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ABSTRACT

We provide sufficient conditions for a set E ⊂ Rn to be a non-universal dif-

ferentiability set, i.e. to be contained in the set of points of non-differentiability

of a real-valued Lipschitz function. These conditions are motivated by a

description of the ideal generated by sets of non-differentiability of Lips-

chitz self-maps of Rn given by Alberti, Csörnyei and Preiss, which even-

tually led to the result of Jones and Csörnyei that for every Lebesgue null

set E in Rn there is a Lipschitz map f ∶ Rn → Rn not differentiable at

any point of E, even though for n > 1 and for Lipschitz functions from

Rn to R there exist Lebesgue null universal differentiability sets. Among

other results, we show that the new class of Lebesgue null sets introduced

here contains all uniformly purely unrectifiable sets and gives a quanti-

fied version of the result about non-differentiability in directions outside

decomposability bundle with respect to a Radon measure.
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1. Introduction and main results

A recent surge of interest in validity of Rademacher’s theorem on almost every-

where differentiability of Lipschitz maps of Rn to Rm arose from several new

results and approaches. For infinite-dimensional Banach spaces there were suc-

cessful attempts to obtain its analogues for the notion of Gâteaux derivative,

for results and references see [6, Chapter 6], and some results for the stronger

notion of Fréchet derivative to which a recent monograph [17] is devoted. In

another direction, Pansu [20] obtained an almost everywhere result for Lips-

chitz maps between Carnot groups, and Cheeger [7] generalised Rademacher’s

theorem to Lipschitz functions on metric measure spaces.

Here we contribute to this research in the direction started by a result of

[22] that, in terms of the size of differentiability sets of real-valued Lipschitz

functions on R2, Rademacher’s theorem is not sharp: there is a Lebesgue null set

in R2 containing points of differentiability of any real-valued Lipschitz function

on R2. Following [12, 13], where it was shown how unexpectedly small such sets

may be, they are now called universal differentiability sets. The analogues of

universal differentiability sets were recently introduced and investigated in the

Heisenberg group [21].

The present paper introduces cone unrectifiable sets, which are a novel class

of Lebesgue null sets, wider than that of uniformly purely unrectifiable sets

(see Definition 1.7 and Remark 1.8) and shows that cone unrectifiable sets arise

naturally in the study of sets in which Lipschitz functions may have no points

of differentiability. As an application of our results, we strengthen and quantify

the result of [4, Theorem 4.1] on non-differentiability with respect to arbitrary

Radon measures, and demonstrate that the uniformly purely unrectifiable sets

are non-universal differentiability sets in the strongest possible sense, see The-

orem 1.13. Our main result is the following theorem.

Theorem 1.1: If E ⊂ Rn is cone unrectifiable, then there is a Lipschitz function

f ∶ Rn → R that is non-differentiable at any point of E.

The non-differentiability sets of Lipschitz maps Rn → Rm, m ≥ n were first

completely described in geometric measure theoretical terms in [3] (see [1, 2] for

a published less formal description), and then [8] showed that this description

gives precisely the Lebesgue null sets in Rn. Hence Rademacher’s theorem is

sharp for maps into spaces of the same or higher dimension. This result was
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complemented in [24] where it was proved that whenever m < n, there is a

Lebesgue null set in Rn containing points of differentiability of any Lipschitz

map Rn → Rm. We will return to the description originally introduced in [3]

later as it forms the main starting point of what we do in the present paper.

The problem we address in this paper stems from the above results: can one

give a geometric measure theoretical description of non-differentiability sets of

Lipschitz maps of Rn to R? Notice that this is a question about sets and not

about measures: if we are given a σ-finite Borel measure µ in Rn that is singular

with respect to the Lebesgue measure, we may use [3] and [8] to find a Lipschitz

µ-almost everywhere non-differentiable mapping f = (f1, . . . , fn) ∶ Rn → Rn and

observe that for a random choice of αi ∈ (0,1) the real-valued function ∑ni=1 αifi
is Lipschitz and µ-almost everywhere non-differentiable. This argument appears

both in [3] and [4], and moreover [4] simplifies the general arguments of [3] in

the special case of differentiability µ-almost everywhere; notice also that in this

case even the results of [8] may be demonstrated by a more accessible proof

given in [11] (which is based on different ideas).

A further question (not addressed in the present paper) one may wish to

consider is to give a description of sets on which a typical Lipschitz mapping is

non-differentiable. The first such result was obtained in [25] for n = 1, and a

recent paper [19] deals with a more restrictive full non-differentiability of typical

Lipschitz functions f ∶ Rn → Rm with m ≥ n.

We will now state our results and explain them in more detail. Their proofs

will be given in Section 3. The short Section 4 contains two examples whose

meaning will also be discussed here.

The main concept that we use is based on the notion of width that has been,

together with several variants, introduced in [3].

Definition 1.2: Suppose e ∈ Rn ∖ {0} and α ∈ (0,1]. We let Ce,α be the cone

{x ∈ Rn ∶ ⟨x, e⟩ ≥ α∥x∥∥e∥} and Γe,α the set of Lipschitz curves such that

γ′(t) ∈ Ce,α for almost every t ∈ R. The (e,α)-width of an open set G ⊂ Rn is

defined by

we,α(G) = sup{H1(G ∩ γ(−∞,∞)) ∶ γ ∈ Γe,α},(1.1)

and of any E ⊂ Rn by

we,α(E) = inf{we,α(G) ∶ G ⊃ E,G is open}.(1.2)
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For the sake of completeness, when e = 0 or α > 1 we let we,α(E) = 0 for every

E ⊂ Rn. Of course, these cases have no bearing on what we do.

Notice that, as [3] points out, for constructions of Lipschitz functions, where

values of we,α matter only for arbitrarily small α, the number α in Definition 1.2

may be replaced by any quantity or function that may attain arbitrarily small

positive values. For example [4] replaces it by cosα, which is a bound on the

angle between γ′(t) and e and so is geometrically natural, but for us has the

disadvantage that values of α that matter, namely those for which the cone Ce,α

is close to a half-space, are close to π/2 rather than to zero.

Many variants of Definition 1.2 that are easily seen or shown to be equivalent

to the one given here may be found in [23, Definition 1.1 and Remark 1.2].

A rather useful variant is that Γe,α may be defined as the collection of γ ∈
C1(R,Rn) satisfying ∥γ′(t))∥ = 1 and γ′(t) ∈ Ce,α for every t.

Perhaps the most interesting modification of Definition 1.2 comes from a so

far unpublished result of Máthé and allows taking Borel sets G both in (1.1)

and (1.2). It is not exactly equivalent with ours, but has the properties that a

set of (e, β) width zero according to Máthé has (e,α) width zero according to

the above definition for every α > β, and a set of (e,α) width zero according

to the above definition has (e,α) width zero according to Máthé. We have not

used this, since our constructions, like that of [3], use that width is determined

by open sets, and so the only difference would be that an appropriate version

of Definition 1.2 would be called Máthé’s Theorem.

Terms like “cone null” have been used for sets that are defined with the help

of the notion of width. We follow this trend in our main notion, introduced

in Definition 1.7. Before coming to it, we recall the main starting motivation

behind what we do, namely the following definition from [2] and a special case

of their result (proved in [3]) which is most relevant for us.

Definition 1.3 (see [2, Definition 1.11]): A map τ of a subset E of Rn to the

Grassmanian G(k,n) is said to be a k-dimensional tangent field of E if

(1.3) we,α{x ∈ E ∶ τ(x) ∩Ce,α = {0}} = 0 for every e ∈ Rn and α > 0.

Obviously, if E is a k-dimensional embedded C1 submanifold of Rn, its tan-

gent field τ(x) satisfies (1.3). However, the following theorem proved in [2, 3]

shows that many non-smooth sets admit a k-dimensional tangent field. Be-

fore stating it, we notice that Definition 1.3 uses the value α in two different
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meanings and so it is sensitive on the choice of the notion of width. As a

more detailed discussion of this will appear in [3], we just point out that the

use of Máthé’s width and the width from Definition 1.2 are equivalent. The

only case to treat is when Definition 1.2 holds in Máthé’s sense. Assuming

we,αk
{x ∈ E ∶ τ(x) ∩ Ce,αk

= {0}} = 0 in Máthé’s sense for all k ≥ 1, where

0 < αk < α < 1 and αk → α, we conclude that in the sense of Definition 1.2

we have we,α{x ∈ E ∶ τ(x) ∩ Ce,αk
= {0}} = 0 for all k ≥ 1. Hence writ-

ing {x ∈ E ∶ τ(x) ∩ Ce,α = {0}} = ⋃∞k=1{x ∈ E ∶ τ(x) ∩ Ce,αk
= {0}}, we get

we,α{x ∈ E ∶ τ(x) ∩Ce,α = {0}} = 0.

Theorem 1.4 (see [2, Theorem 1.12]): A set E ⊂ Rn is contained in a non-

differentiability set of a Lipschitz map Rn → Rm for some, or any, m ≥ n if and

only if it admits an (n− 1)-dimensional tangent field. If n = 2, this holds if and

only of E is Lebesgue null.

As already mentioned, in the last assertion of Theorem 1.4 the assumption

n = 2 was removed in [8]. Notice also that the general case of Theorem 1.4

says that the existence of k-dimensional tangent fields is similarly related to the

existence of functions that at every point of the set can be differentiable in the

direction of linear subspaces of dimension at most k only.

Based on these results, we conjecture that sets of non-differentiability of real-

valued Lipschitz functions may be described as those for which there is an

(n−1)-dimensional tangent field satisfying conditions that make it in some sense

closer to being “genuinely” (n − 1)-dimensional. We do not have a more pre-

cise conjecture, but a simple consequence of our main results, Theorem 1.1 and

Theorem 1.9, is that sets for which there exists a continuous (n−1)-dimensional

tangent field are indeed sets of non-differentiability of real-valued Lipschitz func-

tions.

Since for the real-valued case only the tangent fields of codimension one are

relevant, we base our approach on an obvious variant of Definition 1.3 that uses

the normal fields instead of tangent fields. More interestingly, having in mind

conditions similar to continuity of the normal field, we can define the normal

vectors pointwise, while in general no pointwise definition of tangent fields from

Definition 1.3 is known. A highly interesting exception to this is the special

case when we are interested in measures supported by a set admitting a k-

dimensional tangent field where [4] provides an interesting pointwise definition

of the tangent field at almost every point.
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Since our “normal vectors” are not exactly those orthogonal to the tangent

field from Definition 1.3, we do not actually call them “normal vectors” and

instead use just notation N(E,x) for their collection.

Definition 1.5: For x ∈ E ⊂ Rn let

N(E,x) ∶= {e ∈ Rn ∶ (∀ε > 0)(∃r > 0)we,ε(B(x, r) ∩E) = 0}.

