeping 208 

constant all the other parameters (runs #5-6 in Table 1). From the comparison of the 209 

          



obtained results, it was possible to observe that increasing the concentration at 60 °Bx, i.e. 210 

increasing the dehydration driving force, the sample solid gain increased up to 3.2 % 211 

whereas the moisture content and the water activity significantly decreased. For this 212 

reason, it was decided to continue the experimentation fixing the concentration of the 213 

osmotic solution at 60 °Bx.  214 

 215 

3.1.3 Effect of the operating temperature 216 

The influence of the operating temperature on the osmotic dehydration process was 217 

investigated using 35 and 50 °C (runs #7-8 in Table 1). From these experiments, it has been 218 

observed that increasing the temperature the dehydration efficiency increased, reaching a 219 

moisture content equal to 18.77 g/100 g and a water activity equal to 0.705 at 50 °C and 3 h 220 

processing. This result is due to an increase of the cell membrane permeability and a 221 

reduction of the osmotic solution viscosity at higher temperature, which cause a decrease in 222 

the resistance to mass transfer (de Oliveira, Corrêa, de Angelis Pereira, de Lemos Souza 223 

Ramos, & Vilela, 2016). As a consequence, the solid gain also increased since there is a 224 

larger amount of sugar that flows from the solution towards the sample. 225 

 226 

3.1.4 Effect of the processing time 227 

During osmotic dehydration, water diffusion rate from the product is fast in the first 228 

few hours, thereafter it gradually decrease until the achievement of a plateau value; at the 229 

same time, when moisture loss lowers, the solute intake rate towards the product increases 230 

(Ahmed, Qazi, & Jamal, 2016). Therefore, it is very important to identify the appropriate 231 

processing time in order to find a good compromise between water desorption and solid 232 

uptake. 233 

          



The influence of the processing time was studied performing experiments at 1 and 5 234 

h (runs #9 and #10, respectively). Using a processing time of 1 h, the final moisture content 235 

was 3.5 times larger than the MC obtained at 3 h (run #8), as reported in Table 1. On the 236 

other hand, the use of a processing time equal to 5 h led to a higher water desorption; 237 

however, from a technological point of view, the improvement is not as significant as to 238 

justify the employment of such a long process. Moreover, the solid gain measured at this 239 

condition was much higher than that of run #8. 240 

On the ground of the optimisation of the process parameters, the chosen conditions 241 

for the further dehydration experiments were those of run #8, i.e. Fructose as osmotic 242 

agent, temperature of50 °C, concentration equal to 60 °Bx and processing time equal to 3 h. 243 

 244 

3.2 Oven drying 245 

Conventional drying tests were carried out studying the effects of the operating 246 

temperature and the processing time. 247 

 248 

3.2.1 Effect of the operating temperature 249 

In a first step, experiments were performed with a processing time equal to 5 h, at 250 

different operating temperatures, in order to determine the best condition for drying. In 251 

Table 3, a list of the experiments with the corresponding conditions and results is reported. 252 

When the oven temperature was fixed at 40 °C (run #1 in Table 3), it was observed 253 

only a slight reduction of the sample moisture content and the water activity compared to 254 

the fresh sample. At 50 °C (run #2 in Table 3), a further improvement of the results was 255 

observed. At 60 °C (run #3 in Table 3), the reduction of the moisture content was more 256 

evident but the samples, from a macroscopic point of view, appeared partially melted. 257 

          



However, in all the cases, the samples’ water activity was still high; therefore, longer 258 

processing times might be required to achieve the threshold value to avoid microbial 259 

proliferation (Stevenson et al., 2015). 260 

 261 

3.2.2 Effect of the processing time 262 

In order to identify the processing time needed to obtain a MC lower than 20 g/100 263 

g, the evolution of the moisture content was monitored as function of the time at 50 °C, as 264 

shown in Fig. 1. 265 

As shown in Fig. 1, about 8 h of processing are needed to achieve a MC equal to 13 266 

g/100 g. However, after 6 h the samples’ structure was completely destroyed with a 267 

complete change in their shape and texture. 268 

On the basis of these results, it is possible to conclude that oven drying cannot be 269 

considered an effective drying technique for strawberry processing. In order to improve the 270 

performance of this process, the osmotic dehydration pre-treatment was then applied. 271 

