
 
 

University of Birmingham

The two-parameter Weibull distribution as a
universal tool to model the variation in species
relative abundances
Ulrich, Werner; Nakadai, Ryosuke; Matthews, Thomas J.; Kubota, Yasuhiro

DOI:
10.1016/j.ecocom.2018.07.002

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ulrich, W, Nakadai, R, Matthews, TJ & Kubota, Y 2018, 'The two-parameter Weibull distribution as a universal
tool to model the variation in species relative abundances', Ecological Complexity, vol. 36, pp. 110-116.
https://doi.org/10.1016/j.ecocom.2018.07.002

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 23/08/2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. May. 2024

https://doi.org/10.1016/j.ecocom.2018.07.002
https://doi.org/10.1016/j.ecocom.2018.07.002
https://birmingham.elsevierpure.com/en/publications/0476bfc7-b4e5-4b33-92a3-8d450b63f75f


The two-parameter Weibull distribution as a universal tool to model the variation in 1 
species relative abundances 2 
 3 
Werner Ulrich1*, Ryosuke Nakadai2, Thomas J. Matthews3,4,5, Yasuhiro Kubota6 4 
 5 
1Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland, 6 
2Faculty of Science, University of the Ryukyus, Nishihara, Japan 7 
3School of Geography, Earth and Environmental Sciences, University of Birmingham, UK  8 
4CE3C – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity 9 
Group and Univ. dos Açores – Depto de Ciências e Engenharia do Ambiente, PT-9700-042, 10 
Angra do Heroísmo, Açores, Portugal 11 
5Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, 12 
Birmingham, B15 2TT, UK 13 
6Marine and Terrestrial Field Ecology, Tropical Biosphere Research Center, University of the 14 
Ryukyus, Nishihara, Japan 15 
 16 
E-mails: WU: ulrichw@umk.pl; RN: r.nakadai66@gmail.com; TM: 17 
T.J.Matthews@bham.ac.uk; YK: kubota.yasuhiro@gmail.com 18 
 19 
* Corresponding author 20 
 21 
Running title: Weibull fits to species relative abundance 22 
 23 
 24 
Author contribution 25 
WU developed the theoretical background, analyzed the data, and wrote the first draft. YK 26 
and RN provided the forest data. TM contributed theoretical background. All authored 27 
contributed significantly to the final text version. 28 
 29 
 30 
  31 

1 
 

mailto:ulrichw@umk.pl
mailto:r.nakadai66@gmail.com
mailto:T.J.Matthews@bham.ac.uk
mailto:kubota.yasuhiro@gmail.com


Abstract 32 
The study of species abundance distributions (SADs) needs a precise modelling of their 33 
drivers and ecological implications. We introduce the two-parameter Weibull distribution as a 34 
versatile tool to fit various kinds of observed SADs and to compare observed and theoretically 35 
expected values at the species level. We show that the shape and the scale parameter of this 36 
distribution have precise ecological interpretations, the first being a measure of the excess of 37 
either rare or common species, and the second as a quantification of the proportion of 38 
persistent species in the focal community. Applying the Weibull model to 534 global tree 39 
communities we demonstrate that plots of the parameters of the Weibull distribution demark 40 
ecologically impossible species abundance distributions. This promises new insight into the 41 
ecological constraints on community assembly.  42 
 43 
 44 
Keywords: Preston plot, species abundance distribution, species assembly, statistical fitting, 45 
Weibull distribution, Whittaker plot  46 
 47 
 48 
1. Introduction 49 
1.1 Theoretical Background 50 