Remark 1.6: Although we will not use it directly, we remark that N(E,x) is a

linear subspace of Rn for any x ∈ E. This follows from results on “joining cones”

in [3], but we describe a quick argument based on the result of Máthé. Since

λN(E,x) = N(E,x) for each λ ∈ R, we conclude that every nonzero e from the

linear span of N(E,x) can be written as e = ∑ki=1 ei where ei ∈ N(E,x) ∖ {0}.

Suppose ε > 0 is fixed and γ ∈ Γe,ε belongs to C1(R) and satisfies ∥γ′(t)∥ = 1 for

all t ∈ R (cf. remarks after Definition 1.2). Let α = 1
2
ε∥e∥/∑i ∥ei∥ and find δ > 0

such that wei,α(E∩B(x, δ)) = 0 for each i. From Definition 1.2 we see that there

is a Borel (in fact Gδ) set G ⊃ E such that wei,α(G∩B(x, δ)) = 0 for every i. Fix

now any t ∈ R and notice that there exists an i such that ⟨γ′(t), ei⟩ ≥ 2α∥ei∥.
By continuity of γ′ there is a τ > 0 such that for this particular i we have

⟨γ′(s), ei⟩ > α∥ei∥ whenever s ∈ (t − τ, t + τ). Hence wei,α(G ∩B(x, δ)) = 0 for

this i implies ∣γ−1(G∩B(x, δ))∩(t−τ, t+τ)∣ = 0. Finally, existence of such τ > 0

for each t ∈ R allows us to conclude that ∣γ−1(G ∩B(x, δ))∣ = 0. As this holds

for every γ ∈ Γe,ε, we get we,ε(G ∩B(x, δ)) = 0.

Definition 1.7: A set E ⊂ Rn satisfying N(E,x) ≠ {0} for every x ∈ E is said to

be cone unrectifiable.

Remark 1.8: Of course any cone unrectifiable set is Lebesgue null. A ba-

sic example of cone unrectifiable sets E ⊂ Rn is provided by those for which

N(E,x) = Rn for every x ∈ E. Such sets are called uniformly purely unrectifi-

able. By the result of András Máthé alluded to above these are precisely those

sets that are contained in a Borel 1-purely unrectifiable set, i.e., in a Borel set

B whose intersection with any C1 curve has one-dimensional Hausdorff mea-

sure zero. The arguments used to prove Remark 1.6 simplify their definition in

another way: E is uniformly purely unrectifiable if and only if there is 0 < η < 1

such that we,η(E) = 0 for every unit vector e (this is used as a definition of a

uniformly purely unrectifiable set in [9]). In Example 4.4 we point out that a

similar simplification of the notion of cone unrectifiable sets is false: given any
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e ≠ 0 and η ∈ (0,1), we construct a set E which does not satisfy the conclusions

of Theorem 1.1 but is of (e, η)-width zero.

We are now ready to state the main results of this paper. First, we state

Theorem 1.1 again:

Theorem (Theorem 1.1): If E ⊂ Rn is cone unrectifiable, then there is a Lips-

chitz function f ∶ Rn → R that is non-differentiable at any point of E.

There are various ways of stating that non-differentiability of a function f at

a given point x is rather strong. The most usual one is by comparing the upper

and lower directional derivatives of f at x defined by

D+f(x; y) ∶= lim sup
t↘0

f(x + ty) − f(x)
t

and

D+f(x; y) ∶= lim inf
t↘0

f(x + ty) − f(x)
t

,

respectively. An even stronger non-differentiability statement is obtained by

showing that close to x, f may be approximated by many linear functions. Our

next result shows that the non-differentiability statement of Theorem 1.1 may

be strengthened in this way.

Theorem 1.9: For every cone unrectifiable set E ⊂ Rn and every ε > 0 there

are a Lipschitz function f ∶ Rn → R with Lip(f) ≤ 1+ε and a continuous function

u ∶ E → {z ∈ Rn ∶ ∥z∥ ≤ ε} such that

(1.4) lim inf
r↘0

sup
∥y∥≤r

∣f(x + y) − f(x) − ⟨e + u(x), y⟩∣
r

= 0

whenever x ∈ E and e ∈ N(E,x) has ∥e∥ ≤ 1. In particular,

D+f(x; y) −D+f(x; y) ≥ 2 sup{⟨e, y⟩ ∶ e ∈ N(E,x), ∥e∥ ≤ 1}

whenever x ∈ E and y ∈ Rn.

Additionally, if E is contained in {x ∶ ω(x) > 0}, where ω ∶ Rn → [0,∞) is

continuous, then f may be chosen in such a way that ∣f ∣ ≤ ω.

For a set E admitting an (n − 1)-dimensional continuous tangent we obvi-

ously have N(E,x) ⊃ τ(x)⊥ ≠ {0}. Hence such sets are cone unrectifiable and

so are sets of non-differentiability of a real valued Lipschitz function. More

interestingly, having countably many cone unrectifiable sets, we may try to add
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the functions obtained from Theorem 1.9 to get a function non-differentiable at

the points of the union. However, addition of non-differentiable functions may

create new points of differentiability. To solve this problem we employ the idea

that Zahorski [27] used in his precise description of non-differentiability sets of

Lipschitz functions on the real line as Gδσ-sets of measure zero; it is based on

the simple observation that the sum of a differentiable and a non-differentiable

function is non-differentiable. For this we need the function f obtained in The-

orem 1.9 to be differentiable outside E, in other words, to have that E coincides

with the set of points where f is not differentiable. This is however not possible

in general as shown in Example 4.2. In the following two Corollaries we solve

this difficulty by making a special assumption that the sets we consider are Fσ.

Corollary 1.10: Suppose E = ⋃kEk ⊂ Rn, where Ek are disjoint cone unrec-

tifiable Fσ sets, and let Nx ∶= N(Ek, x) ∩B(0,1) when x ∈ Ek. Then there is a

Lipschitz f ∶ Rn → R such that

• f is differentiable at every x ∈ Rn ∖E;

• for every x ∈ E there is c > 0 such that for every y ∈ Rn,

D+f(x; y) −D+f(x; y) ≥ c sup
e∈Nx

⟨e, y⟩,

so, in particular, f is not differentiable at x.

If we are not interested in estimates of the difference of the upper and lower

derivatives, Corollary 1.10 gives the following more naturally sounding state-

ment.

Corollary 1.11: For any E ⊂ Rn that is a countable union of cone unrectifi-

able Fσ sets there is a Lipschitz function f ∶ Rn → R that is non-differentiable

at any point of E and is differentiable at any point of its complement Ec.

The next Corollary 1.12 contains the constructions of µ-almost everywhere

non-differentiable functions from [3] and [4, Theorem 4.1]. Given a Radon mea-

sure µ in Rn, these authors assign to µ-a.a. points a linear subspace T (x) of Rn

that in certain sense represents the directions of curves on which µ is “seen”.

For [3], the definition of “seen” is exactly the assumption of Corollary 1.12

while [4] bases the definition on a related but different property and shows in

[4, Lemma 7.5] that the assumption of Corollary 1.12 is satisfied. Hence Corol-

lary 1.12 gives a quantified generalisation of [4, Theorem 4.1]. It is, however,
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important to point out that both these references define the linear space T (x)
which is in a natural sense smallest, and this allows them to obtain also a coun-

terpart to Corollary 1.12 that every Lipschitz function is µ-a.e. differentiable

in the direction of T (x). We also notice that the constructions of µ-almost

everywhere non-differentiable Lipschitz functions have been strengthened in a

different direction by [18] where the authors produce functions that µ-a.e. admit

any blow-up behaviour permitted by the differentiability results.

Corollary 1.12: Let µ be a Radon measure on Rn and T a µ-measurable

map of Rn to ⋃nm=0G(n,m) such that for every unit vector e and 0 < α < 1,

the set {x ∶ Ce,α ∩ T (x) = {0}} is the union of a µ-null set and a set E with

we,α(E) = 0. Then there is a real valued Lipschitz function f on Rn such that

for µ-a.e. x ∈ Rn there is c > 0 such that D+f(x, v) −D+f(x, v) ≥ cdist(v, T (x))
for every v ∈ Rn.

Our final result deals with the uniformly purely unrectifiable sets introduced

in Remark 1.8. For such sets the statement of Theorem 1.9 concerning upper

and lower derivatives is shown in [3]. We prove a stronger result, namely that

these sets are non-universal differentiability sets in the strongest possible sense,

which corresponds to having ε = 0 in Theorem 1.9. However, in Example 4.1

we demonstrate that such an improvement is specific to the case of uniformly

purely unrectifiable sets even when E ⊂ R2 is compact, for each x ∈ E the set

N(E,x) is a one-dimensional linear subspace of R2 and the map x ↦ N(E,x)
is continuous.

Theorem 1.13: For every uniformly purely unrectifiable set E ⊂ Rn there is a

real valued 1-Lipschitz function f on Rn such that

(1.5) lim inf
r↘0

sup
∥y∥≤r

∣f(x + y) − f(x) − ⟨e, y⟩∣
r

= 0

for every x ∈ E and e ∈ Rn with ∥e∥ ≤ 1. In particular, D+f(x; y) = ∥y∥ and

D+f(x; y) = −∥y∥ for every x ∈ E and y ∈ Rn.

2. Technical lemmas

We will work in the space Rn equipped with the Euclidean norm ∥ ⋅ ∥. Most of

the notation we use is standard; the open and closed balls will be denoted by

B(x, r) and B(x, r), respectively. Since we will often need to use the distance
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of a point to the complement of an open set, we will simplify the notation for

it: for an open G ⊂ Rn we let

(2.1) ρG(x) ∶= dist(x,Rn ∖G).

As usual, the Lipschitz constant of a real-valued function f defined on a set

E ⊂ Rn is the smallest constant Lip(f,E) ∈ [0,∞], or just Lip(f) when E = Rn,

such that ∣f(y) − f(x)∣ ≤ Lip(f,E)∥y − x∥ for all x, y ∈ E, and functions with

Lip(f) ≤ c will be termed c-Lipschitz. The space of Lipschitz functions on Rn,

those for which Lip(f) < ∞, will be denoted by Lip(Rn). We will also use the

pointwise Lipschitz constants defined by Lipx(f) ∶= lim supy→x ∣f(y)−f(x)∣/∥y−
x∥ and often use the following well known fact.

Lemma 2.1: For any f ∶ Rn → R, it holds that Lip(f) = supx∈Rn Lipx(f).

Proof. It suffices to handle the case n = 1 when it follows, for example, from

the considerably more general Theorem 4.5 in [26, Chapter IX].

The following lemma allows us to modify the functions we are constructing so

that they become smooth on suitable subsets of Rn. A similar lemma is proved

in [3], and in [4], although the authors of the latter paper could have used more

general [5, Theorem 1] or [16, Corollary 16]. We need a slightly more technical

variant of results from these references.