 272 

3.2.3 Osmotic dehydration+ Oven drying 273 

The best conditions identified from osmotic dehydration experiments (run #8 in 274 

Table 1) were fixed for the pre-treatment; samples were then processed using oven drying 275 

at 50 °C over a period of 2 h (run #4 in Table 3). At the end of the experiment, the moisture 276 

content was significantly reduced to 6.7 g/100 g and the water activity was reduced to 277 

0.437; both the values were below the required threshold to avoid microbial spoilage.  278 

Comparing this result with that of run #2 (Table 3), it is possible to deduce that using 279 

the same processing time (5 h), the combination of the two techniques provided a more 280 

efficient result with respect to the only oven drying.  281 

          



3.3 Freeze drying 282 

Freeze drying experiments were performed at different processing time, as shown in 283 

Fig. 2a and 2b, where the final moisture content and the water activity were plotted as a 284 

function of the time. From these diagrams, it can be seen that presumably at least 15 h are 285 

necessary to reach acceptable values from a microbiological point of view. In order to 286 

reduce the processing time, the combination osmotic dehydration + freeze drying was 287 

investigated. 288 

 289 

3.3.1 Osmotic dehydration + freeze drying 290 

For the osmotic dehydration the conditions of run #8 in Table 1 were chosen as the 291 

pre-treatment. For freeze drying, two processing times were investigated, as shown in Table 292 

4 (runs #3-4). 293 

Fixing the freeze drying processing time at 4 h (run #3 in Table 4), the moisture 294 

content reduced slightly with respect to the only osmotic dehydration (run #8 in Table 1), 295 

but the water activity value reduced significantly. Comparing this result with those obtained 296 

with the only freeze drying, it can be observed that the combination of the two techniques 297 

allows the total processing time to be reduced from 15 h to 7 h. 298 

Increasing the freeze drying processing time to 7 h (run #4 in Table 4), showed a 299 

large reduction of the MC and aw. This result, obtained with a total processing time of 10 h, 300 

can be reached in 18 h using the only freeze drying (run #2 in Table 4). Therefore, osmotic 301 

pre-treatment has been shown to be an effective way to significantly reduce the processing 302 

time and, as a consequence, the related energetic costs. 303 

 304 

          



 305 

3.4 Rehydration behaviour 306 

As already discussed in the Introduction, rehydration is a fundamental aspect in 307 

drying process. In this phenomenon different physical mechanisms are involved: absorption 308 

of water into the dried product, diffusion of water molecules through the porous network 309 

and swelling (Ratti, 2008). The degree of rehydration is mainly influenced by the employed 310 

drying process since it affects the integrity of the food structure. 311 

 312 

3.4.1 Oven drying 313 

In Fig. 3, the comparison between the rehydration behaviour of the oven drying and 314 

osmotic dehydration+ oven dried samples is reported. When rehydrated, osmotic dried 315 

samples reached a RC equal to 15.9 g/100 g; whereas osmotic dehydration+ oven dried 316 

samples showed a relevant improvement of the rehydration capacity, achieving a value 317 

equal to 30.7 g/100 g. This is a further evidence of the effectiveness of the osmotic pre-318 

treatment when applied to oven drying.  319 

 320 

 321 

3.4.2 Freeze drying 322 

In Fig. 4, a comparison between the rehydration behaviour of the freeze dried and 323 

the osmotic dehydration + freeze dried samples is reported. 324 

From these rehydration tests it is possible to observe that freeze dried samples 325 

reached a rehydration capacity around 42 g/100 g, whereas pre-treated samples reached a 326 

lower RC, equal to 30 g/100 g. This experimental evidence was already observed by some 327 