Within ecological assemblages, species generally differ widely in abundances (Magurran, 51 
2004; Matthews and Whittaker, 2015). Often, the dominant species exceed the least abundant 52 
species by more than five orders of magnitude (Ulrich et al., 2010). Since Motomura (1932) 53 
formally introduced the concept of the species relative abundance distribution (SAD), the 54 
question of which ecological processes are responsible for this large variance in abundance 55 
has been controversially discussed (Tokeshi, 1999; Hubbell, 2001; McGill et al. 2007; Locey 56 
and White, 2013). Whilst early SAD models focused on the role of niche (Sugihara, 1980) vs. 57 
stochastic processes (May, 1975), recent discussion has largely centered on the impact on the 58 
SAD of dispersal (Hubbell, 2001; Dexter et al., 2017) vs. persistence (Magurran and 59 
Henderson, 2003). These discussions have sparked the development of a large number of 60 
different SAD models, each based on a specific set of assumptions about community 61 
assembly (Magurran, 2005; McGill et al., 2007). Irrespective of the ecological and theoretical 62 
background, SADs are commonly used for biodiversity assessment and monitoring (Matthews 63 
and Whittaker, 2015). 64 

Models of relative abundances need to be fitted to observed distributions, a task that is far 65 
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from being straightforward (Ulrich et al., 2010; Mathews and Whittaker, 2014; Baldridge et 66 
al., 2016). To be of ecological value these fits need to be compared among different 67 
assemblages, for instance to infer environmental or geographical gradients (Ulrich et al., 68 
2016a, b) and variation in abiotic conditions and biotic interactions (Erlén and Morris, 2015). 69 
Traditionally, SAD models have mostly been fitted to the statistical distribution (Matthews 70 
and Whittaker, 2014), where abundances are classified into log2 bins prior to fitting (Preston, 71 
1948, Fig. 1 left panels). As the selection of the logarithmic base and the way in which 72 
abundances are binned are arbitrary decisions, different binning procedures might have major 73 
impacts on model fitting (Nekola et al., 2008; Connolly and Dornelas, 2011). Further, any 74 
sufficient estimate of class frequencies needs an appropriate number of species, making 75 
frequency distribution fits reliable only for larger communities (Wilson et al., 1993). In 76 
contrast, plots that use ranked abundances for all species (Whittaker plots: Whittaker, 1975; 77 
Bazzaz, 1975) do not loose information due to data binning (Fig. 1 right panels) or the 78 
pooling of species to observed numbers of individuals. As a consequence, fits become reliable 79 
at much lower species richness. Ulrich et al. (2010) recommended ten species as the lower 80 
boundary for model fit, whereas Wilson (1993) reported that even 40 species may not be 81 
enough to reliably identify particular types of statistical distributions. Importantly, deviation 82 
of the fits from the original rank – abundance plot can be directly traced down to single 83 
species and possibly to the underlying processes that influence the abundance of these 84 
species. However, rank – abundance fits might fail if an excess of few very abundant or very 85 
rare species biases the metric used for fitting (often ordinary least squares in combination with 86 
Akaike information maximization). Further, the octaves of the SAD models that are based on 87 
a statistical distribution (e.g. the lognormal distribution) and not on an algorithm that directly 88 
generates for each species the expected abundance (e.g. most niche division based models, 89 
Tokeshi, 1996) need to be interpolated to species abundances prior to fitting, introducing a 90 
degree of subjectivism.  91 

As observed SADs differ widely in shape and scale (the range in abundances), current 92 
models, that are based on one (shape, for instance the lognormal and most niche division 93 
models) or two (shape and scale, particularly the log-series) parameters, have limited 94 
variation in shape. Most are not able to accurately mimic all of the main different SAD types 95 
and do not cover the whole possible SAD space (i.e. all of the different empirically observed 96 
SAD forms). For instance, in recent global comparisons of dryland plant (Ulrich et al., 2016a) 97 
and forest tree (Ulrich et al., 2016b) communities, the latitudinal variation in SAD shape 98 
required separate fits of two different models. In this situation it became difficult to identify 99 
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any gradual latitudinal trend. In this respect, Baldridge et al. (2016) reported common 100 
distribution based SAD models had weak discrimination power, making any ecological 101 
inference challenging.  102 

