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A limit field for orthogonal range searches in
two-dimensional random point search trees

Nicolas Broutin ∗ Henning Sulzbach †

December 1, 2017

Abstract

We consider the cost of general orthogonal range queries in random quadtrees. The cost of a given
query is encoded into a (random) function of four variables which characterize the coordinates of two
opposite corners of the query rectangle. We prove that, when suitably shifted and rescaled, the random
cost function converges uniformly in probability towards a random field that is characterized as the unique
solution to a distributional fixed-point equation. Our results imply for instance that the worst case query
satisfies the same asymptotic estimates as a typical query, and thereby resolve an old question of Chanzy,
Devroye and Zamora-Cura [Acta Inf., 37:355–383, 2000].

AMS 2010 subject classifications.
Key words. quadtree, random partition, convergence in distribution, contraction method, range query,
partial match, analysis of algorithms.

1 Introduction

1.1 Quadtrees and structures for geometric data
Geometric data are central in a number of practical contexts, such as computer graphics, management of
geographical data or statistical analysis. Data structures storing such information should allow for efficient
dictionary operations such as updating the data base and retrieving data matching specified patterns. For
general references on multidimensional data structures and more details about their various applications,
see the series of monographs by Samet [26, 27, 28].

We are interested in tree-like data structures which permit efficient execution of search queries. In
applications, one of the essential basic type of queries type are (orthogonal) range queries, which ask to
report all data located inside some axis parallel rectangular region. Such queries include the case when
some of the projections of the rectangular region on the axis are either reduced to a point or span the entire
domain. So, in particular, range queries cover the following two cases:

• When the pattern specifies precisely all the data fields (the query rectangle is a point), we speak of an
exact match. Such queries can typically be answered in time logarithmic in the size of the database,
since only one branch needs to be explored.

• When the projections of the query rectangle on the different axes are either points or the entire domain,
we speak of a partial match. In general, such searches explore multiple branches of the data structure
to report the matching data, and the cost usually becomes polynomial.

We are interested in the comparison-based setting, where the data may be compared directly at unit
cost. In this context, a few general purpose data structures generalizing binary search trees permit to answer
orthogonal range queries, namely the quadtree [20], the k-d tree [1] and the relaxed k-d tree [18]. Since
range queries are at the same time an essential building block of many other algorithms and still rather
∗PRES Sorbonne Universités, UPMC Université Paris 06, LPMA (UMR 7599). Email: nicolas.broutin@upmc.fr. Grant: ANR-
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Figure 1: The first four steps in the quadtree construction of the partition, and of the corresponding trees. The place-
holders are marked with squares while the actual nodes, which ‘store’ one of the points, are depicted with disks.

elementary, one would expect that their complexity should be fully understood by now. This is not the case:
despite their importance, a precise quantification of the complexity of range queries in the data structures
listed above is still missing. We will shortly review the literature precisely, but let us for now point out that,
before the present document, even the average value in the context of uniformly random data points and a
uniformly random query was only known up to a multiplicative factor.

In this paper, we provide refined analyses of the costs of orthogonal range queries in the two-dimensional
data structures mentioned earlier. We mostly focus on quadtrees, but our results also apply (modulo some
easy model-specific modifications) to the case of 2-d trees and relaxed 2-d trees. We only sketch the results
for 2-d trees, since the phenomena at hand and the proofs are completely analogous, and the cases of partial
match queries have been treated in [7] (see Section 6); the case of relaxed 2-d trees is also similar, but we
leave it as an exercise to keep the present paper as concise as possible. Our results provide, for the first time,
a study of the extent of the fluctuations of the complexity, precise asymptotic estimates for all moments and
convergence in distribution, jointly for all axis-parallel rectangular queries.

Remarks. We emphasize the fact that we are interested in general purpose data structures: for instance, the
range trees of Bentley [2] (and their close relatives, see [3]) are complex data structures tailored to answer
range queries very fast, but this is mostly a theoretical benchmark since the space required is super-linear
in the number of data points. On the other hand, the squarish k-d trees introduced by Devroye, Jabbour,
and Zamora-Cura [16] would fit; unfortunately, while it is very interesting, our results do not apply to these
trees. We plan to address the complexity of orthogonal range queries in squarish k-d trees in the near future.

Before going any further, let us introduce two-dimensional quadtrees. Given a sequence of points (also
called keys) (pi)i≥1 ∈ [0, 1]2 we define a sequence of quadtrees (Tn)n≥1, together with a recursive partition
of the unit square. We can see the construction algorithm as inserting the points successively and “storing”
them in a node of a quaternary tree. We proceed as follows: Initially, we think of T0 as an empty tree,
which consists of a placeholder to which we assign the unit square. The first point p1 is inserted in this
placeholder and becomes the root, thereby giving rise to four placeholders. Geometrically, p1 decomposes
the unit square into four rectangular regions Q1, . . . , Q4 each of which is assigned to a child of the root
(currently placeholders). Suppose that we have constructed Tn by successive insertion of p1, . . . , pn, and
that Tn induces a partition of the square into 1 + 3n rectangles, each one assigned to one of the 1 + 3n
placeholders of Tn. The next point pn+1 is then placed in the placeholder, say v, that is assigned to the
rectangle containing pn+1. This operation turns v into a node and creates four new placeholders just below.
Geometrically, pn+1 divides this rectangle into four subregions that are assigned to the four newly created
placeholders. See Figure 1 for an illustration of the first few steps.

1.2 The cost of queries in random quadtrees
In a standard probabilistic model, the quadtree Tn is constructed from the first n points X1, . . . , Xn of a
single infinite sequence of i.i.d. random variables (Xi)i≥1 with uniform distribution on [0, 1]2.
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In this setting, an orthogonal range query asks to retrieve all points contained inside a given rectangle
with (opposite) corners (a, c) and (b, d). This covers partial match queries, aiming at all elements with a
given value for the first coordinate, regardless of the second one (taking the rectangle given by (a, 0) and
(a, 1)). Further, the set-up also includes a fully specified query aiming at determining whether the structure
contains the element (a, c) (taking the corner (a, c) and (a, c)). The search algorithm explores recursively
the nodes of the trees corresponding to regions that have a non-empty intersection with the query. As a basic
measure of complexity, we consider the number of nodes inspected by the algorithm. (See Figures 2 and 3.)

Fully specified queries and distances. Here, the cost corresponds to the number of nodes on the search
path, or, equivalently to the number of rectangles that contain the query point in the full refining family of
nested partitions. In our probabilistic model, fully specified queries are well understood. It is known that
the corresponding mean complexity is asymptotic to log n [15, 23], the variance grows like 1

2 log n [23],
and that there is a central limit theorem [14, 21]. For all these results, note that this essentially corresponds
to the cost of a random query, but adding the reference to a point in [0, 1]2 would not make a difference
(except on the edges, where the leading constant is different). The extreme cost is the height of the tree, and
Devroye has proved that it is asymptotic to α log n, where α = 2.15 . . . [13].

Partial match queries. The history case of partial match queries stretches over a much longer period and
has only been finely determined very recently [6, 7]. For t ∈ [0, 1], let Cn(t) denote the number of nodes
visited by a query in Tn retrieving all keys with first coordinate t. Equivalently, Cn(t) + 1 is given by
the number of rectangles in the partition of [0, 1]2 induced by Tn intersecting the vertical line at t. See
Figure 2 for an illustration. Throughout the document, ξ denotes a generic random variable with uniform
distribution on [0, 1] which is stochastically independent of (Xi)i≥1. In their seminal work on properties
of random quadtrees, Flajolet, Gonnet, Puech, and Robson [23] considered the case of random queries and
showed that

E [Cn(ξ)] = κnβ +O(1), n→∞, (1)

where

β =

√
17− 3

2
, and κ =

Γ(2β + 3)

2Γ(β + 1)3
, (2)

and Γ( · ) denotes the Gamma function. In fact, Flajolet, Gonnet, Puech, and Robson [23] provide a full
asymptotic expansion for E[Cn(ξ)] which was generalized to the higher dimensional case by Chern and
Hwang [9]. In the early 2000s, using the recursive approach underlying the results obtained by Flajolet
et al. [23], there were some attempts to obtain more detailed asymptotic information such as the variance or
the limit distribution ofCn(ξ). However, it turns out that for a random query ξ, there is no obvious recursion
for higher moments since the query couples the subproblems (the location is the same in subproblems!) To
circumvent this issue, one can consider fixed queries. It is only recently that this route has been successfully
explored: Curien and Joseph [12] proved that, for fixed t ∈ [0, 1], as n→∞,

E[Cn(t)] = K1h(t)nβ + o(nβ), (3)

where

h(t) = (t(1− t))β/2, and K1 =
Γ(2β + 2)Γ(β + 2)

2Γ(β + 1)3Γ(β/2 + 1)2
. (4)

In the joint work [7] (see also [6]) with Ralph Neininger relying on the functional contraction method
developed in [25], we established a distributional functional limit theorem for the rescaled process n−βCn:
upon considering Cn as a right-continuous step function on [0, 1], we have the following convergence in
distribution

n−βCn
d−−−−→

n→∞
Z, (5)

where the limit process Z is continuous and is further discussed in Section 2 below. Here, the convergence
is in the space of càdlàg functions on the unit interval. See [4, Section 3] for background. Based on this
result, Curien [11] was able to show that the convergence actually holds in probability (and, for any fixed
t ∈ [0, 1], even almost surely).
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Figure 2: The partition induced by a quadtree and the different kinds of range queries. Each time, the query rect-
angle (which might be lower dimensional) is depicted in blue, and the nodes visited are shown in red: on the left
a non-degenerate range query; in the middle, a partial match query, and on the right, a fully specified query. The
corresponding tree, is depicted in Figure 3.

