UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

Targeted molecular analysis in adrenocortical carcinomas

Lippert, Juliane; Appenzeller, Silke; Liang, Raimunde; Sbiera, Silviu; Kircher, Stefan; Altieri, Barbara; Nanda, Indrajit; Weigand, Isabel; Gehrig, Andrea; Steinhauer, Sonja; Riemens, Renzo JM; Rosenwald, Andreas; Mueller, Clemens R; Kroiss, Matthias; Rost, Simone; Fassnacht, Martin; Ronchi, Cristina

DOI:
10.1210/jc.2018-01348

License:
None: All rights reserved

Document Version

Peer reviewed version
Citation for published version (Harvard):
Lippert, J, Appenzeller, S, Liang, R, Sbiera, S, Kircher, S, Altieri, B, Nanda, I, Weigand, I, Gehrig, A, Steinhauer, S, Riemens, RJM, Rosenwald, A, Mueller, CR, Kroiss, M, Rost, S, Fassnacht, M \& Ronchi, C 2018, 'Targeted molecular analysis in adrenocortical carcinomas: a strategy towards improved personalized prognostication', Journal of Clinical Endocrinology and Metabolism, vol. 103, no. 12, pp. 4511-4523.
https://doi.org/10.1210/jc.2018-01348

Link to publication on Research at Birmingham portal

[^0]
UNIVERSITYOF
 BIRMINGHAM

Research at Birmingham

Targeted molecular analysis in adrenocortical carcinomas: a strategy towards improved personalized prognostication

Lippert, Juliane; Appenzeller, Silke; Liang, Raimunde; Sbiera, Silviu; Kircher, Stefan; Altieri, Barbara; Nanda, Indrajit; Weigand, Isabel; Gehrig, Andrea; Steinhauer, Sonja; Riemens, Renzo JM; Rosenwald, Andreas; Mueller, Clemens R; Kroiss, Matthias; Rost, Simone; Fassnacht, Martin; Ronchi, Cristina

Document Version

Early version, also known as pre-print
Citation for published version (Harvard):
Lippert, J, Appenzeller, S, Liang, R, Sbiera, S, Kircher, S, Altieri, B, Nanda, I, Weigand, I, Gehrig, A, Steinhauer, S, Riemens, RJM, Rosenwald, A, Mueller, CR, Kroiss, M, Rost, S, Fassnacht, M \& Ronchi, C 2018, 'Targeted molecular analysis in adrenocortical carcinomas: a strategy towards improved personalized prognostication' Journal of Clinical Endocrinology and Metabolism.

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) - Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Clinical Research Article

Targeted molecular analysis in adrenocortical carcinomas: a strategy towards improved personalized prognostication.

${ }^{1}$ Juliane Lippert; ${ }^{2}$ Silke Appenzeller, PhD; ${ }^{3}$ Raimunde Liang; ${ }^{3}$ Silviu Sbiera, PhD; ${ }^{4}$ Stefan Kircher, MD; ${ }^{3,5}$ Barbara Altieri, MD; ${ }^{1}$ Indrajit Nanda, PhD; ${ }^{3}$ Isabel Weigand, PhD; ${ }^{1}$ Andrea Gehrig, PhD; ${ }^{3}$ Sonja Steinhauer; ${ }^{1,6}$ Renzo J.M. Riemens; ${ }^{4,7}$ Andreas Rosenwald, MD; ${ }^{1}$ Clemens R. Müller, PhD;
${ }^{3,7}$ Matthias Kroiss, MD, PhD; ${ }^{1}$ Simone Rost, PhD; ${ }^{3,7,8}$ Martin Fassnacht, MD; ${ }^{3,9,10}$ Cristina L. Ronchi, $\mathrm{MD}, \mathrm{PhD}$.
${ }^{1}$ Institute of Human Genetics, University of Wuerzburg, Wuerzburg (Germany), ${ }^{2}$ Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University Hospital of Wuerzburg, Wuerzburg (Germany), ${ }^{3}$ Dept. of Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Wuerzburg, Wuerzburg (Germany); ${ }^{4}$ Institute for Pathology, University of Wuerzburg, Wuerzburg (Germany); ${ }^{5}$ Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome (Italy), ${ }^{6}$ Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University (The Netherlands); ${ }^{7}$ Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg (Germany); ${ }^{8}$ Central Labor, University Hospital of Wuerzburg, Wuerzburg (Germany), ${ }^{9}$ Institute of Metabolism and System Research, University of Birmingham, Birmingham (UK), ${ }^{10}$ Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham (UK).