These problems regarding model fitting and comparison, the biases introduced by the 103 
binning of distributions, and the need for multiple model fits call for the development of 104 
flexible statistical SAD descriptors that are able to mimic various SAD shapes. In this respect, 105 
Ulrich et al. (2010) demonstrated that SADs can generally be classified into three basic 106 
shapes. The first shape is a lognormal type statistical distribution characterized by a larger 107 
number of species with intermediate abundance and fewer species with high and low 108 
abundance (Fig. 1a). In empirical SADs, there is often an excess of rare species than predicted 109 
by a lognormal distribution (Fig. 1b). The second shape is equivalent to a log-series sample 110 
distribution (Fisher et al., 1943), which is characterized by a few abundant and a larger 111 
number of relatively rare species (Fig. 1c). A small number of assemblages, particularly 112 
arthropod samples, follow a third shape, a power function SAD characterized by a heavy tail 113 
of rare species (Pueyo, 2006; Ulrich et al., 2010) (Fig. 1d). Here, we argue that a versatile 114 
SAD model must be able to fit these three basic shapes. 115 

Hughes (1986) was the first to develop a flexible SAD model. However, fitting this 116 
model is not straightforward and the model has received little attention. Tokeshi (1996) 117 
described a one parameter resource division model that is able to fit the symmetric and 118 
skewed lognormal, but not other SAD shapes (Fig 1). The dynamic model of Dewdney (2000) 119 
provides good fits to log-series shaped distributions and possibly also to power functions. 120 
Ugland et al. (2007) developed the Gambin model, based on a discrete version of the 121 
statistical gamma distribution. These authors argued that Gambin is able to mimic several 122 
observed distribution shapes by variation of a single parameter (α); small values of α 123 
characterize log-series SAD shapes, while higher values indicate lognormal curve shapes. As 124 
Gambin is intended to be a descriptor only, the parameter has no clear ecological 125 
interpretation, rather, it is simply a measure of the shape of the SAD. In addition, Gambin is 126 
based on a statistical distribution (as used by Preston 1948) and involves binning the 127 
abundance data into octaves before fitting. There is no straightforward way to rescale the 128 
Gambin distribution to species abundances.  129 

Of course, neutral, ecological drift models (Hubbell, 2001) provide a mechanistic 130 
interpretation of observed abundance distributions with ecologically well-defined parameters. 131 
Depending on the probability of dispersal, speciation rates, local abundances, and meta-132 
community size they provide predictions (Fig. 1) that are close to those of either the skewed 133 
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lognormal or log-series (Hubbell, 2001). These models do not predict power function SADs 134 
(Fig. 1), commonly observed in arthropods (Siemann, 1999; Borda-de-Água et al., 2017). In 135 
addition, neutral models are notoriously difficult to fit and certain models require information 136 
on the structure of the underlying meta-community (Rosindell et al., 2010). Maximum 137 
likelihood fitting of neutral models requires complex assumptions about macroevolutionary 138 
processes (Etienne et al., 2007) that can result in unfeasible (or unmeasurable) parameter 139 
values, such as speciation rates (Ricklefs, 2003) and long-distance dispersal (Rosindell and 140 
Cornell, 2009). These issues have limited the application of neutral models for the prediction 141 
of species abundances.  142 

Here, we strongly argue that a flexible descriptive SAD model needs to predict the 143 
abundances of each species directly and that abundance – rank orders are superior to 144 
distribution approaches. Only such species-focused models make it possible to trace 145 
deviations from observation and possible ecological drivers directly to the species level. There 146 
is also clearly a need to link a SAD model to species functional traits or phylogenetic 147 
relationships, for instance to infer how traits influence the dominance order of species 148 
abundances (Jones et al., 2017). Consequently, a flexible SAD model should ideally be based 149 
on Whittaker plot data.  150 