Figure 3: The quadtree corresponding to the partition shown in Figure 2. The nodes in red are the nodes visited by the
range query illustrated in the left picture there, and correspond to the red points in that picture.

Orthogonal range queries. Despite their importance, the cost of range searches has been much less studied.
For the closely related structure of k-d trees, the first important contribution is due to Chanzy, Devroye, and
Zamora-Cura [8] who consider queries anchored at a uniformly random point in the unit square with specific
predetermined dimensions ∆1 and ∆2 along the first and second coordinates. (These queries are allowed to
exit [0, 1]2.) For the average cost mn of such a query, they obtain the following explicit bounds

γ ≤ mn

∆1∆2n+ (∆1 + ∆2)nβ + log n
≤ γ′, 0 < γ < γ′ <∞. (6)

This exhibits a contribution of the “volume” of nodes to report, and a “perimeter” effect of the order of
magnitude of a partial match. Chanzy, Devroye, and Zamora-Cura [8, Section 8] also mention that an
analogous result should hold for random quadtrees.

The aim of the present paper is to prove a limit theorem for the joint complexity of all range searches
simultaneously, just as (5) for the partial match queries. Such an approach will also give access to the
cost of extreme queries, which depend on the data points in an intricate way. We first define the set of all
queries for which one should have joint convergence. Let I = {(a, b, c, d) ∈ [0, 1]4 : a ≤ b, c ≤ d}. For
(a, b, c, d) ∈ I , let Q(a, b, c, d) = (a, b]× (c, d] and denote by On(a, b, c, d) the number of nodes visited by
the algorithm to answer the query with rectangle Q(a, b, c, d) in Tn. The random variable On(a, b, c, d) is
well-defined except on lower-dimensional subsets of I , and we agree to extend it to these sets by imposing
right continuity in all coordinates. Note that, by this convention, the range query is a genuine generalization
of partial match queries since, for t ∈ [0, 1], we have On(t, t, 0, 1) = Cn(t). Our main results are presented
in the following section.

1.3 Main results: joint convergence of all orthogonal range queries
We are interested in the joint asymptotic cost of all range queries with rectangleQ(a, b, c, d), (a, b, c, d) ∈ I ,
in Tn, that is, in the asymptotic behavior of the family of random variables On(a, b, c, d), (a, b, c, d) ∈
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I . Let C+
4 be space of continuous functions on I equipped with supremum norm ‖ · ‖ such that ‖f‖ =

sup(a,b,c,d)∈I |f(a, b, c, d)|. For (a, b, c, d) ∈ I , let Vol(a, b, c, d) = (b − a)(d − c) denote the area of the
query rectangle Q(a, b, c, d). Recall that the sequence of random fields On = On(a, b, c, d), n ≥ 1 relies
on the sequence of quadtrees Tn,≥ 1, constructed from the same sequence (Xi)i≥1. Our main result is the
following theorem.

Theorem 1.1. There exists a random continuous C+
4 -valued random variableO (a random field) such that,

in probability and with convergence of all moments,∥∥∥On − nVol

nβ
−O

∥∥∥ −−−−→
n→∞

0 .

Observe that the statement in Theorem 1.1 also covers query rectangles with zero Lebesgue measure
(Vol(a, b, c, d) = 0). The following straightforward consequence settles the question of Chanzy, Devroye,
and Zamora-Cura [8] about the average cost of the worst-case range query:

Corollary 1.2. We have the following convergence, in probability with convergence of all moments:

n−β · sup
(a,b,c,d)∈I

{
On(a, b, c, d)− n(b− a)(d− c)

}
−−−−→
n→∞

sup
a,b,c,d

O(a, b, c, d) .

The limit field O is uniquely characterized as the solution to a stochastic fixed-point equation.

Proposition 1.3. Up to a multiplicative constant, the process O is the unique C+
4 -valued random field (in

distribution) with E[‖O‖2] <∞ satisfying the stochastic fixed-point equation

O d
=

4∑
r=1

Dr(O(r)), (7)

where O(1), . . . ,O(4) are copies of O, D1, . . . , Dr are random linear operators defined in (35) and the
random variables O(1), . . . ,O(4), and (D1, . . . , D4) are independent.

Proposition 7 only characterizes the distribution of O up to a multiplicative constant. The following
proposition identifies the limit mean, and hence the missing multiplicative constant.

Proposition 1.4. Let (a, b, c, d) ∈ I . Then, we have

E[O(a, b, c, d)] =
1

2

(
µ(a, d)− µ(a, c) + µ(b, d)− µ(b, c) + µ(c, b)− µ(c, a) + µ(d, b)− µ(d, a)

)
,

where µ(t, s) = K1h(t)g(s), the constant K1 defined in (4), and g is a continuous and monotonically
increasing bijection on [0, 1] satisfying g(s) = 1 − g(1 − s) for every s ∈ [0, 1]. Furthermore g is C∞ on
(0, 1) and the unique bounded measurable function on [0, 1] satisfying, for every s ∈ [0, 1],

g(s) =
β + 1

2

(∫ 1

s

vβg
( s
v

)
dv +

∫ s

0

(1− v)βg

(
s− v
1− v

)
dv

)
+

1

2
sβ+1 . (8)

About the higher-dimensional case. All results in the present paper crucially rely on the limit theorems for
partial match complexities formulated in [7], whose proofs are based on the functional contraction method
developed in [25]. While high-dimensional analogues of the results summarized on fully specified queries,
the mean complexity of partial match queries (1) and inequalities of type (6) are known [8, 9, 14, 15, 21, 23,
24], generalizations of our results would require to extend the contraction method to functions of multiple
variables which is technically more demanding. For instance, even the high-dimensional analogues of the
results in [7] are unknown. We intend to carry out an analysis of partial match and range queries in the
d-dimensional case, for d ≥ 3, elsewhere. Here, it is important to observe that, while we are dealing with
random functions of multiple variables, we never use directly the contraction method for these fields thanks
to a number of couplings.
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Figure 4: The function g obtained by iteration in red, and the identity in blue for comparison.

1.4 Strategy of the proof and combinatorial identities
The proof of Theorem 1.1 relies on a representation of On(a, b, c, d) as a sum of different terms which aims
at accounting precisely for the contributions of the “volume” and “perimeter” effects that are visible in the
upper and lower bounds in (6).

Every point X = (x1, x2) ∈ [0, 1]2 partitions the unit square into four regions

SW(X) = [0, x1)× [0, x2]

NW(X) = [0, x1]× (x2, 1]

SE(X) = (x1, 1]× [0, x2]

NE(X) = (x1, 1]× (x2, 1] .

For (a, b, c, d) ∈ I , the lines {x = a}, {x = b}, {y = c}, and {y = c} partition the unit square [0, 1]2.
Let R1 = SW(a, c) = [0, a] × [0, c], R2 = NW(a, d) = [0, a) × (d, 1], R3 = SE(b, c) = (b, 1] ×
[0, c), R4 = NE(b, d) = (b, 1]× (d, 1], be the regions south-west, north-west, south-east and north-east of
Q(a, b, c, d), respectively. (See Figure 5 for an illustration.) Let also S1 = [a, b]× [0, c), S2 = [0, a]× [c, d],
S3 = (b, 1] × [c, d] and S4 = [a, b] × (d, 1] denote the regions south, east, north and west of Q(a, b, c, d).
Then (0, 1]2 is the disjoint union of Q(a, b, c, d), R1, R2, R3, R4 and S1, S2, S3, S4.

Fix n ≥ 1. Let Nn(a, b, c, d) denote the number of points among X1, X2, . . . , Xn that lie within the
query rectangle Q(a, b, c, d). For s, t ∈ [0, 1], let Y <n (t, s) denote the number of nodes visited to answer
the partial match query {x = t} such that the corresponding point in [0, 1]2 lies in SW(t, s). So, for
instance, the number of points lying in S4 that are visited when answering the partial match query {x = a}
is Y <n (a, d)−Y <n (a, c). Similarly, define Y ≥n (t, s) as the number of points lying in SE(t, s) that are visited
by a partial match query at t. The functions Ȳ <n (t, s) and Ȳ ≥n (t, s) are defined in a symmetric way when
exchanging the first and second coordinates of every point X1, X2, . . . , Xn.