Short title: Precision medicine in ACC
Key words: adrenal cancer, endocrine-related cancer, molecular oncology, prognosis, drug targets, personalized medicine.

Correspondence and request for reprints to:

Cristina L. Ronchi, MD, PhD
Division of Endocrinology and Diabetes, University Hospital of Wuerzburg
Oberduerrbacher-Str 6, 97080 Wuerzburg (Germany);
Tel. +49-(0)931-201397047; Email: Ronchi_C@ukw.de

Author disclosure summary: The Authors declare no conflict of interest.
Financial support: This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) within the CRC/Transregio 205/1 (M.F. and M.K) and the Comprehensive Cancer Center Mainfranken, University Hospital of Wuerzburg (Germany).

Precis: We established a clinically applicable method to simultaneously improve disease risk assessment and identify drug targets paving the way to a precision medicine approach in adrenocortical carcinoma.

Abstract

Context: Adrenocortical carcinoma (ACC) has a heterogeneous prognosis and current medical therapies have limited efficacy in its advanced stages. Genome-wide multi-omics-studies identified molecular patterns associated with clinical outcome.

Objective: Here, we aimed at identifying a molecular signature useful for both personalized prognostic stratification and druggable targets, using methods applicable in clinical routine.

Design: 117 tumor samples from 107 ACC patients were analyzed. Targeted next-generation sequencing of 160 genes and pyrosequencing of 4 genes were applied to formalin-fixed paraffinembedded (FFPE) specimens to detect point mutations, copy number alterations and promoter region methylation. Molecular results were combined with clinical/histopathological parameters (tumor stage, age, symptoms, resection status, and Ki67) to predict progression-free survival (PFS).

Results: In addition to known driver mutations, we detected recurrent alterations in genes not previously associated with ACC (e.g. NOTCH1, CIC, KDM6A, BRCA1, BRCA2). Best prediction of PFS was obtained integrating molecular results (>1 somatic mutation, alterations in Wnt $/ \beta$-catenin and p53 pathways, high methylation pattern) and clinical/histopathological parameters into a combined score ($P<0.0001$, chi-square 68.6). Accuracy of prediction for early disease progress was 83.3% (area under the ROC curve: $0.872,0.80-0.94$). Furthermore, 17 potentially targetable alterations were found in 64 patients (e.g. in CDK4, NOTCH1, NF1, MDM2, EGFR and in DNA repair system).

Conclusions: This study demonstrates that molecular profiling of FFPE tumor samples improves prognostication of ACC beyond clinical/histopathological parameters and identifies new potential drug targets. These findings pave the way to precision medicine in this rare disease.

Introduction

Adrenocortical carcinoma (ACC) is a rare tumor with a generally poor, but heterogeneous prognosis (5-year survival rate ranging from 13% to 80% [12]). Tumor stage according to the ENSAT (European Network for the Study of Adrenocortical Tumors) classification, which has now been used also by the American Joint Committee on Cancer (AJCC) TNM (tumor, nodes, metastasized) classification system (Supplemental Table 1 [3], https://www.cancer.org/cancer/adrenal-cancer/detection-diagnosis-staging/staging.html), is one of the most relevant prognostic factors [1]. However, about 10% of patients with metastatic disease at diagnosis are still alive after 10 years and more than 20% of patients with tumor stage I-III die within the first three years [1]. Resection (R) status of the primary tumor [45] and Ki67 index [6] represent additional prognostic factors. A recent study also proposed a combination of clinical/histopathological parameters (i.e. tumor grade, R status, age, symptoms=GRAS score) to improve prognostication in patients with advanced ACC [7].