Stauffer (1979) was apparently the first to propose the Weibull distribution (Weibull, 151 
1951) as a model to explain observed species abundance distributions in forest trees. 152 
However, his derivation of the model and parameter interpretation were based on the broken 153 
stick model (Mac Arthur, 1957), a model that was subsequently found to be unrealistic. As his 154 
approach was distribution based the work did not receive the attention it deserves. Recently, 155 
Storch et al. (2018) used the one-parameter Weibull distribution to mimic the log-series. The 156 
R package SADs (Prado et al. 2017) provides functionality to fit the Weibull model to the 157 
statistical  distribution, but not to rank abundances.      158 

Here, we reintroduce the Weibull distribution as a flexible descriptive model that meets 159 
the above defined requirements. We show that this distribution is able to fit the most 160 
commonly observed SAD shapes. This ability enables us to compare the respective parameter 161 
values across SADs from different studies within the same modelling framework. Although 162 
Weibull distributions result from several stochastic processes (Rinne, 2008), we do not claim 163 
that the model is directly linked to ecological processes. We also demonstrate that the shape 164 
and the scale parameters of the model have straightforward ecological interpretations that can 165 
be used in ecological analyses. As a case study, we illustrate our approach using a set of 166 
global forest tree data. 167 
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 168 
1.2 The Weibull distribution as a SAD model 169 

The empirical Weibull distribution (Weibull, 1951; Rinne, 2008) is an extension of the 170 
exponential family of distributions and is widely used in survival analyses (Lawless, 2003) 171 
and extreme value forecasting (Carter and Challenor, 1983). Its two-parameter form has the 172 
probability density function (pdf) 173 

𝑝𝑝(𝑥𝑥 > 0; 𝜂𝜂; 𝜆𝜆) = 𝜂𝜂
𝜆𝜆
�𝑥𝑥
𝜆𝜆
�
𝜂𝜂−1

𝑒𝑒−�
𝑥𝑥
𝜆𝜆�
𝜂𝜂

   (1) 174 

where η is the shape and λ the scale parameter. When applied to species abundances the 175 
random variate x must contain log-transformed values. Here, we use the ln-transform as a 176 
standard.  177 

Both parameters, η and λ,  have clearly defined ecological interpretations. The scale 178 
parameter is given by 179 

𝜆𝜆2 = 𝜎𝜎2 �(Γ �1 + 2
𝜂𝜂
� − �Γ(�1 + 1

𝜂𝜂
��

2

�
−1

  (2)   180 

where Γ denotes the gamma function and σ2 the variance. Therefore, λ increases with 181 
increasing variance in abundance and provides a measure of the range in ln-transformed 182 
species abundances. We note that the abundance range is closely connected to the concept of 183 
evenness. Evenness measures the variance in abundance (Smith and Wilson 1996). Therefore, 184 
the wider the range in abundance is, the lower is the degree of evenness. The λ parameter can 185 

therefore be interpreted as a measure of SAD shape specific evenness. The shape parameter η 186 

is connected to the excess of either highly abundant species (low η) or rare species (high η).    187 
The Weibull distribution is most often applied to assess prospected survival and failure 188 

times in demography and industry. If x denotes the time to failure the quantity  189 

𝑇𝑇 = 𝜆𝜆Γ(1
𝜂𝜂

+ 1)       (3) 190 

is an estimate of the expected average time to failure (extinction in ecological terms). This 191 
interpretation can be extended to species abundances. Abundant species should be highly 192 
competitive or adapted to a focal habitat. Under this interpretation, the average value T 193 
divides those species that are more competitive (having higher reproductive output) from 194 
those that are less competitive (lower reproductive output). The position of T along the 195 
abundance axis in Preston plots (Fig. 1, left panels) indicates therefore the proportion of 196 
species that are relatively competitive. Interpreting the parameters of the Weibull distribution 197 
in terms of reproductive output and therefore fitness implies that high values of T indicate 198 
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increased proportions of species with high fitness.  199 
Using Weibull distributed random numbers (Press et al., 1986) rescaled to relative 200 

abundances, our approach predicts directly the abundances of each species without the need 201 
for retransformation. Further, Tokeshi (1999) advised the use of such stochastic models for 202 
which goodness of fit can be assessed in terms of standard errors for the predicted abundance 203 
of each species. As our model involves randomly assigned abundances, we here obtain such 204 
errors from 100 fits to each empirical SAD and assess goodness of fit from the proportion of 205 
species falling outside the 95% confidence limits of the model.  206 
 207 
2. Methods 208 
2.1 Fitting the Weibull model to empirical species abundance distributions 209 