LetD(1)
n (a, b, c, d) denote the number of points amongX1, X2, . . . , Xn that are lying inR1 and are vis-

ited by a fully specified search query in Tn retrieving (a, c). Analogously, letD(2)
n (a, b, c, d),D(3)

n (a, b, c, d)

and D(4)
n (a, b, c, d) denote the number of points lying respectively in R2, R3 and R4 that are visited to an-

swer a fully-specified query for (a, d), (b, c) and (b, d), respectively.
We agree that, on horizontal and vertical lines containing points in the set {X1, X2, . . .}, all functions

introduced in the previous paragraph are continuous from the right in all coordinates.
The following representation is reminiscent of the decomposition in sliced queries by [17].
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Lemma 1.1. Fix n ≥ 1 and a quadtree on n points. For (a, b, c, d) ∈ I , we have

On(a, b, c, d) = Nn(a, b, c, d)

+ Y ≥n (b, d)− Y ≥n (b, c) + Y <n (a, d)− Y <n (a, c)

+ Ȳ ≥n (d, b)− Ȳ ≥n (d, a) + Ȳ <n (c, b)− Ȳ <n (c, a)

+D(1)
n (a, b, c, d) +D(2)

n (a, b, c, d) +D(3)
n (a, b, c, d) +D(4)

n (a, b, c, d). (9)

R1

R2

R3

R4

a b

c

d

Q(a, b, c, d)

S1

S3

S4

S2

Figure 5: The decomposition in Lemma 1.1 of the points visited to answer the query with rectangle Q(a, b, c, d), here
depicted in blue, and which are counted by On(a, b, c, d).

Proof. Consider X1, X2, . . . , Xn as fixed, and fix (a, b, c, d) ∈ I . The points that are visited to answer
some range query may be grouped into different subsets depending on to which part of the unit square
among Q(a, b, c, d), R1, R2, R3, R4 or S1, S2, S3, S4 they belong.

Now, a node of Tn storing the point Xi is visited when answering the query with rectangle Q(a, b, c, d)
if and only if, at the time of its insertion in Tn, the point Xi falls in a rectangle of the partition induced by
the quadtree Ti−1 that intersects Q(a, b, c, d) (See [8]). It follows that the nodes corresponding to the points
Xi lying within Q(a, b, c, d) are all visited. Furthermore, the nodes corresponding to the points lying in
R1, R2, R3 and R4 are visited when answering the query Q(a, b, c, d) if and only if they are visited when
answering the fully specified queries for the points (a, c), (a, d), (b, c) and (b, d), respectively. Finally, we
need to consider the points among X1, X2, . . . , Xn lying in the rectangles S1, S2, S3 and S4. For these,
the rectangle corresponding to a point Xi intersects Q(a, b, c, d) if and only if it intersects the line segment
separating Si, 1 ≤ i ≤ 4, fromQ(a, b, c, d) (open at one of the end points). It follows easily that, aside from
the points that may lie on one of the boundaries of the regions, the contributions are precisely the number
of points lying in S1, S2, S3 or S4 reported by one of the partial match queries {x = a}, {x = b}, {y = c},
or {y = d}. If follows that the claim holds for all (a, b, c, d) ∈ I provided that no data point lies on any of
these lines; the right-continuity of the functions completes the proof.

With Lemma 1.1 under our belt, it is now relatively easy to get an intuition for why Theorem 1.1 should
hold, and what is needed to turn this intuition into a proof. One first observes thatNn(a, b, c, d) is distributed
as a binomial random variable with parameters n and Vol(a, b, c, d), so thatNn = nVol+O(

√
n) uniformly

in I . Since β > 1/2, the error term for the rescaled process is O(n1/2−β) = o(1), again uniformly in I .
On the other hand, since D(i)

n , 1 ≤ i ≤ 4, are visited by a fully specified query retrieving some point,
max1≤i≤4D

(i)
n is bounded above by the height of the tree Tn, and thus O(log n) (see [13], but much

weaker bounds would also suffice). As a consequence, for any fixed (a, b, c, d) ∈ I , the limit of

On(a, b, c, d)− nVol(a, b, c, d)

nβ

should be the limit of sum of the terms of the form n−βY <n , n−βY ≥n , n−βȲ <n and n−βY ≥n . Note that, of
course, these terms are not independent; furthermore, the values for different (a, b, c, d) ∈ I are dependent
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as well. We will prove that each of these terms converges uniformly on I in probability. The four types of
terms we now have to deal with are all “partial-match”-like, and the technology we have developed in [6, 7]
will come in handy.

1.5 Plan of the paper
The remainder of the paper is organized as follows: In Section 2, we introduce the relevant background and
constructions about partial match queries and their limit process that needs to be generalized to consider
the terms involved in Lemma 1.1. Section 3 deals with the case of one-sided partial match queries, where
only the point lying on one or the other side of the query line are reported (terms of the form Y <n (t, 1)
and Y ≥n (t, 1)). Section 4 deals with the further restriction of the count of points depending on their second
coordinate (along the direction parallel to the query line), namely terms of the form Y <n (t, s) and Y ≥n (t, s).
We put everything together and complete the proofs in Section 5. Finally, the extensions to 2-d are presented
in Section 6.

2 The cost of partial match queries in random quadtrees
In this section, we introduce the notation and review the relevant constructions and results about partial
match queries that are central to our approach. We refer the reader to [6, 7] for more details and the proofs.

We call a set Q ⊆ [0, 1]2 a half-open rectangle if, for some real numbers a, b, c, d such that 0 < a <
b ≤ 1 and 0 < c < d ≤ 1, we have

Q =


(a, b]× (c, d], or
[0, b]× (c, d], or
(a, b]× [0, d], or
[0, b]× [0, d].

Let Q be the set of all half-open rectangles and T =
⋃
k≥0{1, 2, 3, 4}k be the infinite quaternary tree of

words on the alphabet {1, 2, 3, 4}: the finite words on {1, 2, 3, 4} are the nodes, and the ancestors of some
word are its prefixes (including the empty word ∅). For u ∈ T \ {∅}, the word ū obtained by removing the
last letter is called the parent of u. A subset A ∈ T is called a tree if it is closed by taking prefixes. For a
finite tree A ⊂ T, let ∂A be the set of nodes u ∈ T such that u 6∈ A, but ū ∈ A.

From the sequence (Xi)i≥1 of random points in [0, 1]2, we recursively construct

(i) a bijection π : N→ T inducing node labels Xπ−1(v) associated with v ∈ T,

(ii) a family {Qv ∈ Q : v ∈ T} where Q∅ = [0, 1]2, and for all v ∈ T, Qv is the disjoint union of the
four half-open rectangles Qv1, . . . , Qv4, and

(iii) an increasing (for inclusion) sequence of trees (Tn)n≥1 such that, for every n ≥ 1, {Qv : v ∈ ∂Tn}
is a partition of [0, 1]2.

We proceed as follows. First, let π(1) = ∅, T1 consist of the root node ∅ and Q1 := SW(X1), Q2 :=
NW(X1), Q3 := SE(X1) and Q4 := NE(X1) be the four half-open rectangles generated by insertion of
X1 in [0, 1]2. Next, for n ≥ 1, having defined π(j) for all j ≤ n, the tree Tn and rectangles Qv for all
v ∈ ∂Tn such that {Qv : v ∈ ∂Tn} is a partition of [0, 1]2, we let π(n+1) be the unique node v ∈ ∂Tn with
Xn+1 ∈ Qv . Further, Tn+1 := Tn ∪ {v} and Qv1, . . . , Qv4 are defined respectively as Qv ∩ SW(Xn+1),
Qv ∩NW(Xn+1), Qv ∩SE(Xn+1) and Qv ∩NE(Xn+1). The partition of the unit square induced by Tn+1

is then given by {Qv : v ∈ ∂Tn+1}.
Let Q(i)

v , i = 1, 2 be the projection of Qv on the ith component. For v ∈ T, we define the time-
transformations ϕv, ϕ′v quantifying the position of a point (t, s) relative to the boundary of Qv: we set

ϕv(t) = 1
Q

(1)
v

(t)
t− inf Q

(1)
v

supQ
(1)
v − inf Q

(1)
v

, t ∈ [0, 1], (10)

and

ϕ′v(s) = 1
Q

(2)
v

(s)
s− inf Q

(2)
v

supQ
(2)
v − inf Q

(2)
v

, s ∈ [0, 1]. (11)
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With Xπ−1(v) = (xv1, x
v
2), we set Uv := ϕv(x

v
1) and V v := ϕ′v(x

v
2). By construction, {(Uv, V v) : v ∈ T}

is a family of independent random variables with the uniform distribution on [0, 1]2. To keep the notation
simple, we write U := U∅ and V := V ∅; more generally, we usually drop the reference to ∅ when the
meaning is clear from the context.

The limit process Z . In the remainder of the manuscript, we write Ck, k = 1, 2 for the space of continuous
functions on [0, 1]k endowed with the supremum norm ‖f‖ = supt∈[0,1]k |f(t)|. Recall the constants K1, β
and the function h from equations (2) and (4). For v ∈ T, let |v| denote the length of the word (the distance
between v and the root ∅). Further, for Q ∈ Q, let |Q| denote its area. Set Zv0 = K1h for all v ∈ T, and,
recursively,

Zvn+1(t) =

4∑
r=1

1
Q

(1)
vr

(t)AβvrZvrn (ϕvr(t)), v ∈ T, (12)

where Av = |Qv|/|Qv̄| for v ∈ T, v 6= ∅. In other words, for all v ∈ T, we have

Av1 = UvV v, Av2 = Uv(1− V v), Av3 = (1− Uv)V v, and Av4 = (1− Uv)(1− V v).