Genome-wide studies have identified molecular patterns associated with clinical outcome [8 9]. Among these, a specific gene expression pattern (i.e. high BUB1B-PINK1 levels) [810], specific copy number (CN) alteration [9] and CpG islands methylation patterns [811] have been associated with a poor prognosis. However, these studies have been performed on fresh-frozen tumor samples that are difficult to collect in routine clinical settings. Moreover, cost-intensive genome-wide technologies and complex bioinformatics workup were required, which precludes the adoption of the proposed prognostic biomarkers in clinical practice.

At present, few effective pharmacological therapies are available for ACC[12]. Mitotane (Lysodren, Bristol-Myers Squibb, Princeton, New Jersey, USA) is the only approved drug, but an objective response is observed in only $\sim 20 \%$ of cases and treatment is limited by severe adverse reactions [13 14]. Even combined therapies of mitotane and cytotoxic chemotherapies, like etoposide-doxorubicin-cisplatin (EDP) [15], streptozotocin [15] and gemcitabine plus capecitabin [16 17], exhibit response rates $<25 \%$. Although some studies provided some promising insights into potential pharmacological targets [18-20], effective targeted therapies have not been identified yet [2 21].

The main aim of the present study was to identify a molecular tumor signature for a prognostic classification of ACC patients that may be easily transferred into clinical practice. To this end, we
used 117 standard formalin-fixed paraffin-embedded (FFPE) tumor tissue specimens to investigate the prognostic power of both previously proposed or new molecular markers and potential drug targets, which we evaluated by targeted next-generation sequencing (NGS).

Patients and Methods

Study protocol: This is a single-center retrospective study designed and conducted in accordance with the Declaration of Helsinki. We followed the recommendations for tumor prognostic markers studies reported in REMARK [22]. Moreover, we searched for known drug targets using the OncoKB website (http://oncokb.org/\#/ [23]). The study protocol was approved by local ethics committee (\#88/11) and written informed consent was obtained from all subjects prior to study enrollment.

Patient cohort and clinical data: 107 patients were selected for the study. Inclusion criteria were histologically confirmed diagnosis of ACC and availability of FFPE tumor specimens collected between 2002 and 2016 and corresponding blood samples. Initial clinical/histopathological parameters and follow up data were collected through the ENSAT registry (https://registry.ensat.org//) (Table 1).

A modified version of the GRAS classification [7] (mGRAS score) was used to merge prognostically relevant clinical/histopathological data: tumor stage (ENSAT 1-2=0 points, $3=1$ point, $4=2$ points), grading (Ki67 proliferation index $0-9=0$ points, $10-19=1$ point, $\geq 20=2$ points), resection status ($R 0=0$ points, $R X=1$ point, $R 1=2$ points, $R 2=3$ points), age (<50 years $=0$ points, ≥ 50 years $=1$ point) and symptoms due to steroid autonomous secretion or tumor mass ($\mathrm{no}=0$ points, yes $=1$ point).

Progression-free survival (PFS) was the major outcome being defined as the time from tumor resection (primary surgery) to first radiological evidence of disease relapse or disease-related death.