Recall that for any collection B of open sets in Rn there is a C∞ partition

of unity of order n subordinated to it, that is a collection of C∞ functions

ϕk ∶ Rn → [0,1], k = 1,2, . . . , such that

• each spt(ϕk) is a compact subset of some B ∈ B,

• ∑k ϕk(x) = 1 for every x ∈ ⋃B,

• for each x ∈ ⋃B there is r > 0 such that B(x, r) ∩ spt(ϕk) ≠ ∅ for at most

n + 1 values of k.

Lemma 2.2: Suppose H ⊂ Rn is open, g ∶ Rn → R is Lipschitz, Φ ∶ H → Rn

and ξ ∶ H → [0,∞) are continuous and bounded, and ∥g′(x) − Φ(x)∥ ≤ ξ(x)
for almost every x ∈ H. Then for every continuous ω ∶ H → (0,∞) there is a

Lipschitz function f ∶ Rn → R such that

(i) f(x) = g(x) for x ∉H ∩ {ξ > 0} and ∣f(x) − g(x)∣ ≤ ω(x) for x ∈H;

(ii) f ∈ C1(H) and ∥f ′(x) −Φ(x)∥ ≤ ξ(x)(1 + ω(x)) for x ∈H;

(iii) Lip(f) ≤ max(Lip(g), supx∈H(∥Φ(x)∥ + ξ(x)(1 + ω(x)))).
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Proof. Let U ∶=H∩{ξ > 0}, extend ξ and ω to (possibly discontinuous) functions

defined on all of Rn by letting ξ(x) = ω(x) = 0 for x ∉ H and let ω0(x) ∶=
1
2

min(1, ξ(x)ω(x), ω(x), ρ2U(x)). Let B be the family of balls B(x, r) such that

x ∈ U and r < ω0(x). Choose (ϕk)k≥1 forming a locally finite C∞ partition of

unity on U subordinate to B, and denote mk = 1 + ∥ϕ′k∥∞.

As, for example, in [14, Appendix C.4], let η be the standard C∞-smooth

mollifier in Rn and define ηs(x) ∶= η(x/s)/sn. For each k choose sk > 0 small

enough so that the convolution fk = g ∗ ηsk satisfies for every x ∈ spt(ϕk),
• ∣fk(x) − g(x)∣ ≤ 2−k−1m−1

k ω0(x);
• ∥f ′k(x) −Φ(x)∥ ≤ ξ(x) + ω0(x).
Define f ∶ Rn → R by f(x) = ∑k fk(x)ϕk(x) for x ∈ U and f(x) = g(x) for

x ∉ U . Since each fkϕk is in C1(U), we have f ∈ C1(U). Also, for all x ∈ Rn,

(2.2) ∣f(x) − g(x)∣ ≤ ω0(x)

since for x ∉ U both sides are zero, and for x ∈ U ,

∣f(x) − g(x)∣ ≤ ∑
k

∣fk(x) − g(x)∣ϕk(x) ≤ ∑
k

ω0(x)ϕk(x) ≤ ω0(x).

Since ω0 ≤ ω and ω0(x) = 0 for x ∉ U , (i) holds.

We show that f is differentiable at every x ∈H and

(2.3) ∥f ′(x) −Φ(x)∥ ≤ ξ(x) + 2ω0(x).

To see this for x ∈ U , we use ∑k ϕk(x) = 1 and ∑k ϕ′k(x) = 0 to infer that

f ′(x) −Φ(x) = ∑
k

(f ′k(x) −Φ(x))ϕk(x) +∑
k

(fk(x) − g(x))ϕ′k(x),

hence

∥f ′(x) −Φ(x)∥ ≤ ∑
k

∥f ′k(x) −Φ(x)∥ϕk(x) +∑
k

∣fk(x) − g(x)∣∥ϕ′k(x)∥

≤ ∑
k

(ξ(x) + ω0(x))ϕk(x) +∑
k

2−k−1ω0(x)

≤ ξ(x) + 2ω0(x).

To see (2.3) for x ∈ H ∖ U , we infer from the assumptions on g,Φ and ξ that

g is differentiable at x and g′(x) = Φ(x). Since (f − g)′(x) = 0 because (2.2)

gives ∣f(y) − g(y)∣ ≤ ω0(y) ≤ ρ2U(y) ≤ ∥y − x∥2 for all y ∈ Rn, we get that f is

differentiable at x and f ′(x) = g′(x) = Φ(x).
Clearly, (2.3) and the inequality 2ω0(x) ≤ ξ(x)ω(x) show the second state-

ment of (ii).
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To prove (iii), we infer from (2.2) that Lipx(f) ≤ Lip(g) for x ∈ Rn ∖ U , and

from (2.3) that

Lipx(f) ≤ sup
y∈U

(∥Φ(y)∥ + ξ(y) + 2ω0(y)) ≤ sup
y∈H

(∥Φ(y)∥ + ξ(y)(1 + ω(y)))

for x ∈ U . Thus (iii) holds by Lemma 2.1 and, since its right side is finite, we

also see that f is Lipschitz.

We already know that f is differentiable at every y ∈ H and f ′ is continuous

at every y ∈ U . If y ∈ H ∖ U , (2.3) shows that limx→y(f ′(x) −Φ(x)) = 0. Since

Φ is continuous at y, it follows that f ′ is continuous at y. Hence f ∈ C1(H),
which is the last statement we needed to prove.

The next simple Lemma is used to show that the functions we construct may

be approximated by linear ones in the way required in equation (1.4) of our

main result, Theorem 1.9.

Lemma 2.3: Suppose that H ⊂ Rn is open, g ∶ Rn → R belongs to C1(H),
ω ∶ Rn → [0,∞) is continuous and strictly positive on H, and η ∈ (0,1]. Then

there is a function ξ ∶ Rn → [0,∞) such that

(i) ξ ∈ C(Rn, [0,∞)) ∩C(H, (0,∞)) and ξ ≤ 1
2
ω;

(ii) if x ∈ H and h ∶ Rn → R satisfies ∣h − g∣ ≤ 2ξ, there is 0 < r < ω(x) such

that ∣h(x + y) − h(x) − ⟨g′(x), y⟩∣ ≤ ηr whenever ∥y∥ ≤ r.

Proof. Let Ψ be the set of functions ψ ∶ Rn → [0,∞) satisfying Lip(ψ) ≤ 1,

0 ≤ ψ ≤ 1
2

min(ρH , ω,1), and ∥g′(y) − g′(z)∥ ≤ 1
2
η whenever x ∈H and max(∥y −

x∥, ∥z − x∥) < ψ(x). Since 0 ∈ Ψ, ϕ(x) ∶= sup{ψ(x) ∶ ψ ∈ Ψ} is well-defined.

We also have ϕ ∈ Ψ since for any x, y, z satisfying x ∈ H and max(∥y − x∥, ∥z −
x∥) < ϕ(x) there is ψ ∈ Ψ such that max(∥y − x∥, ∥z − x∥) < ψ(x) and hence

∥g′(y) − g′(z)∥ ≤ 1
2
η.

Let x ∈ H. Since both ρH and ω are continuous and strictly positive at x,

there is ε > 0 such that 1
2

min(ρH , ω,1) > ε on B(x, ε). Then the function

ψε,x(y) ∶= max(0, ε− ∥y −x∥) satisfies ψε,x = 0 outside B(x, ε) and 0 ≤ ψε,x(y) ≤
ε ≤ 1

2
min(ρH(y), ω(y),1) for y ∈ B(x, ε). Hence ψε,x belongs to Ψ and we

infer that ϕ(x) ≥ ψε,x(x) = ε > 0. Consequently, ϕ is strictly positive on H.

Furthermore,

∣g(x + y) − g(x) − ⟨g′(x), y⟩∣ ≤ ∥y∥ sup
z∈B(x,∥y∥)

∥g′(z) − g′(x)∥ ≤ 1
2
η∥y∥

whenever x ∈H and ∥y∥ < ϕ(x).
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Letting ξ(x) ∶= 1
12
ηϕ(x), we see that (i) holds. To prove (ii), given x ∈ H,

we let r ∶= ϕ(x), observe that 0 < r < ω(x) and use that Lip(ξ) ≤ 1
12
η and

ξ(x) = 1
12
ηr to estimate

∣h(x + y) − h(x) − ⟨g′(x), y⟩∣

≤ 2ξ(x + y) + 2ξ(x) + ∣g(x + y) − g(x) − ⟨g′(x), y⟩∣

≤ 4ξ(x) + 2Lip(ξ)∥y∥ + 1
2
η∥y∥

≤ 1
3
ηr + 1

6
η∥y∥ + 1

2
η∥y∥ ≤ ηr

whenever ∥y∥ < r = ϕ(x), and so whenever ∥y∥ ≤ ξ(x).

The following Lemmas 2.4 and 2.6 modify corresponding lemmas from [3] in

a way suitable for our applications. A special version of Lemma 2.4, which does

not suffice for our purposes, can be found also in [4, Lemmas 4.12–4.14]. Since

[3] is not yet available, we provide full proofs.

Lemma 2.4: Given ε > 0 there is ϑ ∈ (0,1) such that the following holds.

For every E ⊂ Rn, every unit vector e ∈ Rn such that we,ϑ(E) = 0 and every

continuous ω ∶ Rn → [0,∞) which is strictly positive on E, there is a Lipschitz

function g ∶ Rn → R such that 0 ≤ g ≤ ω, Lip(g) ≤ 1 + ε and there is an open set

H ⊃ E contained in {ω > 0} such that ∥g′(x) − e∥ ≤ ε for Lebesgue almost all

x ∈H.

Proof. Let ϑ = sinβ, where 0 < β < π/2, be such that tanβ < ε/2. Denote

G ∶= {x ∶ ω(x) > 0} and choose ϕk ∈ C∞(Rn), k ≥ 1, with compact support

contained in G that form a locally finite partition of unity on G. Let εk > 0 be

such that ∑k εk∥ϕ′k∥ < ε/2 and εkϕk(x) ≤ 2−k min(1, ρ2G(x), ω(x)) for each k ≥ 1

and all x ∈ Rn.

Using values εk which we have just defined, find open sets Gk such that

G ⊃ Gk ⊃ E and we,ϑ(Gk) < εk. For each x ∈ Rn we put

(2.4) gk(x) ∶= sup{H1(Gk ∩ γ(−∞, b]) − s ∶ γ ∈ Γe,ϑ, s ≥ 0, γ(b) = x + se}

and show that

(i) 0 ≤ gk(x) ≤ εk;

(ii) ∣gk(x + y) − gk(x)∣ ≤ ∥y∥ tanβ when y is perpendicular to e;

(iii) gk(x) ≤ gk(x + re) ≤ gk(x) + r for every r > 0;

(iv) gk(x + re) = gk(x) + r when [x,x + re] ⊂ Gk;

(v) gk is a Lipschitz function and Lip(gk) ≤ 1 + tanβ;
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(vi) ∥g′k(x) − e∥ ≤ tanβ for almost every x ∈ Gk.