          



authors (Ciurzyńska & Lenart, 2012; Seguí, Fito, & Fito, 2013); it could be due to the 328 

sample’s shrinkage that occurs during the treatment which makes water absorption more 329 

difficult and slow. 330 

In this case the pre-treatment had a detrimental effect on samples’ rehydration 331 

ability when applied to freeze drying. However, these dried products could be used in 332 

applications in which rehydration is not necessarily required such as snacks and cereal mix. 333 

 334 

3.5 Texture analyses 335 

Texture is one of the most important quality criteria for food acceptability by 336 

consumers, especially for dried products. In this work, puncture penetration test was used 337 

as an indicator of strawberry textural properties; the analyses were carried out on fresh and 338 

rehydrated samples. The results of the tests in terms of maximum penetration force for 339 

each drying technique are shown in Fig. 5. The analyses revealed that drying process caused 340 

a decrease in strawberry firmness, independently from the used technique. Comparing the 341 

results of the different methods, it was found that textural properties were better retained 342 

when osmotic pre-treatment was applied. Texture is less preserved in oven dried samples 343 

since this technique caused a collapse of the microstructure with consequent softening of 344 

the macrostructure. Freeze dried samples, instead, showed intermediate results between 345 

pre-treated and oven dried samples.  346 

 347 

3.6 Microstructure analyses 348 

 Strawberry has a complex internal structure, formed by many tissues which have 349 

different chemical composition and microstructure. The skeleton of this fruit is composed by 350 

the vascular tissue which is composed of long fibre and pith. The outer layer is formed by 351 

          



epidermal cells; the inner layer is formed by hypodermal cells and cortical cells (Polito, 352 

Larson, & Pinney, 2002). In each cell it is possible to identify the intercellular volume, which 353 

contains vacuole and cytoplasm, and the extracellular volume, which comprises the cell 354 

membrane and the space between different cells. In order to localize cell membranes, 355 

samples were stained with Neil Red since it has the ability to bind to its phospholipids 356 

(Fujimura et al., 2007). Fig. 6 shows the cortex cells in fresh and rehydrated strawberries 357 

observed with the confocal scanning laser microscope. 358 

As observed in Fig. 6a, unprocessed strawberry cells are 100’s of μm and close to 359 

each other. In freeze dried and osmotic dehydration + freeze dried samples, shown in Fig. 6b 360 

and 6c respectively, the cells are still clearly visible which means that the processing did not 361 

affect the sample microstructure; moreover, in both the cases, they are smaller probably 362 

because samples were not able to reach the complete rehydration in the time of the study, 363 

as it was previously discussed. In the case of oven dried sample (Fig. 6d) it was not possible 364 

to identify cells since the sample microstructure was completely destroyed. When osmotic 365 

dehydration is applied prior to oven drying, the collapse of the structure is partially limited 366 

and some cells are still present even if broken in some points; this result explains why in 367 

these samples rehydration is higher than that of the oven dried samples.  368 

4. Conclusions 369 

In this work the influence of osmotic dehydration on oven and freeze drying 370 

performance has been carried out. It has been demonstrated that the application of the pre-371 

treatment allows: a significant reduction the processing time and a better retention of the 372 

mechanical and structural properties of strawberry; to improve the rehydration ability in the 373 

case of oven dried samples. 374 

          



These results can be relevant from an industrial point of view since they allow a better 375 

understanding of the physical processes and could lead to a reduction in cost and 376 

improvement in the quality of the product.  377 
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Figures 454 

 455 

Fig. 1: Moisture content (MC) evolution during oven drying at 50 °C. Each value is expressed 456 
as mean ± SD (n=3), statistical significance was assessed by one-way ANOVA.  457 

 458 

 459 

          



  460 

Fig. 2: Evolution over the time of: (a) Moisture content (MC); (b) Water activity (aW).  461 

 462 

 463 

Fig. 3: Comparison between the rehydration behaviour of oven dried and osmotic 464 
dehydration + oven dried samples: ● oven drying; ○ osmotic dehydration +oven drying; RC: 465 
rehydration capacity.  466 
 467 

 468 

          



 469 

Fig. 4: Comparison between the rehydration behaviour of freeze dried and osmotic 470 
dehydration + freeze dried samples: ● freeze drying; ○ osmotic dehydration +freeze drying; 471 
RC: rehydration capacity.  472 
 473 