Material collection and DNA isolation: The final series included 117 FFPE samples (89 primary tumors, 10 local recurrences and 18 distant metastases). In 10 cases, tumor tissues were available from consecutive surgeries of the same patients (7 with primary+metastasis, one with primary+local recurrence, one with local recurrence+metastasis, one with two metastases). For survival analyses only the chronologically first sample of a patient was used (either primary tumor or local
recurrence/metastasis). The tumor cell content in each FFPE slide was assessed by hematoxylin-eosin staining and reached a high fraction (median 90%, range $60-95 \%$). DNA was isolated from tumors with the GeneRead DNA FFPE Kit (Qiagen, Hilden, Germany) and from peripheral blood with the NucleoSpin Blood L Kit (Macherey-Nagel, Bethlehem, PA, USA) according to the manufacturer's instructions. Qualitative and quantitative evaluation of DNA fragmentation was assessed by the GeneRead DNA QuantiMIZE Assay Kit (384) (Qiagen). qPCRs were performed with a SYBRGreen mix according to the manufacturer's protocol and measured with a ViiA7 Real-Time PCR (RT-PCR) System (Thermo Fisher Scientific, Manassas, VA, USA). Data were analyzed with QuantStudio ${ }^{\text {TM }}$ RT-PCR Software (Applied Biosystems, Foster City, CA, USA). The quality of all DNA samples was calculated with GeneRead DNA QuantiMIZE_384_DataAnalysis (Qiagen) in comparison to a control DNA included in the kit. Only DNA with a QC Score (indicator of sample damage/fragmentation) ≤ 0.04 was sequenced.

Targeted DNA sequencing: Tumor and leukocyte DNAs were enriched with the GeneRead DNAseq Human Comprehensive Cancer Panel V2 and GeneRead DNAseq Panel PCR Kit V2 (both Qiagen), according to the manufacturer's protocol. This panel includes coding regions of 160 genes (7951 amplicons and 744835 bases of target regions), many of them known or suspected to be involved in adrenocortical tumorigenesis or known drug targets. NGS was performed on a NextSeq500 with NextSeq Mid Output Reagent Kit V2 and 150bp paired end reads (Illumina Inc, San Diego, CA, USA). Raw data were aligned and analyzed with GensearchNGS (Phenosystems S.A., Belgium). For detection of somatic point mutations and small insertions and deletions (small Indels) in tumor samples the called variants were filtered as followed: coverage >100; exon distance <21; frequency of appearance >0.1; Minor Allele Frequency (MAF) <0.02; variant balance >0. Variants found also in the matched blood samples were excluded. Intronic and synonymous variants have been considered for calculating Tumor Mutational Burden (TMB) but not for further analysis, except of those with a predicted influence on splice sites.

Impact on splicing for intronic and synonymous variants was analyzed with Alamut software (Interactive Biosoftware, Rouen, France) using five prediction algorithms: SpliceSiteFinder-like,

MaxEntScan [24], NNSPLICE [25], GeneSplicer [26] and Human Splicing Finder [27]. All other variants were evaluated for predicted pathogenicity by Polymorphism Phenotyping v2 algorithm tool (PolyPhen-2) (http://genetics.bwh.harvard.edu/pph2) [28], SIFT (Sorting Tolerant From Intolerant) algorithm (http://sift.jcvi.org/index.html) and MutationTaster (http://www.mutationtaster.org/) [29]. The Catalogue Of Somatic Mutations In Cancer (COSMIC) was used as a reference of cancer-related somatic variants (http://cancer.sanger.ac.uk/cosmic). InterVar was used as an additional tool for the interpretation of variants [30].

ZNRF3, which was previously reported to be involved in the pathogenesis of ACC [8 9 31], was evaluated separately by direct Sanger sequencing. PCR primers for the coding region of ZNRF3, except exon 1, were designed with Primer3 (version 4.0.0) software [32] (Supplemental Table 2 [3]). Sequencing data were generated with an ABI 3730 or an ABI 3130xl capillary sequencer under standard conditions and analyzed with Gensearch (Phenosystems S.A.).

TMB was calculated by summing up all detected somatic variants and dividing this number by the size of the target region. Values are specified in variations per megabase (Mb).