The first inequality in (i) is obvious by considering in (2.4), s = 0 and any

γ ∈ Γe,ϑ with γ(b) = x, and the second is immediate from we,ϑ(Gk) < εk.

If y ≠ 0 is orthogonal to e, and γ, b, s come from (2.4), we let r ∶= ∥y∥ and

ŷ ∶= y/r and redefine γ on (b,∞) by γ(b + t) = γ(b) + (t cotβ)ŷ + te for t > 0.

Using (2.4) for gk(x + y) with b′ ∶= b + r tanβ and s′ ∶= s + r tanβ, we get

gk(x + y) ≥ gk(x) − r tanβ = gk(x) − ∥y∥ tanβ.

To get a lower estimate for gk(x) apply the above to the vector −y added to

x + y:

gk(x) = gk(x + y − y) ≥ gk(x + y) − ∥y∥ tanβ.

This verifies (ii).

Now consider x′ = x + re where r > 0. Since any γ used for x′ may be used

for x with γ(b) = x + (r + s)e, we get gk(x) ≥ gk(x′) − r. For the rest of (iii)

and for (iv), note that as any γ used in (2.4) for x may be redefined by letting

γ(b + t) = x + se + te for t ≥ 0, we get

gk(x′) ≥ H1(Gk ∩ γ(−∞, b + r]) − s ≥ H1(Gk ∩ γ(−∞, b]) − s

for all γ satisfying (2.4), so gk(x′) ≥ gk(x), and this verifies (iii). If [x,x′] =
[x,x + re] ⊂ Gk and r ≤ s, the same argument shows that

gk(x′) ≥ H1(Gk ∩ γ(−∞, b + s]) − (s − r) ≥ (H1(Gk ∩ γ(−∞, b]) − s) + r,

and if r > s, then

gk(x′) ≥ H1(Gk ∩ γ(−∞, b + r]) = H1(Gk ∩ γ(−∞, b + s]) + (r − s)

≥ (H1(Gk ∩ γ(−∞, b]) − s) + r

for all such γ. Hence in both cases gk(x′) ≥ gk(x)+r, which, together with (iii),

implies equality in (iv).

The statements (ii)–(iv) imply that gk is Lipschitz and for almost every x, 0 ≤
Dgk(x; e) ≤ 1, the equality Dgk(x; e) = 1 is satisfied for x ∈ Gk and ∣Dgk(x; y)∣ ≤
∥y∥ tanβ for y perpendicular to e. This gives both (v) and (vi).

Let g ∶=
∞
∑
k=1

gkϕk. Since by (i) one has 0 ≤ gkϕk ≤ 2−k min(1, ρ2G, ω) for every

k ≥ 1, we conclude that 0 ≤ g ≤ ω and Lipx(g) = 0 for x ∉ G. Since the sum
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defining g is locally finite, g is locally Lipschitz on G and by (v) and (i) for

almost every x ∈ G,

∥g′(x)∥ ≤ ∑
k

∥g′k(x)∥ϕk(x) +∑
k

gk(x)∥ϕ′k(x)∥ ≤ 1 + tanβ +∑
k

εk∥ϕ′k∥ ≤ 1 + ε.

Hence Lipx(g) ≤ 1 + ε for every x ∈ G, and we infer from Lemma 2.1 that

Lip(g) ≤ 1 + ε.
Let H ∶= ⋂k Uk, where Uk ∶= (G ∖ spt(ϕk)) ∪Gk are open. Then E ⊂ ⋂kGk ⊂

H ⊂ G and H is open because the complements of the Uk in G are closed in G

and their collection is locally finite in G since G∖Uk ⊂ spt(ϕk). Finally, by (vi)

for almost every x ∈H,

∥g′(x) − e∥ ≤ ∑
k

∥g′k(x) − e∥ϕk(x) +∑
k

gk(x)∥ϕ′k(x)∥ ≤ tanβ +∑
k

εk∥ϕ′k∥ < ε.

Definition 2.5: Since we will need to use Lemma 2.4 for several values of ε at

the same time, we introduce a function ϑ ∶ (0,∞) → (0,∞) such that ϑ(σ) is

the value of ϑ from Lemma 2.4 for ε = 1
7
σ.

Lemma 2.6: Suppose E ⊂ Rn, the functions ω ∶ Rn → [0,∞) and ϕ ∶ Rn → [0,1]
are continuous, ω > 0 on E, e ∈ Rn, σ > 0 and we,ϑ(σ)(E ∩ {ϕ > 0}) = 0. Then

there exist functions f ∶ Rn → R and ψ ∶ Rn → [0,1] and an open set H ⊂ Rn

such that

(i) E ⊂H ⊂ {x ∶ ω(x) > 0} and f ∈ Lip(Rn) ∩C1(H);
(ii) ∣f(x)∣ ≤ ω(x)∥e∥ for all x ∈ Rn and f(x) = 0 when ϕ(x) = 0;

(iii) ∥f ′(x) − ψ(x)e∥ ≤ σ1{ω>0}(x)1{ϕ>0}(x)∥e∥ for almost all x ∈ Rn;

(iv) 0 ≤ ψ(x) ≤ ϕ(x)1{ω>0}(x) for x ∈ Rn and ψ(x) = ϕ(x) for x ∈H.

Proof. If e = 0 or σ ≥ 1, it suffices to let f ∶= 0, ψ ∶= ϕ and H ∶= {ω > 0}. So we

assume ∥e∥ = 1 and σ < 1, let ε ∶= σ/7 and pick an integer k ∈ [6/σ,7/σ].
Let ω0 ∶= 1

2
min(1, ω), G0 ∶= {ω > 0}, H0 ∶= G0 ∩ {ϕ > 0} and, whenever

Hi−1 has been defined for some i = 1, . . . , k, let Gi ∶= Hi−1 ∩ {ϕ > i/k} and use

Lemma 2.4 with continuous ωi(x) = 1
2

min(ω, ρ2Gi
), where ρGi is defined by (2.1),

to find a Lipschitz function gi ∶ Rn → R and nested open sets Hi ⊂ Gi ⊂ Hi−1

such that for each 1 ≤ i ≤ k,

(a) Lip(gi) ≤ 1 + ε and ∣gi∣ ≤ 1
2

min(ω, ρ2Gi
);

(b) Gi ⊃Hi ⊃ Gi ∩E and ∥g′i(x) − e∥ ≤ ε for a.e. x ∈Hi.

Let g ∶= 1
k ∑

k
i=1 gi. Then by (a), Lip(g) ≤ 1 + ε and ∣g∣ ≤ 1

2
min(ω, ρ2G1

). For

any x ∈ G0 find the biggest j = j(x) ∈ {0,1, . . . , k} with x ∈ Gj ; since Gk = ∅,
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we have j(x) ≤ k − 1. Define ψ(x) = min((j(x) + 2)/k,ϕ(x)); and for x ∉ G0 let

ψ(x) = 0. Clearly, 0 ≤ ψ ≤ ϕ1G0 on Rn, which is the first statement of (iv). For

any x ∈ H0 it holds ψ(x) ∈ ( j(x)
k
, j(x)+2

k
], i.e. 0 < ψ(x) − j(x)/k ≤ 2/k. Define

now

H =
k

⋃
j=0

{x ∈Hj ∶ ϕ(x) < (j + 2)/k}

and notice that ψ(x) = ϕ(x) whenever x ∈ H. Indeed, if x ∈ Hj is such that

ϕ(x) < (j + 2)/k, then Hj ⊂ Gj implies j(x) ≥ j, so j(x)+2
k

≥ j+2
k

> ϕ(x),
hence by definition ψ(x) = ϕ(x), and this verifies (iv). Also, E ⊂ H since

E ⊂ ⋃k−1j=0 (Hj ∖Gj+1) from (b), and for x ∈ Hj ∖Gj+1 we have j(x) = j and so

ϕ(x) ≤ (j + 1)/k < (j + 2)/k. Since it is clear that H is open and ω > 0 on H

because H ⊂ G0, we conclude that the first part of (i) is satisfied for E, H and

ω. We are now left to define the Lipschitz function f and verify the remaining

part of (i), and also (ii) and (iii).

Note that for almost all x ∈ G1 (where ϕ > 1/k), all gi are differentiable at x

and the estimate in (b) is satisfied whenever x ∈Hi and 1 ≤ i ≤ k. Consider any

such x ∈ G1. To estimate g′(x), notice that for such x we have j = j(x) ≥ 1 and

• if 1 ≤ i < j, then x ∈Hi and so ∥g′i(x) − e∥ ≤ ε by (b);

• if i ≥ j + 1, then x ∉ Gi and so g′i(x) = 0 by (a).

Hence, for almost all x ∈ G1

∥g′(x) − ψ(x)e∥ ≤ ∥g′(x) − j−1
k
e∥ + 3

k
∥e∥

≤ 1
k
(
j−1
∑
i=1

∥g′i(x) − e∥ + ∥g′j(x)∥) + 3
k

≤ ε + 4
k
≤ 5
k
≤ 5ϕ(x).

Since g′(x) = 0 outside G1, we get ∥g′(x)−ψ(x)e∥ = ψ(x) for x ∉ G1. Using that

ψ = 0 outside H0 and ψ ≤ ϕ ≤ 1
k

for x ∈H0 ∖G1 we infer that ∥g′(x) − ψ(x)e∥ ≤
min( 1

k
, ϕ(x)) outside G1 and conclude ∥g′(x) − ψ(x)e∥ ≤ 5 min( 1

k
, ϕ(x)) for

almost all x ∈ Rn.

Using Lemma 2.2 with Φ(x) ∶= ψ(x)e, ξ(x) ∶= 5 min( 1
k
, ϕ(x)) and ω̂(x) =

1
5

min(ω(x), ϕ(x), ρ2H), we find Lipschitz f ∶ Rn → R such that f ∈ C1(H),
∣f(x) − g(x)∣ ≤ ω̂(x) and ∥f ′(x) − ψ(x)e∥ ≤ ξ(x)(1 + ω̂(x)) for all x ∈ H. Since

f ∈ C1(H), the remaining condition of (i) is satisfied. Finally, the conditions

(ii) and (iii) hold since ∣f ∣ ≤ ∣f − g∣ + ∣g∣ ≤ 1
5

min(ω,ϕ) + 1
2

min(ω, ρ2G1
) ≤ ω1{ϕ>0},
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and ∥f ′(x) − ψ(x)e∥ ≤ 6 min( 1
k
, ϕ(x)) ≤ σ1{ϕ>0}(x) and f ′ = g′ = 0 and ψ = 0

outside G0 = {ω > 0}.

In a rather straightforward way, we will use Lemma 2.6 recursively to obtain

the main tool for our construction of a function non-differentiable at points of

a given set E.