Simple but effective maximum likelihood estimators for the two-parameter Weibull 210 
distributions already exist (Nwobi and Ugomma, 2014). However, predicting the abundances 211 
of each species requires interpolation of the distribution, making the resultant fits less reliable. 212 
Here we use a twofold approach to fitting the Weibull distribution to SAD data that directly 213 
generates expected species abundances without the need of back-binning the distribution data. 214 
We iteratively encapsulate the parameter values of η to find the value that minimizes a 215 
goodness of fit metric defined by the reduced major axis value 216 

𝑓𝑓𝑓𝑓𝑓𝑓 =
∑ �𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜−𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2𝑆𝑆
𝑖𝑖=1 +min �(𝑗𝑗−𝑖𝑖)2�

𝑆𝑆
   (4) 217 

where Ai,obs and Ai,pred are the respective observed and predicted relative abundances of 218 
species i in the community of S species, and j runs over all S species. At each step, this fitting 219 
process involves estimating the expected abundances Ai,pred  obtained from Weibull distributed 220 
random numbers (fW,, see Press et al., 1986) 221 

𝑓𝑓𝑊𝑊;𝑘𝑘 = � −1
𝜆𝜆−𝜂𝜂𝑘𝑘−1

ln (1 − 𝑓𝑓𝑙𝑙)�
1/𝜂𝜂𝑘𝑘−1

    (5) 222 

where fl is a linear random number between 0 and 1. Eq. 5 uses an initial maximum likelihood 223 
estimate of λ, which is given by 224 

𝜆𝜆 = �1
𝑆𝑆
∑ 𝑥𝑥𝑖𝑖

𝜂𝜂𝑆𝑆
𝑖𝑖=1 �

1/𝜂𝜂
          (6) 225 

where η comes from the solution of 226 
1
𝑆𝑆
∑ 𝑥𝑥𝑖𝑖

𝜂𝜂𝑙𝑙𝑙𝑙𝑥𝑥𝑖𝑖𝑆𝑆
𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖

𝜂𝜂𝑆𝑆
𝑖𝑖=1

− 1
𝜂𝜂
− ∑ 𝑙𝑙𝑙𝑙𝑥𝑥𝑖𝑖𝑆𝑆

𝑖𝑖=1
𝑆𝑆

= 0    (7) 227 

S is the observed number of species (Cohen, 1965). Eq. 7 can easily be solved using common 228 
numerical methods. The values  229 
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𝐴𝐴𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑖𝑖       (8) 230 
are then the Weibull abundance estimates of each species i.  231 

In contrast to Ulrich et al. (2016a, b), here we have used reduced major axis fits rather 232 
than OLS fits as the former places similar weight on all species irrespective of relative 233 
abundance, whilst the latter approach places greater weight on abundant and rare species 234 
(Connolly and Dornelas, 2011). We note that OLS fits to the same data returned qualitatively 235 
identical results. fit < 0.05 indicates an excellent fit while fit > 0.3 is poor. The Fortran code 236 
used for fitting has already been published in Ulrich et al. (2016a, b) and is freely available 237 
from WU on request.  238 

 239 
2.2 Case study 240 

To illustrate our fitting approach, we fitted the Weibull distribution to four artificial 241 
communities of 50 species each that are presented in Figure 1. These represent the major SAD 242 
shapes observed in nature. In a case study using empirical data, we fitted the Weibull 243 
distribution to a set of 534 fully censused tree communities. These datasets were compiled by 244 
restricting the global compilation of tree communities published in Ulrich et al. (2016) and 245 
Kubota et al. (2018) to 534 fully censused communities ranging between 10 and 100 species 246 
and containing between 20 and 38902 individuals. These communities span a wide range of 247 
different abundance distributions (Ulrich et al. 2016). Evenness J of these communities was 248 
calculated from J = H/ln(S), where H denotes the Shannon diversity. 249 