To analyze CNAs we used a combination of two different approaches: the CNV analysis tool from GensearchNGS and an in-house pipeline. Single CN gains or losses have been identified by comparing CN of matched tumor and blood samples. With GensearchNGS a fold change (FC) of 1 was considered as "normal". Hence genes with all amplicons having a FC between 1.25 and 1.75 were considered as "heterozygous duplicated" and as "homozygous duplicated" with a FC >1.75. Genes were considered as deleted when all amplicons showed a FC <0.75. For the second approach an initial quality assessment was performed using FastQC, v0.11.3 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapters and low quality reads were trimmed using TrimGalore, v0.4.0 (http://www.bioinformatics.babraham.ac.uk/projects/trim galore/) powered by Cutadapt, v1.8 (https://cutadapt.readthedocs.io/en/stable/). The reads were aligned against the UCSC hg19 human reference genome with BWA mem, v0.7.12 (http://bio-bwa.sourceforge.net/) using default parameters [33]. Sorted BAM-files were created using Picard v1.125 (http://broadinstitute.github.io/picard) and indexed using SAMtools v1.3 (samtools.sourceforge.net/) [34]. Local realignment around Indels was executed with GATK, v3.5
(https://software.broadinstitute.org/gatk/) [35]. For CNV calling the number of reads of each amplicon was determined using the multiBamCov-Tool in the BEDTools suite, v2.26.0 (bedtools.readthedocs.io/) [36]. Only markers covered with an average of at least 200 reads in control samples in the respective panel were considered. For normalization, the reads for each amplicon were divided by the total number of reads for each sample. Log2 FC was calculated for each amplicon passing QC using the corresponding amplicon in the matched control. A gene was considered amplified or deleted if at least 80% of all markers in a tumor covering the gene were amplified or deleted at least 1.5 -fold. In both approaches, CNAs were only investigated for genes covered by at least 6 probes. Only CN alterations detected with both approaches were considered.

Targeted DNA methylation analysis: Bisulfite pyrosequencing was used for quantitative methylation analysis of four tumor suppressor genes PAX5, PAX6, PYCARD and GSTP1 that have been demonstrated to play a significant prognostic role in ACC [11]. 500 ng of DNA from tumor and matched blood samples was used to perform bisulfite conversion and cleanup of converted DNA with the EpiTect®Fast 96 DNA Bisulfite Kit (Qiagen) according to the manufacturer's protocol. Target regions of the assays were selected to include the regions accessible with the MLPA ME002 tumor suppressor-2 probe mix (MRC-Holland, Amsterdam, The Netherlands) (Supplemental Figure 1 [3]). PCR and sequencing primers were designed with PyroMark Assay Design 2.0 software (Qiagen) (Supplemental Table 3 [3]). Bisulfite-treated DNA was amplified in $25 \mu 1$ reactions containing $2.5 \mu \mathrm{l}$ $10 x P C R$ buffer with $20 \mathrm{mM} \mathrm{MgCl}_{2}, 0.5 \mu \mathrm{l} 10 \mathrm{mM} \mathrm{dNTP}$ mix, $1.0 \mu \mathrm{l}(10 \mathrm{pmol})$ of each forward and reverse Primer, $0.2 \mu \mathrm{l}$ FastStart Taq DNA Polymerase $(5 \mathrm{U} / \mu \mathrm{l}), 18.8 \mu \mathrm{l}$ PCR-grade $\mathrm{H}_{2} \mathrm{O}$ and $1 \mu \mathrm{l}$ bisulfite-converted DNA. PCR was carried out with an initial denaturation step at $95^{\circ} \mathrm{C}$ for 5 min , followed by 45 cycles $95^{\circ} \mathrm{C}$ for 30 seconds, primer-specific annealing temperature $\left(58^{\circ} \mathrm{C}\right.$ for PAX5 and PYCARD, $59^{\circ} \mathrm{C}$ for PAX6, and $60^{\circ} \mathrm{C}$ for GSTP1) for 30 seconds and elongation at $72^{\circ} \mathrm{C}$ for 30 seconds and a final extension step at $72^{\circ} \mathrm{C}$ for 7 min . Bisulfite pyrosequencing was performed on a PyroMark Q96 MD Pyrosequencing System with the PyroMark Gold Q96 CDT Reagents Kit (Qiagen). Pyro Q-CpG software (Biotage, Uppsala, Sweden) was used for data analysis.