Lemma 2.7: Suppose E ⊂ H0 ⊂ Rn, H0 is open, f0 ∈ Lip(Rn) ∩ C1(H0) and

ω0 ∈ C(Rn, [0,∞)) ∩ C(H0, (0,∞)). Suppose further that for k ≥ 1 we are

given vectors ek ∈ B(0,1), functions ϕk ∈ C(Rn, [0,1]) and σk > 0 such that

wek,ϑ(σk)(E ∩ {ϕk > 0}) = 0. Then for each j ≥ 1 there are sets Hj ⊂ Rn and

functions fj , ωj , ψj ∶ Rn → R such that

(i) Hj is open, E ⊂Hj ⊂Hj−1 and fj ∈ Lip(Rn) ∩C1(Hj);
(ii) ωj ∈ C(Rn, [0,∞)) ∩C(Hj , (0,∞)) and ωj ≤ 1

2
min(1, ωj−1, ρ2Hj

);
(iii) ∣fj − fj−1∣ ≤ ωj−1 and fj(x) = fj−1(x) when ϕj(x) = 0;

(iv) if h ∶ Rn → R and ∣h − fj ∣ ≤ 2ωj then for every x ∈ Hj one may find

0 < r < ωj−1(x) such that sup∥y∥≤r ∣h(x + y) − h(x) − ⟨f ′j(x), y⟩∣ ≤ σjr;
(v) ψj ∶ Rn → [0,1], 0 ≤ ψj ≤ ϕj1Hj−1 and ψj = ϕj on Hj ;

(vi) ∥f ′j(x) − f ′j−1(x) − ψj(x)ej∥ ≤ σj1{ϕj>0}(x) for every x ∈ E;

(vii) ∥f ′j(x) − z∥ ≤ ∥f ′0(x) +∑
j
i=1 ψi(x)ei − z∥ +∑

j
i=1 σi1{ϕi>0}(x) for any z ∈ Rn

and a.e. x ∈ Rn.

Proof. Replacing ω0 by 1
2

min(1, ω0, ρ
2
H0

) if necessary, we may and will assume

that ω0 ≤ 1
2

min(1, ρ2H0
) and observe that then H0 = {ω0 > 0}. Assume j ≥ 1 and

an open set Hj−1 ⊃ E, a function fj−1 ∈ Lip(Rn) ∩ C1(Hj−1), and a function

ωj−1 ∈ C(Rn, [0,∞)) ∩ C(E, (0,∞)) such that Hj−1 = {ωj−1 > 0}, have been

already defined; this is certainly the case for j = 1. We will now explain how

to construct functions fj , ωj , ψj and sets Hj such that conditions (i)–(vi) of the

present lemma are satisfied. Notice that once we construct these objects, we

have an open set Hj ⊃ E and a function fj ∈ Lip(Rn) ∩ C1(Hj) from (i), and

a function ωj ∈ C(Rn, [0,∞)) ∩C(E, (0,∞)) satisfying ωj ≤ min(1, ρ2Hj
) for all

x ∈ Rn from (ii). This will allow us recursively to construct all required objects

so that (i)–(vi) hold, and then we will finish the proof by showing that (vii)

holds as well.

By Lemma 2.6 find gj , ψj and Hj ⊂ Rn such that

(a) Hj is open, E ⊂Hj ⊂Hj−1 and gj ∈ Lip(Rn) ∩C1(Hj);
(b) ∣gj(x)∣ ≤ ωj−1(x)∥ej∥ for all x ∈ Rn and gj(x) = 0 when ϕj(x) = 0;
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(c) ∥g′j(x) − ψj(x)ej∥ ≤ σj1Hj−1(x)1{ϕj>0}(x)∥ej∥ for almost all x ∈ Rn;

(d) 0 ≤ ψj(x) ≤ ϕj(x)1Hj−1(x) for x ∈ Rn and ψj(x) = ϕj(x) for x ∈Hj .

Here we used that Hj−1 = {ωj−1 > 0} to obtain conditions (a)–(d) directly from

conditions (i)–(iv) of Lemma 2.6.

Let fj ∶= fj−1 + gj , then (a) and (b) imply (i) and (iii), respectively. By

Lemma 2.3 we may find ξj ∈ C(Rn, [0,∞))∩C(Hj , (0,∞)) having the property

that whenever x ∈ Hj and h ∶ Rn → R satisfies ∣h − fj ∣ ≤ ξj , there is 0 < r <
ωj−1(x) such that ∣h(x + y) − h(x) − ⟨f ′j(x), y⟩∣ ≤ ηjr whenever ∥y∥ ≤ r. Letting

ωj ∶= 1
2

min(ωj , ξj , ρ2Hj
), we have (ii) and (iv). Clearly, (v) is the same as (d),

and (c) implies that

(2.5) ∥f ′j(x) − f ′j−1(x) − ψj(x)ej∥ ≤ σj1{ϕj>0}(x)

for almost every x ∈ Rn. From this, since f ′j , f
′
j−1 and ψj = ϕj are continuous

on the open set Hj ⊃ E, we have (vi).

By the recursive use of the above construction we have defined Hj , fj , ωj and

ψj such that (i)–(vi) hold. The last required statement (vii) follows by using

(2.5) to estimate, for almost every x ∈ Rn,

∥f ′j(x) − z∥ ≤ ∥f ′0(x) +
j

∑
i=1
ψi(x)ei − z∥ +

j

∑
i=1

∥f ′i(x) − f ′i−1(x) − ψi(x)ei∥

≤ ∥f ′0(x) +
j

∑
i=1
ψi(x)ei − z∥ +

j

∑
i=1
σi1{ϕi>0}(x).

We will use Lemma 2.7 to prove the two key results, Theorem 1.9 and Theo-

rem 1.13. To prove the former, we will choose the objects required in Lemma 2.7

using the following combination of suitable partitions of unity.

Lemma 2.8: Suppose E ⊂ Rn is cone unrectifiable and ε > 0. Then there

exist sequences of positive numbers σl > 0, vectors el ∈ B(0,1) and continuous

functions ϕl ∶ Rn → [0,1], such that

(i) ∑l≥1 σl1spt(ϕl) ≤ ε;
(ii) wel,ϑ(σl)(E ∩ {ϕl > 0}) = 0 for each l ≥ 1;

(iii) if x ∈ E, e ∈ N(E,x) and ∥e∥ ≤ 1, then for every η > 0 there are arbitrarily

large l such that σl < η, ∥e − el∥ < η and ϕl(x) = 1.

Proof. For x ∈ E, e ∈ N(E,x) and any σ > 0 there exists, by definition of the

cone unrectifiable set, a radius δ(x, e, σ) > 0 such that we,ϑ(σ)(E ∩Bx,e,σ) = 0,

where Bx,e,σ = B(x, δ(x, e, σ)).
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We may suppose ε = 1/p for some p ∈ N (so that 1/ε is a positive integer). For

each i ≥ 1 we let εi ∶= 2−iε and τi ∶= 3−nεn+1i (n+ 1)−1. For each pair of i ≥ 1 and

j = 1, . . . ,3nε−ni choose ei,j ∈ B(0,1) such that B(0,1) ⊂ ⋃j B(ei,j , εi) for every

fixed i ≥ 1. Let

Ei,j ∶= {x ∈ E ∶ (∃e ∈ N(E,x))∥e − ei,j∥ < εi},

so that of course ⋃j Ei0,j = E for each fixed i0 ≥ 1. For each pair (i0, j0) find a

partition of unity {ϕi0,j0,k ∶ k ≥ 1} of order n subordinated to

{By,u,σ ∶ y ∈ Ei0,j0 , u ∈ N(E,y), ∥u − ei0,j0∥ < εi0 , σ = τi0}.

Order the triples (i, j, k) into a single sequence (i(l), j(l), k(l)), and let

ϕl ∶= min(1, (n + 1)ϕi(l),j(l),k(l)) and σl ∶= τi(l). Also, observing that spt(ϕl) =
spt(ϕi(l),j(l),k(l)), find yl ∈ Ei(l),j(l) and el ∈ N(E,yl) such that spt(ϕl) ⊂
Byl,el,σl

. Notice for future reference that ∥el − ei(l),j(l)∥ < εi(l).
We show that the Lemma holds with the σl, el and ϕl defined above.

To prove (i), observe that for each fixed i0 ≥ 1 and x0 ∈ Rn there are at

most 3nε−ni0 (n + 1) pairs (j, k) for which x0 ∈ spt(ϕi0,j,k). Notice also that σl is

constant and equal τi0 over all l with the same value of i(l) = i0. Hence

∑
l

σl1spt(ϕl)(x0) ≤ ∑
i

3nε−ni (n + 1)τi ≤ ∑
i

εi ≤ ε.

The statement (ii) is immediate from wel,ϑ(σl)(E ∩ Byl,el,σl
) = 0 and the

inclusion spt(ϕl) ⊂ Byl,el,σl
.

Finally, suppose x ∈ E, e ∈ N(E,x), ∥e∥ ≤ 1, η > 0 and l0 ∈ N. Let i0 >
max{i(l); l ≤ l0} be such that εi0 < η/2. For any i > i0 there is j such that

∥e − ei,j∥ < εi < εi0 < η/2. Then x ∈ Ei,j and since the partition of unity

{ϕi,j,k ∶ k ≥ 1} is of order n, there is k such that ϕi,j,k(x) ≥ 1/(n + 1). This

implies ϕl(x) = 1 for l satisfying (i, j, k) = (i(l), j(l), k(l)). Then l > l0 and

σl = τi < εi, so ∥e−el∥ ≤ ∥e−ei,j∥+∥ei,j −el∥ < 2εi < η, so (iii) holds as well.

Our second use of Lemma 2.7, to prove Theorem 1.13, will be more straight-

forward: we use it to construct functions that will approximate the required

function.

Lemma 2.9: Suppose E ⊂ H ⊂ Rn, E is uniformly purely unrectifiable, H is

open, ω ∈ C(Rn, [0,∞)) ∩ C(H, (0,∞)) and f ∈ Lip(Rn) ∩ C1(H). Then for

every e ∈ Rn and η > 0 there are g, ξ ∶ Rn → R and an open set U ⊂ Rn such that

(i) E ⊂ U ⊂H, ξ ∈ C(Rn, [0,∞)) ∩C(U, (0,∞)) and ξ ≤ 1
2
ω;
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(ii) ∣g − f ∣ ≤ ω, Lip(g) ≤ max(Lip(f), ∥e∥) + η and g ∈ C1(U);
(iii) if x ∈ E and a function h ∶ Rn → R satisfies ∣h−g∣ ≤ 2ξ, there is 0 < r < ω(x)

such that sup∥y∥≤r ∣h(x + y) − h(x) − ⟨e, y⟩∣ ≤ ηr.