By the results stated in Proposition 2, Theorem 5, Proposition 9, Lemma 10 and Proposition 11 in [7], there
exist random continuous functions Zv, v ∈ T, such that

(i) the random variables Zv, v ∈ T, are identically distributed,

(ii) ‖Zvn −Zv‖ → 0 almost surely and with convergence of all moments,

(iii) E[Zv(t)m] = cmh(t)m for appropriate constants cm > 0 where c1 = K1,

(iv) E[‖Zv‖p] <∞ for all p > 0,

(v) Zv1, . . . ,Zv4, Uv, V v are stochastically independent and, almost surely, for all t ∈ [0, 1],

Zv(t) =

4∑
r=1

1
Q

(1)
vr

(t)AβvrZvr(ϕvr(t)),

(vi) up to a multiplicative constant,Zv is the unique continuous process (in distribution) with E[‖Zv‖2] <
∞ satisfying the stochastic fixed-point equation

Zv d
=

(
4∑
r=1

1
Q

(1)
r

(t)AβrZ(r)(ϕr(t))

)
t∈[0,1]

. (13)

Here, Z(1), . . . ,Z(4) are copies of Zv , and Z(1), . . . ,Z(4), U, V are independent.

The complexity of partial match queries. The main result in [7] is the limit law (5) with limit processZ :=
Z∅. The identity (13) for the distribution of Z is reminiscent of the following distributional recurrence
for the discrete process Cn: letting N1, . . . , N4 denote the subtree sizes of the quadtree Tn (such that
N1 + · · ·+N4 = n− 1), we have

Cn
d
=

(
4∑
r=1

1
Q

(1)
r

(t)C
(r)
Nr

(ϕr(t)) + 1

)
t∈[0,1]

. (14)

Here, the random sequences (C
(1)
n )n≥0, . . . , (C

(4)
n )n≥0 stemming from the complexities in the four subtrees

are independent and identically distributed and also independent from N1, . . . , N4, U, V . Further, given
(U, V ), the vector (N1, . . . , N4) has the multinomial distribution with parameters (n − 1;A1, . . . , A4).
This recurrence is at the heart of the proof of (5), and similar recurrences also play key roles in the present
work. As already mentioned in the introduction, by [11, Corollary 1.2], in probability (and therefore with
convergence of all moments by [7, Theorem 4]),

‖n−βCn −Z‖ −−−−→
n→∞

0. (15)
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Figure 6: A simulation of the limit process Z for the cost of partial match queries.

3 One-sided partial match queries
For t ∈ [0, 1], let C≥n (t) denote the number of nodes with first coordinate at least t visited by a partial
match query retrieving all keys with first component t in Tn. In the partition of the unit square induced by
Tn, C≥n (t) can be identified as the number of horizontal lines intersecting the vertical line at t stemming
from the points lying to the right of t. Again, we agree C≥n ( · ) to be a right-continuous step function. Set
C<n (t) = Cn(t)− C≥n (t). By construction, C≥n satisfies a recurrence very similar to (14), namely

(C≥n (t))t∈[0,1]
d
=

(
4∑
r=1

1
Q

(1)
r

(t)C
≥,(r)
Nr

(ϕr(t)) + 1[0,U)(t)

)
t∈[0,1]

, (16)

with conditions on independence and distributions as in (14). Since the only difference between (14) and
(16) concerns the additive term which asymptotically vanishes after rescaling by nβ , one might guess that
C≥n admits the same (distributional) scaling limit as Cn modulo a multiplicative constant. In fact, Proposi-
tion 3.1 below shows much more. The following lemma is an important ingredient of the proof.

Lemma 3.1. There exists ε > 0 such that, uniformly in t ∈ [0, 1] and as n→∞,

E[C≥n (t)] =
K1

2
h(t)nβ +O(nβ−ε), and E[C<n (t)] =

K1

2
h(t)nβ +O(nβ−ε). (17)

Here, K1 and β are the constants given in (2) and (4).

The proof of Lemma 3.1 is postponed until the end of the section.

Proposition 3.1. In probability and with convergence of all moments, as n→∞,

‖n−βC≥n −Z/2‖ → 0, and ‖n−βC<n −Z/2‖ → 0.

Proof. Since ‖n−βCn −Z‖ → 0 by (15), it suffices to show that n−β‖C≥n − C<n ‖ → 0 in probability and
with respect to all moments. To this end, write µ≥n (t) = E[C≥n (t)], µ<n (t) = E[C<n (t)] and let

Xn(t) :=
C≥n (t)− µ≥n (t)

nβ
− C<n (t)− µ<n (t))

nβ
.

Note that E[Xn(t)] = 0 for all t ∈ [0, 1]. By construction, the process Xn satisfies the following functional

10



distributional recurrence:

Xn
d
=

(
4∑
r=1

1
Q

(1)
r

(t)

(
Nr
n

)β
X

(r)
Nr

(ϕr(t))

+

∑4
r=1 1Q(1)

r
(t)
[
µ≥Nr

(ϕr(t))− µ<Nr
(ϕr(t))

]
+ 1[U,1](t)− 1[0,U)(t)

nβ

)
t∈[0,1]

, (18)

again with assumptions on independence and distributions as in (14).
By Lemma 3.1, uniformly in t ∈ [0, 1], the additive term (18) converges to zero almost surely and with

respect to all moments. Therefore, and as for every r ∈ {1, 2, 3, 4}, Nr/n → Ar almost surely by the
concentration of the binomial distribution, one would expect that, if Xn admits a limit process X , then X
should satisfy the distributional fixed-point equation obtained by taking limits in the recurrence above:

X
d
=

(
4∑
r=1

1
Q

(1)
r

(t)AβrX
(r)(ϕr(t))

)
t∈[0,1]

. (19)

Here, X(1), . . . , X(4) are copies of X , and X(1), . . . , X(4), U, V are stochastically independent (U and V
appear in the definition of Ar, r = 1, . . . , 4). As this equation is homogeneous, it is solved by the process
which is identical to zero. Furthermore, an application of [25, Lemma 18] shows that the zero process is
the unique solution (in distribution) of (19) among all random processes with zero mean and finite absolute
second moment. As the proof of (5) in [7], the rigorous verification of that the convergence ‖Xn‖ → 0 holds
in probability makes use of the functional contraction method. The application of [25, Theorem 22] requires
to verify a set of conditions (C1)–(C5) formulated in that paper. By the similarity of the processes Cn and
C≥n and their distributional recurrences, conditions (C1), (C2), (C4) and (C5) can be verified exactly in the
same way as it was done in [7] for the process Cn, and we omit the details. The fact that the zero process is
a solution of (19) guarantees (C3). This shows distributional (or, equivalently, stochastic) convergence. The
convergence of moments follows by monotonicity since max{C<n , C≥n } ≤ Cn and supn≥1 E[‖Cn‖p] <∞
by [7, Theorem 4].

Corollary 3.2. In probability and with respect to all moments, we have

sup
0≤s,t≤1

∣∣∣∣On(s, t, 0, 1)− n(t− s)
nβ

− Z(t) + Z(s)

2

∣∣∣∣ −−−−→n→∞
0.

Proof. Let Nn(t) denote the total number of points among X1, X2, . . . , Xn that have a first coordinate at
least t. By Donsker’s classical theorem for empirical distribution functions, we have(

Nn(t)− n(1− t)√
n

)
t∈[0,1]

d−−−−→
n→∞

B, (20)

where B is a Brownian bridge, that is, B(t) = W (t) − tW (1), t ∈ [0, 1] for a standard Brownian motion
W . It is well-known that this convergence is also with respect to all moments (this follows, e.g., from
the Dvoretzky–Kiefer–Wolfowitz inequality [19]). Thus, since β > 1/2, uniformly for s, t ∈ [0, 1], we
have n−β(Nn(t) − Nn(s)) → 0 in probability and with respect to all moments. As On(s, t, 0, 1) =
Nn(t)−Nn(s) + C≥n (t) + C<n (s), the assertion follows from Proposition 3.1.

Finally, we prove Lemma 3.1 that was instrumental in the proof of Proposition 3.1.

Proof of Lemma 3.1. The most technical ingredient in the proof of (5) that appears in [7] is the following
strengthening of (3): there exists ε > 0 such that, uniformly in t ∈ [0, 1], and as n→∞

E[Cn(t)] = K1h(t)nβ +O(nβ−ε). (21)

This result heavily relies on the methods developed by Curien and Joseph in [12]. Note that the fact that the
first point X1 falls on one side of the line {x = t} induces an asymmetry between C<n (t) and C≥n (t) for n
fixed, and the means E[C<n (t)] and E[C≥n (t)] are different (unless t = 1/2). Somewhat as a consequence
of this inherent asymmetry, we have no simple/soft argument to deduce (17) directly from (21), and it is
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necessary to repeat all steps in the verification of the latter. To work out all details would go beyond the scope
of this note, and we confine ourselves to the discussion of the main steps: first of all, as in [7, Section 5],
one considers a Poissonized model in which the points X1, X2, . . . are inserted following the arrival times
of a homogeneous Poisson process on [0,∞). Consequently, we deal with a family of increasing quadtrees
(Ts)s≥0 built on the points arrived before time s (there are a Poisson(s) number of such points), and the
corresponding partial match query complexities (Cs(t))s≥0 and (C≥s (t))s≥0. Standard de-poissonization
arguments based on the concentration of the Poisson distribution imply that it is sufficient to show the
corresponding statements for the continuous-time process, namely there exists ε > 0 such that

sup
0≤t≤1

∣∣∣∣n−βE[C≥s (t)]− K1

2
h(t)

∣∣∣∣ = O(s−ε), s→∞.