FISH analysis: To validate CDK4 CN gains, we investigated 6 representative 2μ m-thick FFPE slides by FISH analysis (two samples with "homozygous" CDK4 amplification, two with "heterozygous" CDK4 amplification and two with normal CDK4 allele status at NGS). CDK4 gene amplification was visualized through hybridization of a Zytolight SPEC CDK4/CEN12 Dual Color Probe (ZytoVision GmbH, Germany) (D12Z3) according to the manufacturer's recommendation. At least 200 nonoverlapping nuclei per sample were evaluated by fluorescence microscopy (Zeiss Axioskop, Jena, Germany) using the appropriate filter sets. Only nuclei with a distinct nuclear border showing clear hybridization signals were evaluated. CDK4 gene was considered heterozygous amplified when the FISH signal ratio of CDK4/CEN12 was between 1.0 and 2.0 or homozygous amplified when the ratio was ≥ 2.0. Ratios may nevertheless differ when gains affect whole chromosome 12 .

Targeted gene expression analysis: The mRNA expression of BUB1B and PINK1 was evaluated by quantitative real-time RT-PCR only in samples with high quality RNA and cDNA ($\mathrm{n}=38$). All baseline clinical/histopathological characteristics as well as follow up data of this subgroup of patients did not differ from those of the entire series. RNA was isolated from tumors by miRNeasy FFPE (Qiagen). High RNA quality was tested using an Agilent 2100 Bioanalyzer (RIN >7.5). RNA was reverse transcribed by the Quantitec Reverse Trascription Kit (Qiagen). A quantitative RT-PCR for β-actin and GAPDH was performed and only samples with cycle threshold of <35 were included from further analysis ($\mathrm{n}=38$). The expression of BUB1B and PINK1 was evaluated by qRT-PCR using Taqman® BUB1B (Hs01084828_m1) and PINK1 (Hs00260868_m1) probes with expressed β-actin (Hs9999903_m1) as reference (Applied Biosystems, Darmstadt, Germany). Each PCR reaction was done with 40 ng cDNA and each analysis was performed in duplicate. Transcript levels were determined using the TaqMan Gene Expression Master Mix (Applied Biosystems), the CFX96 realtime thermocycler (Biorad, Hercules, CA, USA), and the Bio-Rad CFX Manager 2.0 software. Cycling conditions were $95^{\circ} \mathrm{C}$ for three min followed by 40 cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for 30 sec, and $72^{\circ} \mathrm{C}$ for 30 sec . The $\Delta \mathrm{CT}$ method was applied for normalization of gene expression levels to those of β-actin. The $\Delta \mathrm{CT}($ BUB1B $)-\Delta \mathrm{CT}($ PINK1 $)$ expression was then calculated [10]. Statistical analysis with different cut-off values was performed. The best cut-off value for a high BUBIB-PINKI
differential expression was 6.3 , which was already previously suggested by Bertherat and colleagues [10].

Statistical analysis: A Fisher's exact or Chi-square test was used to investigate dichotomic variables, while a two-sided t test (or Mann-Whitney non-parametric test) was used to compare two groups of continuous variables as appropriate. A non-parametric Kruskal-Wallis test, followed by Bonferroni post-hoc test, was used for comparison among several groups for non-normal distributed variables. Correlations and 95% confidence intervals $(95 \% \mathrm{CI})$ between different parameters were evaluated by linear regression analysis. Survival curves were obtained by Kaplan-Meier estimates and the differences between two or more curves were assessed by the log-rank (Mantel-Cox) test. Multivariate regression analysis was performed by Cox proportional hazard regression model to identify those factors that might independently influence survival.