Proof. Let σ = η/8(n + 1). Since f ∈ C1(H) and E ⊂ H, for each x ∈ E there is

δx > 0 such that ∥f ′(y) − f ′(z)∥ < 1
4
η for y, z ∈ Bx ∶= B(x, δx). Find a partition

of unity {γk ∶ k ≥ 1} of order n subordinated to {Bx ∶ x ∈ E} and choose xk ∈ E
such that spt(γk) ⊂ Bxk

.

Set H0 = H, ω0 = 1
2
ω, f0 = f , σk = σ, e2k−1 = −f ′(xk) ∈ N(E,xk), e2k = e ∈

N(E,xk), and ϕ2k−1 = ϕ2k = γk. Since E is uniformly purely unrectifiable, the

hypothesis of Lemma 2.7 is satisfied, and so find fk, ωk, Hk and ψk, k ≥ 1, such

that the statements (i)–(vii) of Lemma 2.7 hold (we leave out (iv) and (vi) as

we do not use them here):

(a) Hk is open, E ⊂Hk ⊂Hk−1 and fk ∈ Lip(Rn) ∩C1(Hk);
(b) ωk ∈ C(Rn, [0,∞)) ∩C(Hk, (0,∞)) and ωk ≤ 1

2
min(1, ωk−1, ρ2Hk

);
(c) ∣fk − fk−1∣ ≤ ωk−1 and fk(x) = fk−1(x) when ϕk(x) = 0;

(d) ψk ∶ Rn → [0,1], 0 ≤ ψk ≤ ϕk1Hk−1
and ψk = ϕk on Hk;

(e) ∥f ′k(x) − z∥ ≤ ∥f ′(x) + ∑ki=1 ψi(x)ei − z∥ + ∑
k
i=1 σ1{ϕi>0}(x) for all z ∈ Rn

and a.e. x ∈ Rn.

By (b) and (c), the sequence of Lipschitz functions (fk) converges to a func-

tion g ∶ Rn → R and ∣g − f ∣ ≤ ω. For every x at which f ′(x) exists write

(2.6) f ′(x) +
2k

∑
i=1
ψi(x)ei = af ′(x) + be + v,

where a = 1 − ∑ki=1 ψ2i−1(x), b = ∑ki=1 ψ2i(x), v = ∑ki=1 ψ2i−1(x)(f ′(x) − f ′(xi)).
Using ∑i γi ≤ 1 as it is a partition of unity, and (d) to get

(2.7) 0 ≤ ψ2i ≤ ϕ2i1H2i−1 = ϕ2i−11H2i−1 ≤ ψ2i−1 ≤ ϕ2i−1 = γi,

we see that a, b ≥ 0, a + b = 1 +∑ki=1(ψ2i(x) − ψ2i−1)(x) ≤ 1, and

∥v∥ ≤ ∑
i∈A

γi(x)∥f ′(x) − f ′(xi)∥,

where A = {i ∶ x ∈ spt(γi)}. Recall that spt(γi) ⊂ Bxi , and by the definition of

the ball Bxi we have ∥f ′(x)−f ′(xi)∥ < 1
4
η for x ∈ Bxi , hence ∥v∥ < 1

4
η. Thus we

conclude from (2.6) that for almost all x ∈ Rn and all k ≥ 1

(2.8) ∥f ′(x) +
2k

∑
i=1
ψi(x)ei∥ ≤ max(Lip(f), ∥e∥) + η/4.
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Since for every x there are at most 2(n + 1) values of i with ϕi(x) ≠ 0, we see

that ∑2k
i=1 σ1{ϕi>0}(x) ≤ 2(n + 1)σ = 1

4
η for any k ≥ 1, and infer from (e) with

z = 0 and (2.8) that for a.e. x,

∥f ′2k(x)∥ ≤ ∥f ′(x) +
2k

∑
i=1
ψi(x)ei∥ +

2k

∑
i=1
σ1{ϕi>0}(x) ≤ max(Lip(f), ∥e∥) + 1

2
η.

Since, by (a), f2k is Lipschitz, we conclude Lip(f2k) < max(Lip(f), ∥e∥) + η for

each k, and so (ii) holds.

For each x ∈ E there is a neighbourhood where all but a finite number of the

functions ϕk’s are zero, so we can find rx > 0 and kx ∈ N such that B(x, rx) ∩
sptϕk = ∅ for k ≥ kx. Let Ux ∶= B(x, rx) ∩Hkx , where Hkx ⊃ E ∋ x is defined

in (a), and define an open set U ∶= ⋃x∈E Ux. As x ∈ Ux ⊂ Hkx ⊂ H0 = H for

any x ∈ E, we conclude that E ⊂ U ⊂ H, this verifies the first two statements

of (i). By (c), g = fk on B(x, rx) ⊃ Ux for every k ≥ kx; hence g ∈ C1(Ux) by

(a) as Ux ⊂ Hkx , and so g ∈ C1(U). Thus Lemma 2.3 applied to U, g,ω and 1
2
η

provides a continuous function ξ ∶ Rn → [0,∞) such that (i) holds and for every

x ∈ E ⊂ U and h ∶ Rn → R satisfying ∣h − g∣ ≤ 2ξ, there is 0 < r < ω(x) such that

(2.9) sup
∥y∥≤r

∣h(x + y) − h(x) − ⟨g′(x), y⟩∣ ≤ 1
2
ηr.

Observe now that for x ∈ E we have x ∈Hi for any i ≥ 1, hence ψi(x) = ϕi(x) for

any i ≥ 1 by (d). Together with definition of kx this implies that ∑ki=1 ψ2i−1(x) =
∑ki=1 ϕ2i−1(x) = ∑ki=1 γi(x) = ∑i≥1 γi(x) = 1 for any k ≥ kx, hence for such k the

constants a, b from (2.6) satisfy a = 0 and, similarly, b = 1. Using equation (2.6)

and recalling that ∥v∥ ≤ 1
4
η, we get ∥f ′(x) +∑2k

i=1 ψi(x)ei − e∥ = ∥v∥ ≤ 1
4
η for any

k ≥ kx. With k = kx we have g = f2k on Ux, hence using (e) with z = e it follows

∥g′(x) − e∥ = ∥f ′2k(x) − e∥ ≤ ∥f ′(x) +
2k

∑
i=1
ψi(x)ei − e∥ + σ

2k

∑
i=1

1{ϕi>0}(x) ≤
1
2
η,

and by combining this with (2.9), we obtain (iii).

3. Proofs of main results

Proof of Theorem 1.9. Recall that we are given a cone unrectifiable set E ⊂ Rn.

We are also given ε > 0 and a continuous function ω ≥ 0 such that E ⊂ {x ∶
ω(x) > 0}; if ω is not given, we set ω = 1 everywhere on Rn.

We begin by finding numbers σk > 0, vectors ek ∈ B(0,1) and continuous

functions ϕk ∶ Rn → [0,1], k = 1,2, . . . , such that
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(A) ∑k σk1spt(ϕk) ≤ ε;
(B) wek,ϑ(σk)(E ∩ {ϕk > 0}) = 0;

(C) if x ∈ E, e ∈ N(E,x) and ∥e∥ ≤ 1, then for every η > 0 there are arbitrarily

large k such that σ2k−1 < η, ∥e − e2k−1∥ < η and ϕ2k−1(x) = 1;

(D) for every k ≥ 1, ϕ2k = ϕ2k−1 and e2k = −e2k−1.

For this, it suffices to take σ̂l, êl and ϕ̂l from Lemma 2.8 with ε replaced by ε/2
and let σ2l−1 = σ2l ∶= σ̂l, ϕ2l−1 = ϕ2l ∶= ϕ̂l, e2l−1 ∶= êl and e2l ∶= −êl.

We set f0 ∶= 0, H0 ∶= {ω > 0}, ω0 ∶= 1
2

min(1, ω, ρ2H0
) and use Lemma 2.7 to

find fj , ωj ,Hj , ψj , j = 1,2, . . . such that

(E) Hj is open, E ⊂Hj ⊂Hj−1 and fj ∈ Lip(Rn) ∩C1(Hj);
(F) ωj ∈ C(Rn, [0,∞)) ∩C(Hj , (0,∞)) and ωj ≤ 1

2
min(1, ωj−1, ρ2Hj

);
(G) ∣fj − fj−1∣ ≤ ωj−1 and fj(x) = fj−1(x) when ϕj(x) = 0;

(H) if h ∶ Rn → R and ∣h − fj ∣ ≤ 2ωj then for every x ∈ Hj one may find

0 < r < ωj−1(x) such that sup∥y∥≤r ∣h(x + y) − h(x) − ⟨f ′j(x), y⟩∣ ≤ σjr;
(I) ψj ∶ Rn → [0,1], 0 ≤ ψj ≤ ϕj1Hj−1 and ψj = ϕj on Hj ;

(J) ∥f ′j(x) − f ′j−1(x) − ψj(x)ej∥ ≤ σj1{ϕj>0}(x) for every x ∈ E;

(K) ∥f ′j(x) − z∥ ≤ ∥f ′0(x) + ∑
j
i=1 ψi(x)ei − z∥ + ∑

j
i=1 σi1{ϕi>0}(x) for all z ∈ Rn

and a.e. x ∈ Rn.

Notice that (F) implies ωj ≤ 2i−jωi for j ≥ i, and so also ωj ≤ 2−j . Conse-

quently, by (G), fj converge uniformly to a function f ∶ Rn → R and ∣f − fj ∣ ≤
∑∞
i=j ωi ≤ 2ωj . We show that f has the required properties.

Notice that (I) and (D) imply that

ψ2i−1(x)e2i−1 + ψ2i(x)e2i = −(ψ2i−1(x) − ψ2i(x))1H2i−2∖H2i(x)e2i,

and this vector has norm at most 1H2i−2∖H2i(x), as condition (I) implies 0 ≤
ψ2i ≤ ϕ2i1H2i−1 = ϕ2i−11H2i−1 ≤ ψ2i−1 ≤ ϕ2i−1 ≤ 1 (cf. (2.7)). Hence (K) with

z = 0 and (A) give

∥f ′2k(x)∥ = ∥
k

∑
i=1

(ψ2i(x)e2i + ψ2i−1(x)e2i−1)∥ +
2k

∑
i=1
σi1{ϕi>0}(x)

≤
k

∑
i=1

1H2i−2∖H2i(x) +
2k

∑
i=1
σi1{ϕi>0}(x) ≤ 1 + ε

for almost every x. Since (E) shows that f2k is Lipschitz, Lip(f2k) ≤ 1 + ε, and

we conclude that Lip(f) ≤ 1 + ε.
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For every i ≥ 1 and x ∈ E ⊂H2i ⊂H2i−1, (I), (D) and (J) imply

∥f ′2i(x) − f ′2i−2(x)∥

= ∥(f ′2i(x) − f ′2i−1(x) − ϕ2i(x)e2i) + (f ′2i−1(x) − f ′2i−2(x) − ϕ2i−1(x)e2i−1)∥

≤ σ2i1{ϕ2i>0}(x) + σ2i−11{ϕ2i−1>0}(x).