 250 
3. Results  251 
3.1 Performance of the Weibull model 252 

The Weibull model provided a nearly perfect fit (fit = 0.004) to the symmetrical 253 
lognormal data (Fig. 2a) and very good approximations to the power function data (fit = 254 
0.007) (Fig. 2d). The fits to the left skewed lognormal data with an excess of rare species (fit 255 
= 0.05) (Fig. 2b) and the log-series data (fit = 0.03) (Fig. 2c) were only marginally weaker. 256 
Importantly, using the parameters of the Weibull model it was clearly possible to separate 257 
these four common types of SAD (Table 1). For the lognormal (Fig. 2a), the log-series (Fig. 258 
2c) and the power function data (Fig. 2c) all of the observed species abundances in Fig. 2 A 259 
(left panels) were within the 95% confidence limits of the model fits, whilst for the skewed 260 
lognormal data (Fig. 2b) three of the 50 species (6.0%) deviated from the fitted value. The 261 
rescaling of the distributions and the fits to log2 frequency distributions (Fig. 2 B) confirmed 262 
the good performance of the Weibull distribution.   263 

8 
 



The 95% bootstrap confidence limits of the basic parameters of the fitted distribution 264 
(skewness, kurtosis, coefficients of variation in log-abundance), as well as the Weibull model 265 
parameters λ and η included in all but three cases the observed values (Tab. 1). In addition, 266 
the parameters significantly differed (one-way ANOVA, P < 0.001) between the four shapes 267 
(Tab. 1), demonstrating the excellent discriminatory power of the model.      268 

 269 
3.2 Abundance distributions of global tree communities 270 

Ulrich et al. (2018) provide fits to all 534 distributions in a figshare database 271 
(10.6084/m9.figshare.5975098) demonstrating the excellent performance of the model. 272 
Weibull fits to 144 of the 534 communities (27.0%) were excellent (fit < 0.05, Fig. 3), while 273 
only 20 fits (3.7%) were comparatively poor (fit > 0.3, Fig. 3 and Ulrich et al. 2018). 274 
Goodness of fit was independent of species richness (Fig. 3a) but moderately increased with 275 
increasing total abundance (Fig. 3b), abundance range (Fig. 3c) and model parameters (Figs 3 276 
d, e). Goodness of fit decreased with increasing skewness, that is, the excess of abundant 277 
species (Fig. 3f).  278 

These results are corroborated by the fact that observed skewness and modelled skewness 279 
were strongly positively correlated (Fig. 4a). As expected from eq. 2, the scale parameter λ 280 

was positively correlated to the observed abundance range (Fig. 4b). Low η values were 281 

linked to an excess of rare species, and high η values to an excess of abundant species (Fig. 282 

4c). Values of λ and η were linearly correlated (Fig. 4d), defining areas of not realized 283 

parameter combinations. Although λ and η are related to the variance and skewness of the 284 
SAD, respective skewness - variance plots performed worse in identifying realized and 285 
forbidden SAD shapes (Fig. 5e).  286 