Following [7], one distinguishes between the behavior at the boundary (t ∈ [0, δ]∪[1−δ, 1] for small δ > 0)
and away from the boundary (t ∈ [δ, 1 − δ]). In [7], it was enough to consider t ≤ 1/2 by symmetry, but
here, this is not the case. Lemmas 14 and 15 in [7] contain the corresponding bounds for the process Cs,
and we now argue that these bounds apply with the same involved constants to the one-sided quantity C≥s .

Concerning the behavior at the boundary, we have the trivial bound

sup
t∈[0,δ]∪[1−δ,1]

∣∣∣∣s−βE[C≥s (t)]− K1

2
h(t)

∣∣∣∣ ≤ sup
t∈[0,δ]∪[1−δ,1]

s−βE[C≥s (t)] + sup
t∈[0,δ]∪[1−δ,1]

K1h(t)

≤ sup
t∈[0,δ]

s−βE[Cs(t)] + sup
t∈[0,δ]

K1

2
h(t) ,

which brings us back to the situation of the two-sided problem and explains why the bound in [7, Lemma
14] also applies in our case. The main part of the proof of (21) is contained in [7, Lemma 14] and relies on
a coupling argument between ϕv(t) for the unique node v = v1v2 . . . vk, k ≥ 1, with vi ∈ {1, 3} for all
i = 1, . . . , k and t ∈ Qv and a uniformly distributed random variable ξ. We do not explain this step in detail
but mention that one distinguishes two cases: first, in case 1 (coupling has not yet happened), similarly to
the last display, one uses the crucial uniform upper bound in [12, Lemma 2]:

sup
s≥0

sup
t∈[0,1]

s−βE[Cs(t)] <∞.

By monotonicity, this bound can also be applied to C≥s . In case 2 (coupling has happened), the main
ingredient in the proof is the expansion in (2). (Here, the second order term is important.) Since for a
uniform random variable ξ independent of (Xi)i≥1, we have E[C≥n (ξ)] = E[C<n (ξ)] = E [Cn(ξ)] /2, the
same arguments apply in our case.

4 Constrained partial match queries

4.1 Preliminary considerations
For t, s ∈ [0, 1], let Yn(t, s) = On(t, t, 0, s) be the number of nodes visited by the partial match query
retrieving the points with first coordinate equal to t and second coordinate at most s. On lower-dimensional
subsets where Yn(t, s) is not well-defined, we assume the function to be right continuous in both coordi-
nates. Note that Yn(t, 1) = Cn(t) for t ∈ [0, 1]. To prove a functional limit theorem for Yn, we use a
variant of the functional contraction method which makes explicit use of our encoding. A very similar ap-
proach was taken in [5] when studying the dual tree of a partitioning of the disc by sequential insertions of
non-crossing random chords. As a result, we provide a proof of convergence of n−βYn that avoids another
application of the complex machinery developed in [25].

Recalling the time-transformations (10) and (11), we have the following distributional recursive equa-
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tion on the level of random fields with parameter space [0, 1]2:(
Yn(t, s)

)
t,s∈[0,1]

d
=
(
1Q1

(t, s)Y
(1)
N1

(ϕ1(t), ϕ′1(s))

+ 1Q2
(t, s)

[
Y

(1)
N1

(ϕ1(t), 1) + Y
(2)
N2

(ϕ2(t), ϕ′2(s))
]

+ 1[V,1](s)

+ 1Q3
(t, s)Y

(3)
N3

(ϕ3(t), ϕ′3(s))

+ 1Q4(t, s)
[
Y

(3)
N3

(ϕ3(t), 1) + Y
(4)
N4

(ϕ4(t), ϕ′4(s))
] )

t,s∈[0,1]
.

(22)

Here, we have the same conditions on independence and distributions as in (14). Thus, if n−βYn converges,
we expect the distribution of the limit Y to satisfy the following fixed-point equation(

Y (t, s)
)
t,s∈[0,1]

d
=
(
1Q1(t, s)Aβ1Y

(1)(ϕ1(t), ϕ′1(s))

+ 1Q2(t, s)
[
Aβ1Y

(1)(ϕ1(t), 1) +Aβ2Y
(2)(ϕ2(t), ϕ′2(s))

]
+ 1Q3

(t, s)Aβ3Y
(3)(ϕ3(t), ϕ′3(s))

+ 1Q4(t, s)
[
Aβ3Y

(3)(ϕ3(t), 1) +Aβ4Y
(4)(ϕ4(t), ϕ′4(s))

] )
t,s∈[0,1]

,

where Y (1), . . . , Y (4) are copies of Y , and the random variables Y (1), . . . , Y (4), U, V are independent.
Since Yn(t, 1) = Cn(t), and this process is well understood, the crucial observation is that, for any fixed
(t, s) ∈ [0, 1]2, only one of the processes (Y

(1)
n ), . . . , (Y

(4)
n ) contributes to the recursive decomposition

(22) at a point whose second coordinate differs from one. The same can be said about the associated
stochastic fixed-point equation. It is this fact why we do not need to engage the methodology of [25] to
show convergence. (We do however need some ideas of this work to characterize the distribution of Y . See
Proposition 4.4 below.)

4.2 Construction of the limit process and convergence
We proceed as in the construction of the process Z described in Section 2. To simplify the notation, let us
introduce the following operators: for v ∈ T, and for a function f : [0, 1]2 → R, define

Bv1 (f)(t, s) = Aβv1 [1Qv1(t, s)f(ϕv1(t), ϕ′v1(s)) + 1Qv2(t, s)f(ϕv1(t), 1)] ,

Bv2 (f)(t, s) = Aβv21Qv2
(t, s)f(ϕv2(t), ϕ′v2(s)),

Bv3 (f)(t, s) = Aβv3 [1Qv3
(t, s)f(ϕv3(t), ϕ′v3(s)) + 1Qv4

(t, s)f(ϕv4(t), 1)] ,

Bv4 (f)(t, s) = Aβv41Qv4
(t, s)f(ϕv4(t), ϕ′v4(s)).

(23)

For all v ∈ T, let Yv0 (t, s) = K1h(t) for all t, s ∈ [0, 1]. Then, recursively, set

Yvn+1(t, s) =

4∑
r=1

Bvr (Yvrn )(t, s), v ∈ T. (24)

This definition extends the construction ofZvn in (12) since we have Yvn(t, 1) = Zvn(t) for t ∈ [0, 1]. We first
verify that this indeed allows to construct a family of processes (Yv)v∈T that have the required properties:

Proposition 4.1. There exist random continuous C2-valued fields Yv, v ∈ T, such that
(i) the random variables Yv, v ∈ T, are identically distributed,

(ii) ‖Yvn − Yv‖ → 0 almost surely and with convergence of all moments,
(iii) Yv(t, 1) = Zv(t) for all t ∈ [0, 1],
(iv) E[‖Yv‖p] <∞ for all p > 0, and
(v) Yv1, . . . ,Yv4, Uv, V v are stochastically independent and, almost surely, for all t, s ∈ [0, 1],

Yv(t, s) =

4∑
r=1

Bvr (Yvr)(t, s), (25)

where the operators Bvr , r ∈ {1, 2, 3, 4}, v ∈ T, are defined in (23).
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Proof. By the definition in (24) of the family of process (Yvn)n≥0, v ∈ T, we have

[Yvn+1(t, s)− Yvn(t, s)]2

=

4∑
r=1

1Qvr
(t, s)A2β

vr [Yvrn (ϕvr(t), ϕ
′
vr(s))− Yvrn−1(ϕvr(t), ϕ

′
vr(s))]

2

+ 21Qv2
(t, s)Aβv1A

β
v2[Yv1

n (ϕ1(t), 1)− Yvrn−1(ϕ1(t), 1)] · [Yv2
n (ϕ2(t), ϕ′2(s))− Yv2

n−1(ϕ2(t), ϕ′2(s))]

+ 21Qv4
(t, s)Aβv3A

β
v4[Yv3

n (ϕ3(t), 1)− Yv3
n−1(ϕ3(t), 1)] · [Yv4

n (ϕ4(t), ϕ′4(s))− Yv4
n−1(ϕ4(t), ϕ′4(s))].

Let ∆n = E[‖Yvn+1 − Yvn‖2] for n ≥ 0. By the Cauchy–Schwarz inequality, it follows that, for n ≥ 1,

∆n ≤ ∆n−1

r∑
r=1

E[A2β
vr ] + 4

√
∆n−1 · E

[
sup
t∈[0,1]

|Yvn+1(t, 1)− Yvn(t, 1)|2
]
.