Since ∑j σj1{ϕj>0}(x) ≤ ε by (A), the restrictions of f ′2k to E converge pointwise

to a function u ∶ E → Rn and ∥u(x)∥ ≤ ε for x ∈ E.

Suppose x ∈ E, e ∈ N(E,x), ∥e∥ ≤ 1 and η > 0. By (C) there is k such that

2−2k < η, ∥f ′2k(x) − u(x)∥ <
1
4
η, ∥e − e2k+1∥ < 1

4
η, σ2k+1 < 1

4
η and ϕ2k+1(x) = 1.

Since x ∈ E ⊂ H2k+1, the latter immediately implies ψ2k+1(x) = 1 by (I). Since

∣f − f2k+1∣ ≤ 2ω2k+1 and (J) gives ∥f ′2k+1(x) − (f ′2k(x) + e2k+1)∥ ≤ σ2k+1, we

conclude that (H) provides 0 < r < ω2k(x) ≤ 2−2kω0 < η such that for every

∥y∥ ≤ r,

∣f(x+y) − f(x) − ⟨u(x) + e, y⟩∣

≤ ∣f(x + y) − f(x) − ⟨f ′2k+1(x), y⟩∣ + ∥f ′2k+1(x) − (f ′2k(x) + e2k+1)∥∥y∥

+ ∥f ′2k(x) − u(x)∥∥y∥ + ∥e2k+1 − e∥∥y∥

< (σ2k+1 + σ2k+1 + η/4 + η/4)r < ηr.

Since η > 0 may be arbitrarily small,

(3.1) lim inf
r↘0

sup
∥y∥≤r

∣f(x + y) − f(x) − ⟨e + u(x), y⟩∣
r

= 0,

which is the main statement we wished to prove. The estimate of the lower and

upper derivatives is an immediate consequence: if e ∈ N(E,x) and ∥e∥ ≤ 1, we

use (3.1) for e and −e to infer

D+f(x; y) −D+f(x; y) ≥ ⟨e + u(x), y⟩ − ⟨−e + u(x), y⟩ = 2⟨e, y⟩.

Proof of Corollary 1.10. We are given E = ⋃k≥1Ek ⊂ Rn where Ek are disjoint

cone unrectifiable Fσ sets, and Nx = N(Ek, x) ∩B(0,1) for x ∈ Ek.

Write Ek = ⋃j≥1Hk,j where Hk,j are closed cone unrectifiable sets, and let

Fk,j ∶= ⋃i<jHk,i and Ek,j ∶= Hk,j ∖ Fk,j , so that Ek,j are pairwise disjoint

over all (k, j). Let ck,j ∶= 2−k−j and ωk,j(x) ∶= ck,j min(1,dist2(x,Fk,j)). By

Theorem 1.9 there are Lipschitz functions fk,j ∶ Rn → R such that Lip(fk,j) < 2,
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∣fk,j ∣ ≤ ωk,j and

D+fk,j(x; y) −D+fk,j(x; y) ≥ 2 sup{⟨e, y⟩ ∶ e ∈ N(Ek,j , x), ∥e∥ ≤ 1}

≥ 2 sup
e∈Nx

⟨e, y⟩

for x ∈Hk,j and y ∈ Rn; the last inequality follows from Nx ⊂ N(Ek,j , x).
Apply Lemma 2.2 to ω = ωk,j+1, H = {ωk,j+1 > 0}, g = fk,j , Φ = 0 and

ξ = 2 to find Lipschitz functions gk,j ∶ Rn → R such that gk,j ∈ C1{ωk,j+1 > 0},

∣gk,j − fk,j ∣ ≤ ωk,j+1 and Lip(gk,j) ≤ 3. We observe that gk,j is differentiable at

every x ∉ Hk,j . Indeed, for such an x, if ωk,j(x) = 0, i.e. x ∈ Fk,j ⊂ Fk,j+1, then

gk,j(x) = fk,j(x) = 0 as ωk,j(x) = ωk,j+1(x) = 0, and ∣gk,j(y)∣ ≤ 2ck,j∥y − x∥2 ≤
∥y − x∥2, using upper estimates for ∣gk,j − fk,j ∣ and ∣fk,j ∣, and x ∈ Fk,j ⊂ Fk,j+1;

hence g′k,j(x) = 0. If, however, x ∉ Hk,j and ωk,j(x) > 0, then x ∉ Ek,j ∪ Fk,j ,
hence ωk,j+1(x) > 0 and so it follows that gk,j is C1 on a neighbourhood of x.

We also observe that for every x ∈ Hk,j and y ∈ Rn, we have x ∈ Fk,j+1, and

therefore ∣gk,j(y) − fk,j(y)∣ ≤ ck,j+1∥y − x∥2 and hence gk,j(x) = fk,j(x) and

(3.2) D+gk,j(x; y) −D+gk,j(x; y) =D+fk,j(x; y) −D+fk,j(x; y) ≥ 2 sup
e∈Nx

⟨e, y⟩.

Summarising, gk,j is differentiable at every x /∈Hk,j and is not differentiable at

any x ∈Hk,j , moreover, it satisfies (3.2) at such points x.

We let f ∶= ∑
(s,t)

cs,tgs,t and hk,j ∶= ∑
(s,t)≠(k,j)

cs,tgs,t. Since for any (s, t),

if x ∉ Hs,t, then the function gs,t is differentiable at x, and since we have

∑(s,t) Lip(cs,tgs,t) < ∞, we infer that f is differentiable at any x ∉ ⋃
(s,t)

Hs,t = E

and hk,j is differentiable at any x ∈Hk,j ∪ (Rn ∖E).
Let x ∈ Ek and find j such that x ∈Hk,j . Then for every y ∈ Rn, D+gk,j(x; y)−

D+gk,j(x; y) ≥ 2 supe∈Nx
⟨e, y⟩ by (3.2), and so, since f = ck,jgk,j + hk,j and hk,j

is differentiable at x, we conclude that

D+f(x; y) −D+f(x; y) ≥ 2ck,j sup
e∈Nx

⟨e, y⟩.

Proof of Corollary 1.11. We are given a set E ⊂ Rn that is a countable union

of (not necessarily disjoint) cone unrectifiable Fσ sets. Since each of these

Fσ sets is a countable union of closed cone unrectifiable sets, we can write

E = ⋃∞k=1 Fk where Fk are closed and cone unrectifiable. Hence E = ⋃∞k=1Ek
where Ek ∶= Fk∖⋃j<k Fj are disjoint cone unrectifiable Fσ sets, and it suffices to

take the function f obtained from Corollary 1.10 used with these sets Ek.
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Proof of Corollary 1.12. We are given a Radon measure µ on Rn and a µ-

measurable map T ∶ Rn → ⋃nm=0G(n,m) such that for every unit vector e and

α ∈ (0,1), the set {x ∶ Ce,α ∩ T (x) = {0}}, where Ce,α ∶= {u ∶ ∣⟨u, e⟩∣ ≥ α∥u∥}, is

the union of a µ-null set and a set E with we,α(E) = 0. We show that there are

cone unrectifiable Fσ sets Ek such that µ(Rn∖⋃kEk) = 0 and T (x)⊥ ⊂ N(x,Ek)
for every x ∈ Ek. Then the function f from Corollary 1.10 will have all the re-

quired properties.

By Lusin’s Theorem, µ-almost all of Rn is covered by the union of disjoint

closed sets Fk such that for each k, the restriction of T to Fk is continuous.

For every rational α ∈ (0,1) and u from a countable dense subset Q of the unit

sphere in Rn write {x ∶ Cu,α ∩ T (x) = {0}} = Zu,α ∪ Eu,α, where µ(Zu,α) = 0

and wu,α(Eu,α) = 0. Letting Ek be Fσ subsets of Fk ∖ ⋃u,αZu,α satisfying

µ(Fk ∖ Ek) = 0, we just need to show that T (x)⊥ ⊂ N(x,Ek) for x ∈ Ek. For

this, assume x ∈ Ek, e ∈ T (x)⊥ and ε ∈ (0,1), and choose u ∈ Q and rational

α ∈ (0,1) so that Ce,ε ⊂ Cu,α and Cu,α ∩ T (x) = {0}. By continuity of T on

Fk, there is r > 0 such that Cu,α ∩ T (y) = {0} for every y ∈ B(x, r) ∩ Fk. Hence

B(x, r) ∩Ek ⊂ Eu,α and we,ε(B(x, r) ∩Ek) ≤ wu,α(Eu,α) = 0.

Proof of Theorem 1.13. Let E be the given uniformly purely unrectifiable set.

Pick a sequence ek dense in the unit ball of Rn such that ∥ek∥ ≤ 1 − 2−k.

Let f0 = 0, H0 = Rn, ω0 = 1 and ηk = 2−k−1. When fk−1, Hk−1 and ωk−1 have

been defined, we use Lemma 2.9 to find fk, Hk and ωk ∶= ξ such that

(a) E ⊂Hk ⊂Hk−1, ωk ∈ C(Rn, [0,∞)) ∩C(U, (0,∞)) and ωk ≤ 1
2
ωk−1;

(b) ∣fk − fk−1∣ ≤ ωk−1, Lip(fk) ≤ max(Lip(fk−1), ∥ek∥) + ηk and fk ∈ C1(Hk);
(c) if x ∈ E and h ∶ Rn → R satisfies ∣h − fk ∣ ≤ 2ωk, there is 0 < r < ωk−1(x)

such that sup∥y∥≤r ∣h(x + y) − h(x) − ⟨ek, y⟩∣ ≤ ηkr.

Notice that ω0 = 1 and the last inequality in (a) imply ωj ≤ 2j−kωk and

ωk ≤ 2−k for j ≥ k ≥ 0. From (b) we see by induction that Lip(fk) ≤ 1 − 2−k−1.

Hence the inequality ∣fk − fk−1∣ ≤ ωk−1 ≤ 2−k+1 implies that fk converge to some

f ∶ Rn → R with Lip(f) ≤ 1.

Given any x ∈ E, e ∈ Rn with ∥e∥ ≤ 1, and ε > 0, there are arbitrarily

large k such that ∥ek − e∥ < ε and ηk < ε. Inferring from (b) that ∣f − fk ∣ ≤
∑∞
j=k ωj ≤ ∑

∞
j=k 2j−kωk ≤ 2ωk, we use (c) to find 0 < r < ωk−1(x) ≤ 2−k+1 such

that sup∥y∥≤r ∣f(x+y)−f(x)−⟨ek, y⟩∣ ≤ ηkr < εr. Since ∥ek −e∥ < ε, we conclude

that sup∥y∥≤r ∣f(x + y) − f(x) − ⟨e, y⟩∣ < 2εr. As ε > 0 is arbitrary and k may be
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arbitrarily large,

lim inf
r↘0

sup
∥y∥≤r

∣f(x + y) − f(x) − ⟨e, y⟩∣
r

= 0,

which is the statement (1.5) of the Theorem. The estimate of upper and lower

derivatives follows by using this with e = y/∥y∥ and e = −y/∥y∥ to get D+f(x; y) ≥
∥y∥ and D+f(x; y) ≤ −∥y∥, respectively.