 287 
4. Discussion 288 

Our fits to 534 global tree communities showed that the two-parameter Weibull 289 
distribution is an appropriate tool to mimic a wide variety of observed species abundance 290 
distributions (Ulrich et al. 2018). We note that the model does not provide a mechanistic 291 
explanation for these distributions although several stochastic processes are known to be 292 
Weibull distributed (Rinne, 2008). The data presented in Ulrich et al. (2018) also show that 293 
the model might provide weaker fits in communities dominated by a small number of highly 294 
abundant species and in communities with a marked excess in very rare species. We note that 295 
this fitting problem also applies to other SAD models designed to fit specific stochastic niche 296 
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partitioning processes (Tokeshi 1999) and statistical distributions (Ulrich et al. 2010). 297 
An important finding of the present study regards the relationship of the shape and the 298 

scale parameters of the Weibull distribution that for the first time enable us to define limits to 299 
the observed shapes of empirical abundance distributions (Fig. 4d). Respective plots of 300 
skewness and variance (Fig. 4e) and skewness and evenness (Fig. 4f) did not recover these 301 
limits. With few exceptions, communities with η > 3 did not exist. As λ increases with 302 

abundance range (Fig. 4b), communities with λ > 6 might exist for instance in invertebrate 303 

assemblies with abundance ranges > six orders of magnitude. High η is linked to the excess of 304 
relatively rare species (Tab. 1). The theoretical power fraction SAD with a high excess of such 305 
species (Figs. 1 and 2) had η > 3. Therefore, our result strongly indicates that η cannot exceed 306 
a certain limit in natural communities and that such extreme SADs do not exist in global 307 
forest tree communities.  308 

What do such ‘forbidden’ communities look like? Fig. 5 shows that low η in combination 309 

with low λ (Fig. 5a) predicts communities with an initial steep decline in abundance and a 310 

short ‘heavy tail’ of rare species. High η and low λ (Fig. 5b) generate SADs very similar to 311 
the popular, but discredited, broken stick distribution (MacArthur, 1957). Our results question 312 
whether such communities are realized. Indeed, empirical evidence for broken stick 313 
communities is very limited (Smart, 1976). Higher values of λ and η generate communities 314 
for which the proportion of very rare species exceeds 40% (Fig. 5c). As already noted, such 315 
distributions do not exist for species rich communities.   316 

The fact that η was bounded to values between 1 and 3 implied that Γ(1/η+1) takes 317 

values between 0.89 and 1, making the failure time T to be a nearly linear function of λ (eq. 318 

3). This fact gives the scale parameter λ yet another interpretation. It denotes the relative 319 
proportion of adapted and possibly persistent species in a community. In the forest data, T was 320 
significantly linearly correlated with the total abundance of all species (r2 = 0.54) and 321 
abundance range (r2 = 0.58), but not with species richness (r2 = 0.01). We speculate that 322 
communities with high overall abundance also contain a higher proportion of species not 323 
endangered by local extinction.  324 

The approximately linear relationship between η and λ makes the respective quotient q = 325 

η/λ a potentially new metric of community composition that catches the relationship between 326 
range in abundance (Fig. 4b) and the excess of either rare or abundant species (Fig. 4c). It is 327 
beyond the scope of the present paper to apply this metric to environmental and trait data but 328 
we note that in the forest tree communities of this study, q was positively correlated to 329 
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community evenness (r2 = 0.37) and consequently negatively to the range of abundances (r2 = 330 
0.71). This opens the possibility of partitioning dissimilarity in abundances into two parts, one 331 
part linked to SAD shape (skewness) and a second part linked to community evenness.    332 