Now, by [7, Proposition 9], there exist constants C > 0 and q ∈ (0, 1) such that, for every n ≥ 0,

E
[

sup
t∈[0,1]

|Yvn+1(t, 1)− Yvn(t, 1)|2
]
≤ C2qn . (26)

As a consequence, setting

γ :=

4∑
r=1

E[A2β
r ] =

4

(2β + 1)2
< 1, (27)

we obtain
∆n ≤ γ∆n + Cqn/2

√
∆n.

By induction on n ≥ 0 it follows that ∆n = O(rn) for all
√
q < r < 1. (This argument is worked

out in the proof of [5, Lemma 2.3].) Uniform almost sure convergence follows straightforwardly from the
completeness of C2. (These details are explained in the proof of [5, Theorem 1.2].) Convergence of the pth
moment follows by induction on p along the same lines. (Here, one uses that an exponential bound of the
form (26) is valid for any higher moment.)

Recall the definitions of the fields Y ≥n and Y <n given in Section 1.4. Note that Y ≥n + Y <n = Yn.

Proposition 4.2. Let Y := Y∅. In probability and with convergence of all moments,

‖n−βYn − Y‖ −−−−→
n→∞

0.

In the same sense,

‖n−βY ≥n − Y/2‖ −−−−→
n→∞

0, and ‖n−βY <n − Y/2‖ −−−−→
n→∞

0.

Proof. For v ∈ T, let (avn)n≥1 be the (maximal) increasing sequence of indices with such that Xavn
∈ Qv .

Then if Xn = (x1
n, x

2
n), n ≥ 1, we set, for each n ≥ 1, Xv

n = (ϕv(x
1
avn

), ϕ′v(x
2
avn

)). This sequence plays
the same role in the construction of the subtree rooted at v as the sequence (Xi)i≥1 in the entire tree (the
subtree rooted at ∅). In other words, if we define Cvn(t) and Y vn (t) analogously to (15), but relying on this
sequence, we obtain

E[‖n−βCvn(t)−Zv(t)‖p]→ 0 (28)

for all p > 0. By construction, almost surely, for all t, s ∈ [0, 1],

Y vn (t, s) =

4∑
r=1

Br(Y
vr
Nr

)(t, s) + 1[V,1](s).
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Figure 7: A simulation of the process Y: on the left, the process Y; on the right, Y(·, 1) which is distributed like Z .

Hence, with γn := E[‖n−βYn − Y‖2], by the same steps relying on the Cauchy–Schwarz inequality that
we used in the proof of Proposition 4.1 (but this time, for conditional expectations), we obtain

γn ≤ E

[
4∑
r=1

γNr
·
(
Nr
n

)2β
]

+ 4E

[√
γN2
· E
[

sup
t∈[0,1]

|C1
N1

(t)−Z1(t)|2
∣∣∣∣N1

]]
+ 8n−β(1 + E [γN1

]).

From here, since Nr/n → Ar for r ∈ {1, 2, 3, 4} and γ < 1 with γ given in (27), an easy induction on n
shows that (γn)n≥1 is a bounded sequence. Therefore, the last display and the convergence of ‖C1

n − Z1‖
to zero in (15) imply that

γn ≤ 4E

[
γN1 ·

(
N1

n

)2β
]

+ o(1).

The verification that γn → 0 is now standard in the framework of the contraction method. As in the previous
proposition, since the convergence (28) also holds for higher moments, by induction over p, one verifies
the convergence of the pth moment. Analogously, relying on (3.1), one then shows that n−βpE[‖Y ≥n −
Y <n ‖p]→ 0 for all p > 0, thereby concluding the proof.

4.3 Properties of the limit process Y
Proposition 4.3. For every t, s ∈ [0, 1], we have E[Y(t, s)] = K1h(t)g(s) where g is the unique bounded
and measurable function on [0, 1] satisfying (8). The function g is continuous and monotonically increasing.

Proof. Write ν(t, s) = E[Y(t, s)]. Taking the expectation in (25) and using the fact that ν(t, 1) = K1h(t)
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yields ν = G(ν) where G is the functional operator given by

G(f)(t, s) =

∫ 1

t

∫ 1

s

(uv)βf

(
t

u
,
s

v

)
dvdu+

∫ t

0

∫ s

0

((1− u)(1− v))βf

(
t− u
1− u

,
s− v
1− v

)
dvdu

+

∫ 1

t

∫ s

0

(u(1− v))βf

(
t

u
,
s− v
1− v

)
dvdu+

∫ t

0

∫ 1

s

((1− u)v)βf

(
t− u
1− u

,
s

v

)
dvdu

+K1

∫ 1

t

∫ s

0

(u(1− v))βh

(
t

u

)
dvdu+K1

∫ t

0

∫ s

0

((1− u)v)βh

(
t− u
1− u

)
dvdu.

(29)

It should be clear from the structure of the terms on the right-hand side that the summands factorize if f is
proportional to h(t)y(s) for a bounded, measurable function y. More precisely, if h⊗y denotes the function
on [0, 1]2 such that h⊗ y(t, s) = h(t)y(s), we have

G(K1h⊗ y)(t, s) = K1

(∫ 1

t

uβh

(
t

u

)
du+

∫ t

0

(1− u)βh

(
t− u
1− u

)
du

)

×
(∫ 1

s

vβy
( s
v

)
dv +

∫ s

0

(1− v)βy

(
s− v
1− v

)
dv +

∫ s

0

vβdv

)
.

As E[Z(t)] = K1h(t), the fixed-point equation (13) implies that the first factor in the last display equals
K1(β + 1)h(t)/2. (The details of the calculation are worked out in [7, Lemma 8].) Hence, if we choose
y = g with g as in the statement of the proposition, then the last display equals K1h(t)g(s). To conclude
the proof if suffices to show that:

(i) there exists at most one fixed-point of G in the set of bounded measurable functions on [0, 1]2,

(ii) there exists a unique bounded measurable function g satisfying (8), and

(iii) the function g in (ii) is continuous and increasing.

The first two claims follow from standard contraction arguments. We start with (ii). Let G′ be the operator

G′(y)(s) =
β + 1

2

∫ 1

s

vβy
( s
v

)
dv +

∫ s

0

(1− v)βy

(
s− v
1− v

)
dv +

sβ+1

2
.

Let g1, g2 be bounded measurable functions. Observing that the map s 7→
∫ 1

s
vβdv +

∫ s
0

(1 − v)βdv

considered on [0, 1] attains its maximum which has value (2− 2−β)/(β + 1) at s = 1/2, we obtain

‖G′(g1)−G′(g2)‖ =
β + 1

2
· sup

0≤s≤1

∣∣∣∣∫ 1

s

vβ(g1 − g2)
( s
v

)
dv +

∫ s

0

(1− v)β(g1 − g2)

(
s− v
1− v

)
dv

∣∣∣∣
≤ β + 1

2
‖g1 − g2‖ · sup

0≤s≤1

∣∣∣∣∫ 1

s

vβdv +

∫ s

0

(1− v)βdv

∣∣∣∣
≤ (1− 2−β−1)‖g1 − g2‖.

As 1− 2−β−1 < 1 and the space of bounded measurable functions on [0, 1] is complete with respect to the
supremum norm, it follows from Banach’s fixed-point theorem that there exists a unique bounded measur-
able solution of (8). Continuity of this solution follows easily from the theorem of dominated convergence.
Monotonicity follows once we have verified (i) since, for any n ≥ 1, the process Yn(t, s) (and hence its
mean) is increasing in s. We move on to (i). Let f1, f2 be bounded and measurable functions on [0, 1]2.
Then, we have

∣∣G(f1)(t, s)−G(f2)(t, s)
∣∣2 =

∣∣∣∣∣E
[

4∑
r=1

1Qr
(t, s)Aβr · (f1 − f2)(ϕr(t), ϕ

′
r(s))

]∣∣∣∣∣
2

≤

∣∣∣∣∣E
[

4∑
r=1

1Qr
(t, s)Aβr ·

∣∣(f1 − f2)(ϕr(t), ϕ
′
r(s))

∣∣]∣∣∣∣∣
2

≤ E

[
4∑
r=1

1Qr
(t, s)A2β

r ·
∣∣(f1 − f2)(ϕr(t), ϕ

′
r(s))

∣∣2]
≤ γ‖f1 − f2‖2,
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where we used Jensen’s inequality in the third step, and γ is the constant defined in (27). As γ < 1, taking
the supremum over t, s on the left-hand side shows that G has at most one fixed-point. This proves (i).

To conclude the section, we show that the distribution of Y is characterized by the identity (25).

Proposition 4.4. Up to a multiplicative constant, the process Y is the unique continuous field (in distribu-
tion) with E[‖Y‖2] <∞ satisfying the stochastic fixed-point equation

Y d
=

4∑
r=1

Br(Y(r)), (30)

with operators B1, . . . , B4 defined in (23), where Y(1), . . . ,Y(4), U, V are independent and Y(1), . . . ,Y(4)

are distributed like Y .

Proof. While most parts of the functional contraction method in [25] are developed in the space C1 (and the
space of càdlàg functions on [0, 1]) many results are formulated for general separable Banach spaces. Let
M be the set of probability distributions on C2. Solutions of (30) in the spaceM are then fixed-points of
the map T :M→M such that for µ ∈M, we have

T (µ) = L
( 4∑
r=1

Br(X
(r))

)
,

where we write L( · ) for the distribution of a random variable, X(1), . . . , X(4), U , V are independent, and
X(1), . . . , X(4) are distributed like ν.