4. Examples

The argument behind our first example has already been used many times,

starting with [22], to find points of differentiability or almost differentiability

of Lipschitz functions. See, e.g., [10, 13] or [4, Example 4.7] for an example

showing that in Corollary 1.12 the constant c = c(x) cannot be bounded away

from zero.

Example 4.1: There is a compact set E ⊂ R2 and a continuous mapping x ∈
E → ex ∈ {e ∈ R2 ∶ ∥e∥ = 1} such that N(E,x) = {tex ∶ t ∈ R} for every x ∈ E and

whenever f ∶ R2 → R has Lip(f) ≤ 1, there is x ∈ E such that Df(x, ex) < 1.

Consequently, in Theorem 1.9 we cannot take ε = 0.

Proof. Let ϕ ∶ R → R be a C1 function such that ϕ(−1) = ϕ(1) = 0, ϕ′(−1) =
ϕ′(1) = 0 and ϕ(s) > 0 for s ≠ ±1. Denote ϕ0 = 0 and ϕk = ϕ/k, and let

E ∶= {(s,ϕk(s)) ∶ s ∈ [−1,1], k = 0,±1,±2, . . .}.

For x ∈ E, x = (s,ϕk(s)) let ux and ex denote the unit vectors in the directions of

(1, ϕ′k(s)) and (−ϕ′k(s),1), respectively. Then ex ∈ N(E,x) and, since ϕ′(−1) =
ϕ′(1) = 0, the map x ∈ E → ex is continuous.

Suppose f ∶ R2 → R has Lip(f) ≤ 1. Consider any x ∈ E ∖ {(−1,0), (1,0)}
such that a ∶= f ′(x,ux) exists and Df(x; ex) = 1. Then

lim sup
t→0

f(x + tex) − f(x − atux)
t

= lim sup
t→0

f(x + tex) − f(x)
t

− lim
t→0

f(x − atux) − f(x)
t

= 1 + a2.

Hence

1 ≥ Lip(f) ≥ lim sup
t→0+

∣f(x + tex) − f(x − atux)∣
∥(x + tex) − (x − atux)∥

= a2 + 1√
a2 + 1

,

which gives f ′(x,ux) = 0.
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If f is a function satisfying the conclusion of Theorem 1.9 with ε = 0, then

for every k, x = (s,ϕk(s)) satisfies the above assumptions for a.e. s ∈ (−1,1).
Since f is Lipschitz, we infer that s → f(s,ϕk(s)) is constant on [−1,1], and

hence f is constant on E. Consequently, when s ∈ (−1,1) and x = (s,ϕ0(s)),
ex = (0,1) and so limt→0 ∣(f(x+tex)−f(x))/t∣ ≤ limt→0 dist(x+tex,E)/∣t∣ = 0, as

dist(x+tex,E)/∣t∣ ≤ (k+1)/(2k(k+1)) = 1/(2k) when ∣t∣ is between ϕ(x)/(k+1)
and ϕ(x)/k. This contradicts Df(x; ex) = 1.

Our second example is related to Zahorski’s description of non-differentiability

sets of real-valued functions of a real variable which was already mentioned in

the introductory remarks to Corollaries 1.10 and 1.11. Recall first that the set

of points of non-differentiability of any real-valued function f ∶ Rn → R is easily

seen to be of the type Gδσ: just write it as

⋃
ε>0

⋂
e∈Rn

{x ∶ (∃r > 0)(∃u, v ∈ B(x, r))∣f(x + u) − f(x + v) − ⟨e, u − v⟩∣ > εr}

where ε runs over positive rational numbers and e over elements of a dense

countable subset of Rn. The main argument in Zahorski’s [27] proof of the

converse when n = 1 (both in the general and in the Lipschitz case) constructs,

for a given Gδ Lebesgue null set E ⊂ R, a function f ∶ R → R with Lip(f) = 1

which is differentiable at every point of R∖E and at every point of E has upper

derivative 1 and lower derivative −1. (For a more modern treatment of this

construction see [15].)

While it is not clear what an exact analogy of Zahorski’s result for n > 1

should be, one may at least hope that its analogy holds for uniformly purely

unrectifiable sets, namely that for every uniformly purely unrectifiable Gδσ set

E ⊂ Rn there is a Lipschitz function f ∶ Rn → R such that E is precisely

the set of points at which f in non-differentiable in any direction. We do not

know whether this is true or not, but the following example shows that in this

situation the argument based on uniform discrepancy between upper and lower

derivatives fails in a very strong sense. Recalling that every uniformly purely

unrectifiable set is contained in a Gδ uniformly purely unrectifiable set, the

example provides a Gδ uniformly purely unrectifiable set such that not only

for it, but even for any bigger Gδ uniformly purely unrectifiable set there is no

function analogous to the one from Zahorski’s main argument.
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Example 4.2: There is a uniformly purely unrectifiable set A ⊂ R2 such that

for any set E ⊃ A and any c > 0 there is no Lipschitz function f ∶ R2 → R such

that

(a) D+f(x; y) −D+f(x; y) ≥ c∥y∥ for every x ∈ E and y ∈ R2;

(b) f is differentiable at every point x of R2 ∖E.

Proof. By [9] there is a universal differentiability set D ⊂ R2, i.e., a set such

that every real-valued Lipschitz function on R2 has a point of differentiability

belonging to D, such that there is a Lipschitz h ∶ R2 → R for which the set A of

points x ∈D such that h is differentiable at x, is uniformly purely unrectifiable.

Suppose E ⊃ A and Lipschitz f ∶ R2 → R satisfy (a) and (b). For a small

ε ∈ (0, c/(4Lip(h))) consider the function g ∶= f + εh. If x ∈ E, (a) shows that

for some y ∈ R, D+g(x; y) −D+g(x; y) ≥ (c− 2εLip(h))∥y∥ > 0. If x ∈D ∖E, g is

the sum of the function f that is differentiable at x and of the function εh that

is non-differentiable at x; hence it is non-differentiable at x. Consequently, the

Lipschitz function g has no point of differentiability at D, contradicting that D

is a universal differentiability set.

Remark 4.3: The reason for considering a uniform non-differentiability condi-

tion such as (a) was explained in the text before the Example. Notice that,

if (a) were replaced just by non-differentiability of f at every point of E, the

statement of the Example would be false: we would use Theorem 1.13 to find

a function g that is non-differentiable at every point of A and define E as the

non-differentiability set of g. On the other hand, it is easy to find uniformly

purely unrectifiable sets E ⊃ A for which there is no Lipschitz function non-

differentiable exactly at points of E, as such E need not be Gδσ. For the set A

from [9] which was used in the proof of the Example 4.2 we can take E = A as it

is not difficult to see that A is not Gδσ, although it is Fσδ since A is the intersec-

tion of D with the set of points of differentiability of h and D used in [9] is Gδ.

It may be of interest to notice that the fact that A is not a non-differentiability

set of any Lipschitz function f may be seen directly from the properties of A, D

and h: for any such f the Lipschitz function f + h would be non-differentiable

at any x ∈D ∖A as f is differentiable and h is not differentiable at such x; and

f +h would be non-differentiable at any x ∈ A as f is not differentiable and h is

differentiable at such x. As in the proof of the Example 4.2, this a contradiction

as D is a universal differentiability set.
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Our final example is related to the already pointed out fact that E is uniformly

purely unrectifiable if and only if there is 0 < η < 1 such that we,η(E) = 0

for every unit vector e. When considering general non-differentiability sets, a

natural analogy of this statement would say that for any set E ⊂ Rn satisfying

we,η(E) = 0 for some unit vector e and some 0 < η < 1 there is a real-valued

Lipschitz function f on Rn that is non-differentiable at any point of E. We

show here that this is false; recall however that [3] shows (directly, not using

[8]) that for any such set E there is an Rn-valued Lipschitz function f on Rn

that is non-differentiable at any point of E.

Example 4.4: For every η ∈ (0,1) and a unit vector e ∈ R2 there is a universal

differentiability set E ⊂ R2 such that we,η(E) = 0.

Proof. Let Lj be an enumeration of all rational lines in Rn, J be the set of those

indexes j for which the direction u of Lj satisfies ∣⟨u, e⟩∣ < 1
2
η and εi,j > 0 be

such that ∑i,j εi,j < ∞. It is easy to see that E ∶= ⋂i⋃j∈J{x ∶ dist(x,Lj) < εi,j}
satisfies we,η(E) = 0. The fact that E is a universal differentiability set has

been often mentioned, but does not seem to be documented in the literature.

We therefore explain the argument.

Recall from [12], [13] or [22] that, given any Lipschitz g ∶ Rn → R, a procedure

leading to a point of differentiability of g may be described as follows. One

starts with an arbitrary δ0 > 0 and (x0, e0) from the set D of pairs (x,u) where

x ∈ Rn, u is a unit vector, and there is j = j(x,u) such that x ∈ Lj and u

is the direction of L. Recursively, when (xk, ek) has been defined, one first

chooses an arbitrarily small δk+1 > 0 and then (xk+1, ek+1) ∈D satisfying rather

delicate conditions about which we need to know only that xk+1 ∈ B(xk, δk+1),
Dg(xk+1, ek+1) ≥Dg(xk, ek) and that they imply that the sequence xk converges

to a point of differentiability of g.

Returning to our set E, given any Lipschitz f ∶ Rn → R, choose (x0, e0) ∈ D
so that ∣⟨e0, e⟩∣ < 1

4
η and let g(x) ∶= f(x) + c⟨x, e0⟩ with c > 64Lip(f)/η2;

the choice of such large c guarantees that Dg(x,u) ≥ Dg(x0; e0) implies 0 ≤
1− ⟨u, e0⟩ ≤ 1

c
(Df(x;u) −Df(x0; e0)) ≤ 2Lip(f)/c ≤ 1

32
η2, so that ∥u− e0∥ ≤ 1

4
η,

hence ∣⟨u, e⟩∣ ≤ ∥u − e0∥ + ∣⟨e0, e⟩∣ < 1
2
η. This will imply that in the recur-

sive construction jk ∶= j(xk, ek) ∈ J , and so we can choose δk+1 such that

B(xk, δk+1) ⊂ B(Ljk , εk,jk) ∩ B(xk, δk). Hence the limit of the xk, which is

a differentiability point of g and so of f , belongs to E.
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