Finally, the good fits of the Weibull distribution to observed SADs (Fig. 3 and Ulrich et 333 
al. 2018) makes it possible to take a species based approach to SADs to compare model 334 
prediction and observation. In this respect, distributions of functional traits and phylogenetic 335 
relationships that characterize the relative abundance of realized species characteristics in a 336 
community have come into focus (Gross et al. 2017; Jones et al., 2017). Being explicitly 337 
based on species – rank order abundances, they allow for a direct comparison of species traits 338 
among communities and between realized and theoretically expected values (Cornwall and 339 
Ackerly, 2009). As neutral model fitting is challenging in most cases (Gotelli and McGill, 340 
2006; Rosindell et al., 2010), the application of the Weibull distribution offers a valuable 341 
alternative, particularly for the identification of outliers in abundance and the analysis of how 342 
such outlying species influence community trait space and functional performance. In this 343 
respect, Ulrich et al. (2016a) and Matthews et al. (2017) have recently shown that 344 
comparative analyses of SAD shape and parameters can reveal important biogeographic 345 
patterns (e.g. latitudinal and climate gradients). Our approach not only provides a flexible 346 
model but offers ecologically interpretable parameters that can be related to species trait and 347 
environmental data. We argue that the Weibull distribution might form a statistical standard 348 
(similar to a null model) to which observed species relative abundances can be compared. 349 
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Table 1. Coefficients of variation (CV) and moments of the ln-transformed relative 498 
abundances of the communities in Fig. 2, and the respective fits of the Weibull distribution 499 
(given are shape and scale parameters of the best fit) together with upper and lower two-sided 500 
95% confidence limits (CL) of 1000 bootstrap samples. Shape and scale of the data refer to 501 
maximum likelihood Weibull parameters taken directly from the ln-transformed abundances.  502 
 503 

Model Statistics CV Standard 
deviation Skewness Kurtosis Shape Scale 

lognormal Data 0.45 1.41 0.10 -0.21 2.51 2.45 

 fit 0.53 1.35 0.36 -0.26 2.45 2.06 

 lower CL 0.43 1.12 -0.10 -1.32 - - 
  upper CL 0.64 1.61 0.87 0.50  -  - 
skewed 
lognormal 

Data 0.38 2.00 -0.50 0.05 3.22 4.28 
fit 0.54 1.87 0.12 -0.39 3.16 3.23 

 lower CL 0.43 1.58 -0.35 -1.25 - - 
  upper CL 0.65 2.23 0.62 0.25  - -  
log-series Data 0.98 1.27 0.75 -0.39 1.11 0.93 

 fit 0.80 1.14 1.03 0.90 1.09 0.94 

 lower CL 0.65 0.91 0.47 -1.35 - - 
  upper CL 0.96 1.42 1.72 2.78  -  - 
power function Data 0.91 1.21 1.20 0.89 1.15 0.96 

 fit 0.92 1.23 1.66 3.40 1.12 0.96 

 lower CL 0.73 0.87 0.93 -0.71 - - 
  upper CL 1.14 1.62 2.66 7.33  - -  
  504 
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Figure 1. Four typical shapes of species abundance distributions (Whittaker species - rank 505 
order plots). a) a lognormal distribution, b) left skewed lognormal with an excess of rare 506 
species, c) a log-series distribution, d) a power function. Each community contains 50 species. 507 
Arrows show which types of distributions the selected flexible SAD models can mimic. 508 
 509 
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Figure 2. Reduced major axis fits of the Weibull model to rank abundance (left side) and the 514 
respective log2-binned distribution data (right side) of the four typical shapes of species rank 515 
order –abundance distributions, of 50 species each shown in Fig. 1. a) a lognormal 516 
distribution, b) left skewed lognormal with an excess of rare species, c) a log-series 517 
distribution, and d) a power function. Error bars denote one standard deviation of the Weibull 518 
model fits. Parameter values are given in Tab. 1 519 
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Figure 3. Goodness of fit of 534 empirical global forest tree communities in relation to 524 
species richness (a), total abundance (b), range in abundance (c), Weibull fit parameters λ (d), 525 

and η (e), and observed skewness (f). Given are the r2 values from exponential (a, d, e, f) and 526 
power function (b, c) OLS regressions. 527 
 528 
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Figure 4. Relationships between observed and expected skewness (a), λ and observed 533 

abundance range (b), η and observed skewness (c), η and λ (d), observed skewness and 534 
variance (e), and evenness (f) from the fits of the Weibull distribution to 534 empirical global 535 
tree communities. Given are the r2 values of linear (a, c, d, e) and logarithmic (b) OLS 536 
regressions. Approximate upper and lower boundaries of η are given in (d).    537 
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Figure 5. Three examples of communities (50 species each) generated by Weibull 542 
distributions that are not realized according to Figure 4d.  543 
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