LetM2 denote the set of µ ∈ M with
∫
‖f‖2dµ(f) < ∞. For a probability distribution µ ∈ M2, let

M2(µ) be the set of probability distributions ν ∈M2 satisfying

E[ψ(X)] = E[ψ(Y )] for all ψ ∈ C∗2 , (31)

where L(Y ) = ν, L(X) = µ, and C∗2 denotes the topological dual space of C2, that is, the space of linear
maps ψ : C2 → R with

‖ψ‖ := sup
f∈C2,‖f‖=1

|ψ(f)| <∞.

By [25, Lemma 18] (applied with s = 2 in the notation there), a sufficient condition to ensure that there
exists at most one fixed-point of T inM2(L(Y)) is that

(i) T (M2(L(Y))) ⊆M2(L(Y)), and

(ii)
∑4
r=1 E[‖Br‖2] < 1.

The second claim is easy to verify as ‖Br‖ = Aβr , and the sum therefore equals γ defined in (27). To
prove (i), since ‖Br(X(r))‖ ≤ ‖Br‖ · ‖X(r)‖ and these factors are independent, a simple application
of Minkowski’s inequality shows T (M2) ⊆ M2. Next, we recall the Riesz representation theorem: for
ψ ∈ C∗2 there exists a (unique) finite signed measure η on [0, 1]2 such that ψ(f) =

∫
f(t)dη(t). Thus, by

Fubini’s theorem, condition (31) is satisfied ifX and Y have the same mean functions. As we already know
by Proposition 4.1 that L(Y) is a fixed-point of T in the set M2(L(Y)), the map T preserves the mean
function on this set. This finishes the proof of (i).

To conclude the proof of the proposition, it remains to show that the mean function mη(t, s) :=∫
f(t)g(s)dη(f, g) of a fixed point η of T with η ∈ M2 is equal to the mean function of Y up to a mul-

tiplicative constant. By homogeneity, it suffices to consider the case when E[mη(ξ, 1)] = E[Y(ξ, 1)] = κ
with κ defined in (2). The claim follows from the previous proof as the mapG defined in (8) has at most one
fixed-point in C2 upon verifying that mη(t, 1) = K1h(t). The map f(t) = mη(t, 1) satisfies E[f(ξ)] = κ
and

f(t) =
2

β + 1

(∫ 1

t

uβh

(
t

u

)
du+

∫ t

0

(1− u)βh

(
t− u
1− u

)
du

)
, t ∈ [0, 1].

By the argument in [12, Section 5], the unique continuous (or only bounded and measurable) function
satisfying these two properties is K1h(t). This concludes the proof.
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5 Proofs of the main results
The representation in Lemma 1.1 requires us to also consider partial match queries when the first coordinate
is arbitrary, and the second should equal a specified value. Of course, all the results we have devised in
Sections 2, 3 and 4 apply by symmetry, and we only need to set the notations to avoid confusions.

To this end, for i ≥ 1, let the point Xi ∈ [0, 1]2 be obtained from Xi be swapping the two coordinates.
Switching from (Xi)i≥1 to (Xi)i≥1 does not alter the shape of the trees: there is a consistent family
of relabellings that transforms (Tn)n≥1 into (Tn)n≥1. However, the corresponding partitions of the unit
square are modified (and obtained from one another by a simple symmetry with respect to the principle
diagonal of [0, 1]2). More specifically, for each v ∈ T, the region Qv is obtained from Qv by swapping
the coordinates of the four corners. Further, for the time-transformations defined in (10) and (11), we have
ϕv = ϕ′v and ϕ′v = ϕv . In particular, Av = Av for all v ∈ T. We define the operators B

v

r , r = 1, . . . , r
analogously to Bvr in (23) upon replacing Qv, ϕv and ϕ′v there by their analogues Qv, ϕv and ϕ′v .

Finally, we shall define the processes Cn, Y n and their one-sided versions in the process with swapped
coordinates analogously toCn, Yn. Of course, all results proved above hold analogously for these quantities,
and we denote the corresponding limits by Z,Y . The joint distributions of these quantities are intricate, but
we can characterize them by distributional fixed-point equations.

Proposition 5.1. (a) Up to a multiplicative constant, the pair (Z,Z) is the unique C2
1 -valued process (in

distribution) satisfying E[‖Z‖2], E[‖Z‖2] <∞ and

(Z,Z)
d
=

4∑
r=1

Aβr

(
1
Q

(1)
r

( · )Z(r)(ϕr( · )),1Q(2)
r

( · )Z(r)(ϕ′r( · ))
)
. (32)

Here, (Z(1),Z(1)), . . . , (Z(4),Z(4)) are independent copies of (Z,Z), independent of U, V .
(b) Similarly, up to a multiplicative constant, the pair (Y,Y) is the unique C2

2 -valued process satisfying
E[‖Y‖2], E[‖Y‖2] <∞ and

(Y,Y)
d
=

4∑
r=1

(
Br(Y(r)), Br(Y(r))

)
. (33)

Here, (Y(1),Y(1)), . . . , (Y(4),Y(4)) are independent copies of (Y,Y), independent of U, V .

Proof. Both statements are proved following the lines of the proof of Proposition 4.4. To show the first,
defineM,M2 andM2(µ) as in that proof, but in the space C2

1 . The only step of that proof one needs to
take a closer look at is the verification that, for µ, ν ∈ M2, we have ν ∈ M2(µ) (that is, condition (31)
holds), if E[Xi(t, s)] = E[Yi(t, s)] for i = 1, 2 and t, s ∈ [0, 1], where L(X1, X2) = µ and L(Y1, Y2) = ν.
As in the proof of Proposition 4.4, this follows from a simple application of Fubini’s theorem since every
bounded linear form ψ ∈ (C2

2)∗ can be written as ψ(f, g) =
∫
fdη1 +

∫
gdη2 for finite signed measures

η1, η2 on [0, 1]2. The second assertion for the process (Y,Y) follows analogously.

Proofs of Theorem 1.1 and Proposition 1.4. Recall the representation in Lemma 1.1. We are now ready to
make formal the arguments at the end of Section 1.4: Theorem 1.1 follows with

O(a, b, c, d) =
Y(b, d)− Y(b, c) + Y(a, d)− Y(a, c) + Y(d, b)− Y(d, a) + Y(c, b)− Y(c, a)

2
, (34)

since

(i) the summands involving Y ≥n , Y
<
n , Y

≥
n and Y <n converge uniformly after rescaling by Proposition 4.2,

(ii) ‖n−β(Nn − nVol)‖ → 0 in probability and with convergence of moments by the argument given in
the proof of Corollary 3.2, and

(iii) ‖n−βD(i)
n ‖ → 0 for i = 1, . . . , 4, in probability and with convergence of moments since D(i)

n is
bounded from above by the height of Tn which is well-known to be O(log n) [see, e.g,. 13].

Proposition 1.4 follows from (34) and Proposition 4.3.
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To characterize the limit process O, we consider the distributional decomposition of On. As for the
process Yn, this requires the definition of four linear operators, this time on the space C+

4 . We set

D1(f)(a, b, c, d) = Aβ1
[
1Q1

(a, c)1Q1
(b, d)f(ϕ1(a), ϕ1(b), ϕ′1(c), ϕ′1(d))

+ 1Q1
(a, c)1Q2

(b, d)f(ϕ1(a), ϕ1(b), ϕ′1(c), 1)

+ 1Q1
(a, c)1Q3

(b, d)f(ϕ1(a), 1, ϕ′1(c), ϕ′1(d))

+ 1Q1
(a, c)1Q4

(b, d)f(ϕ1(a), 1, ϕ′1(c), 1)
]

D2(f)(a, b, c, d) = Aβ2
[
1Q2

(a, c)1Q2
(b, d)f(ϕ2(a), ϕ2(b), ϕ′2(c), ϕ′2(d))

+ 1Q1
(a, c)1Q2

(b, d)f(ϕ2(a), ϕ2(b), 0, ϕ′2(d))

+ 1Q2
(a, c)1Q3

(b, d)f(ϕ2(a), 1, ϕ′2(c), ϕ′2(d))

+ 1Q1
(a, c)1Q4

(b, d)f(ϕ2(a), 1, 0, ϕ′2(d))
]

(35)

D3(f)(a, b, c, d) = Aβ3
[
1Q3

(a, c)1Q3
(b, d)f(ϕ3(a), ϕ3(b), ϕ′3(c), ϕ′3(d))

+ 1Q1
(a, c)1Q3

(b, d)f(0, ϕ3(b), ϕ′3(c), ϕ′3(d))

+ 1Q3
(a, c)1Q4

(b, d)f(ϕ3(a), ϕ3(b), ϕ′3(c), 1)

+ 1Q1
(a, c)1Q4

(b, d)f(0, ϕ3(b), ϕ′3(c), 1)
]

D3(f)(a, b, c, d) = Aβ4
[
1Q4

(a, c)1Q4
(b, d)f(ϕ4(a), ϕ4(b), ϕ′4(c), ϕ′4(d))

+ 1Q2
(a, c)1Q4

(b, d)f(0, ϕ4(b), ϕ′4(c), ϕ′3(d))

+ 1Q3
(a, c)1Q4

(b, d)f(ϕ4(a), ϕ4(b), 0, ϕ′3(d))

+ 1Q1
(a, c)1Q4

(b, d)f(0, ϕ4(b), 0, ϕ′4(d))
]
.