 474 

 475 

          



Fig. 5: Puncture penetration testing of strawberries dried using different techniques and 476 
rehydrated at room temperature. Each value is expressed as mean ± SD (n=3). The values 477 
followed by the same letter (abc) are not significantly different according to one-way 478 
ANOVA and Tukey’s multiple comparison tests. 479 

 480 

 481 
 Fig. 6: Confocal microscope images of strawberry cortex cells: (a) unprocessed sample; (b) 482 
freeze dried sample; (c) osmotic+freeze dried sample; (d) oven dried sample; (e) osmotic+oven 483 
dried sample. 484 

          



TABLES 485 

Table 1: Summary of the osmotic dehydration experiments. Each value is expressed as 486 
mean ± SD (n=3). The values followed by the same letter (abcdefghi) in the columns are not 487 
significantly different according to one-way ANOVA and Tukey’s multiple comparison tests. 488 

# Osmotic agent C [°Bx] T [°C] t [h] MC [g/100 g] aw SG % [°Bx] 
1 Maltodextrin 40 25 3 75.91±0.82a 0.985±0.003a 1.03±0.03a 

2 Sucrose 40 25 3 70.53±1.90b 0.957±0.006b 1.78±0.04b 
3 Maltose 40 25 3 71.70±1.40b 0.960±0.004b,c 1.75±0.05b 

4 Fructose 40 25 3 58.90±1.46c 0.951±0.003b,c 2.15±0.06c 

5 Fructose 20 25 3 76.70±1.15a 0.974±0.006a,c 1.97±0.02d 

6 Fructose 60 25 3 44.60±1.45d 0.910±0.003d 3.20±0.03e 

7 Fructose 60 35 3 31.84±0.92e 0.780±0.005e 3.47±0.03f 

8 Fructose 60 50 3 18.77±1.06f 0.705±0.003f 4.22±0.02g 

9 Fructose 60 50 1 67.83±1.25b 0.966±0.009b,c 1.69±0.05h 

10 Fructose 60 50 5 18.10±1.13f 0.695±0.007f 4.34±0.04i 

C: concentration of the osmotic solution; T: temperature; t: processing time; MC: moisture content; aw: water 489 
activity; SG: solid gain 490 
 491 

 492 

Table 2: Osmotic agents’ molecular weight. 493 

Osmotic agent Molecular weight [ g/mol] 
Maltodextrin 957.5 

Sucrose 342.3 
Maltose 342.3 
Fructose 180.2 

 494 

 495 

 496 

Table 3: Oven drying and osmotic dehydration+oven drying experiments. Each value is 497 
expressed as mean ± SD (n=3). The values followed by the same letter (abcd) in the columns 498 
are not significantly different according to one-way ANOVA and Tukey’s multiple 499 
comparison tests. 500 

# Process T [°C] MC [g/100 g] aw 
1 Oven drying 40 80.1±2.06a 0.978±0.008a 

2 Oven drying 50 75.6±1.51b 0.966±0.008a,b 

3 Oven drying 60 66.4±1.75c 0.958±0.005b 

4 Osmotic+oven drying 50 6.7±0.47d 0.437±0.004c 

T: temperature; MC: moisture content; aw: water activity 501 
 502 

          



Table 4: Freeze drying and osmotic dehydration+freeze drying experiments. Each value is 503 
expressed as mean ± SD (n=3) .The values followed by the same letter (abc) in the columns 504 
are not significantly different according to one-way ANOVA and Tukey’s multiple 505 
comparison tests. 506 

# Process Time [h] MC [g/100 g] aw 
1 Freeze drying 7 61.04±1.11a 0.920±0.007a 

2 Freeze drying 18 7.38±0.80b 0.195±0.007b 

3 Osmotic+Freeze drying (3)+4 15.34±0.96c 0.461±0.003c 

4 Osmotic+Freeze drying (3)+7 7.52±0.79b 0.195±0.006b 

MC: moisture content; aw: water activity 507 
 508 

          