(36)

Proof of Proposition 1.3. By construction, we have, for every n ≥ 1,

On
d
=

(
4∑
r=1

Dr(O
(r)
Nr

)(a, b, c, d) + 1

)
(a,b,c,d)∈I

with conditions on independence and distributions as in (14). By Theorem 1.1 it follows that the limit
field O is solution to the fixed-point equation (7). By the same argument used in the proofs of Proposi-
tions 4.4 and 5.1, one shows that L(O) is the unique solution of (7) in the setM2(L(O)), where this set
is defined as in the proof of Proposition 4.4 but with C+

4 instead of C2. It remains to check that, up to
a multiplicative constant, the operator G′′ given by G′′(f)(a, b, c, d) =

∑4
r=1 E[Dr(f)(a, b, c, d)], has

a unique fixed-point in the space C+
4 . This follows from several applications of the contraction argu-

ments used in the proof of Proposition 4.4 whose structure we now describe. Let %1, %2 ∈ C+
4 be two

fixed-points of G′′ satisfying E[%1(ξ, ξ, 0, 1)] = E[%1(ξ, ξ, 0, 1)] = κ. (a) By [12, Section 5], this im-
plies %1(x, x, 0, 1) = %2(x, x, 0, 1) = K1h(x). (b) Then, setting (a, c) = (0, 0), the contraction argu-
ment in the proof of Proposition 4.4 shows that %1(0, x, 0, y) = %2(0, x, 0, y); proceeding analogously
for the choices (a, d) = (0, 1), (b, c) = (1, 0) and (b, d) = (1, 1) yields %1(0, x, y, 1) = %2(0, x, y, 1),
%1(x, 1, 0, y) = %2(x, 1, 0, y) and %1(x, 1, y, 1) = %2(x, 1, y, 1). (c) Then, in the next step, one sets a = 0
and proves along the same lines that %1(0, x, y, z) = %2(0, x, y, z); analogously for b = 1, c = 0 and d = 1
yields %1(x, 1, y, z) = %2(x, 1, y, z), %1(x, y, 0, z) = %2(x, y, 0, z) and %1(x, y, z, 1) = %2(x, y, z, 1). Fi-
nally, with these identities in hand, one can verify that ‖%1 − %2‖ = ‖G′′(%1)−G′′(%2)‖ ≤ √γ‖%1 − %2‖,
where γ is defined in (27), just as for the operator G in Proposition 4.4. Since γ < 1, this gives %1 = %2

and concludes the proof.

6 Orthogonal range queries in random 2-d trees
The 2-d trees have been introduced by Bentley [1]. As for quadtrees, the data are partitioned recursively,
but the splits in 2-d trees are only binary; since the data is two-dimensional, one alternates between ver-
tical and horizontal splits, depending on the parity of the level in the tree. Given a sequence of points
p1, p2, . . . ∈ [0, 1]2, the tree and the regions associated to each node are constructed as follows. Initially, T0

is an empty tree, which consists of a placeholder, to which we assign the entire square [0, 1]2. The first point
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Figure 8: The first four steps of the construction of a 2-d tree, and the corresponding partitions of the unit square.

p1 is inserted in this placeholder, and becomes the root, thereby giving rise to two new placeholders. Geo-
metrically, p1 splits vertically the unit square in two rectangles, which are associated with the two children
of the root. More generally, when i points have already been inserted, the tree Ti has i internal nodes, and
induces a partition of the unit square into i+ 1 regions, each one associated to one of the i+ 1 placeholders
of Ti. The point pi+1 is then stored in the placeholder, say v, that is assigned to the rectangle of the partition
containing pi+1. This operation turns v into an internal node, and creates two new placeholders just below.
Geometrically, pi+1 divides this rectangle into two subregions that are assigned to the two newly created
placeholders; that last partition step depends on the parity of the depth of v in the tree: if it is odd we parti-
tion horizontally, if it is even we partition vertically. See Figure 8 for an illustration. (Of course, one could
start at the root with a horizontal split, and then splits would occur horizontally at even levels and vertically
at odd levels.)

We now consider a sequence (Xi)i≥1 of i.i.d. uniform random points in [0, 1], and the 2-d trees obtained
by sequential insertion of X1, X2, . . . into an initially empty 2-d tree. It is convenient to consider the trees
as subtrees of the infinite binary tree T = ∪m≥0{1, 2}m. We can actually construct at the same time two
sequences of trees (T=

n )n≥0 and (T⊥n )n≥0 as well as the corresponding refining partitions of [0, 1]2 encoded
in the collections {Q=

v : v ∈ T } and {Q⊥v : v ∈ T }, which correspond to the two cases where the split at
the root is horizontal or vertical respectively. Put aside the binary splitting, the construction is similar to the
one in Section 2 and we omit the details, and only mention that if X1 = (U, V ), then{

Q=
1 = [0, 1]× [0, V ]

Q=
2 = [0, 1]× (V, 1]

and
{
Q⊥1 = [0, U ]× [0, 1]
Q⊥2 = (U, 1]× [0, 1] .

For (a, b, c, d) ∈ I , let O=
n (a, b, c, d) and O⊥n (a, b, c, d) denote the number of nodes of the 2-d tree vis-

ited to perform the query with rectangle Q(a, b, c, d) when the partition at the root is horizontal or vertical
respectively. Define O=

n and O⊥n analogously in the 2-d tree constructed from the sequence Xi, i ≥ 1,
obtained by swapping the two coordinates of each point. By construction, we have O=

n (a, b, c, d) =
O⊥n (c, d, a, b) and O⊥n (a, b, c, d) =Q=

n (c, d, a, b). In particular, with

ι : I → I, ι(a, b, c, d) = (c, d, a, b), (37)

the sequences (O=
i )i≥1 and (O⊥i ◦ ι)i≥1 are identically distributed. Hence, it suffices to focus on the

sequence O=
i , i ≥ 1.

Theorem 6.1. There exist random continuous C+
4 -valued random variables O= and O⊥ (random fields)

such that, in probability and with convergence of all moments,∥∥∥O=
n − nVol

nβ
−O=

∥∥∥ −−−−→
n→∞

0 and
∥∥∥O⊥n − nVol

nβ
−O⊥

∥∥∥ −−−−→
n→∞

0.

The processes O⊥ and O= ◦ ι have the same distribution.
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To characterize the limit field O= as the solution to a stochastic fixed-point equation let us keep track
of the relative positions with respect to cells of the partition as follows: for s ∈ [0, 1], we set

ψ=
1 (s) = 1[0,V ](s)

s

V
and ψ=

2 (s) = 1[V,1](s)
s− V
1− V

.

Note that the volumes of the rectangular regions at the first level of the partition are

A=,1 = V, A=,2 = 1− V .

We now define the operators D=
1 and D=

2

D=
1 (f)(a, b, c, d) = Aβ=,1

[
1[0,V ](d)f(a, b, ψ=

1 (c), ψ=
1 (d)) + 1[0,V ]×(V,1](c, d)f(a, b, ψ=

1 (c), 1)
]

D=
2 (f)(a, b, c, d) = Aβ=,2

[
1(V,1](c)f(a, b, ψ=

2 (c), ψ=
2 (d)) + 1[0,V ]×(V,1](c, d)f(a, b, 0, ψ=

2 (d))
]
.

(38)

Proposition 6.2. Up to a multiplicative constant,O= is the unique C+
4 -valued random field (in distribution)

such that E[‖O=‖2] <∞ satisfying the stochastic fixed-point equation

O= d
= D=

1 (O=,(1) ◦ ι) +D=
2 (O=,(2) ◦ ι) (39)

where O=,(1) and O=,(2) are copies of O=, D=
1 , D

=
2 are random linear operators defined in (38) and

ι : I → I is defined in (37). Furthermore, the random variables O=,(1),O=,(2), and (D=
1 , D

=
2 ) are

independent.

Proposition 6.2 only characterizes the distribution of O= up to a multiplicative constant. The next
proposition identifies the limit mean, and hence the missing multiplicative constant. Here, the values of the
constants appearing are reminiscent of the fact that, for uniform partial match queries in the trees T=

n and
T⊥n , Flajolet and Puech [22] proved the analogue of expansion (1) and Chern and Hwang [10] identified the
leading constants as

κ= =
13(3− 5β)

2
κ and κ⊥ = 13(2β − 1)κ .

Note that 2κ= = (β + 1)κ⊥.

Proposition 6.3. Let (a, b, c, d) ∈ I . Then, we have

E[O=(a, b, c, d)] =
13(3− 5β)

4

(
µ(a, d)− µ(a, c) + µ(b, d)− µ(b, c)

)
+

13

2(2β − 1)

(
µ(c, b)− µ(c, a) + µ(d, b)− µ(d, a)

)
,

where µ(t, s) is the function from Proposition 1.4.
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