To assess and compare the prognostic accurateness and performance of different markers or scores we used two approaches: 1) We utilized the chi-square (log-rank) values (deviance chi-square test) to determine the goodness-of-fit statistic of the regression model, representing a surrogate of a Likelihood Ratio Test. 2) We calculated sensitivity, specificity and accuracy of different models categorizing patients with or without disease recurrence/progress within 24 months from primary surgery as affected/non affected. Finally, we considered the area under the receiving operating characteristics (ROC) curve and 95% confidence interval for predicted probability of disease progress within 24 months from primary surgery.

Statistical analyses were made using GraphPad Prism (version 6.0, La Jolla, CA, USA) and SPSS Software (version 23, SPSS Inc., Chicago, IL, USA). P values <0.05 were considered as statistically significant.

Results

Targeted molecular analysis of ACC: overview

The clinical and histopathological characteristics of the 107 patients selected for the study are shown in the Table 1 (see also Patients and Methods).

By performing targeted NGS in 117 ACC samples, we found a median TMB of $1.3 / \mathrm{Mb}$ (range: 0 $22,8 / \mathrm{Mb}$). Altogether, we found 237 somatic genetic variants (SNVs and small Indels). The complete list of alterations and their characteristics is shown in Supplemental Data [3]. Considering the 10 cases with FFPE samples from consecutive surgical interventions, most variants in driver genes were conserved in samples obtained from same patient (Supplemental Figure 2 [3]). Thus, we considered only the first available sample from each of the 107 ACC patients. Among them, 30 presented no mutations, 25 one mutation and 52 at least two mutations (median per sample: 1 , range: $0-14, \geq 5$ mutations in 13 cases). Overall, 215 protein-altering somatic variations were found, affecting 69/161 evaluated genes. Among the affected genes, 40 were mutated in at least two samples and 17 in at least three samples (frequency $\geq 2.8 \%$) (Supplemental Table 4 [3]). The frequency of recurrent mutations previously described in ACC [8 9 31] and in our series is shown in Figure 1A. The most frequently mutated genes were: TP53 (22\%), CTNNB1 (17\%), NF1 (11\%), APC (8.4\%), ZNRF3 (8.4\%), MEN1 (7.4%), GNAS (6.5%) and ATRX (6.5%). We also discovered novel recurrent mutations not clearly associated with ACC yet, such as in NOTCH1, CIC, KDM6A, BRCA1 and BRCA2 (all $\geq 2.8 \%$) (Figure 1A and Supplemental Table 4 [3]).

We then evaluated somatic CNVs in the same series. Most frequent CN gains were observed in CDK4 (43\%), NOTCH1 (19\%), TERT (12\%), FGFR3 (12\%) and MDM2 genes (7.4\%) and CN losses at RB1 (5.6\%), as expected (Figure 1B). The presence of amplifications at CDK4 locus was confirmed by FISH analysis (see Figure 2). We also found CN alterations that were not previously reported in ACC, such as gains in STK11 (31\%), GNA11 (17\%) and losses in TNFRSF14 (30\%), SMARCBI (22\%), FLCN (20\%) and CHEK2 (13\%) (Figure 1B).

Using our targeted sequencing approach, we identified three different CN patterns, consistent with a previous report [9]. Accordingly, we defined them as "chromosomal" when at least three large chromosomal regions were affected by amplifications or deletions, "quiet" when less than three
regions were altered and "noisy" when several small regions were affected (modified from [9]). An example of each CN pattern is reported in Supplemental Figure 3 [3]). 38 ACC samples were recognized to present a "chromosomal" pattern, 44 a "quiet" pattern and 25 a "noisy" pattern.

The two most frequently affected pathways were $\mathrm{p} 53 / \mathrm{Rb}$ signaling (59.8%; including alterations in CDKN2A, CDK4, MDM2, RBI and TP53) and Wnt/ β-catenin pathway (33.6%, including alterations in APC, CTNNB1, MED12, MEN1 and ZNRF3). In 22 of 107 samples (20.6\%) both pathways were involved. 3 of these patients (2.8%) had variations in CTNNBI and TP53. Another frequently altered pathway was the chromatin remodeling pathway (29.9\%) (Fig 1C). In a lower percentage of cases, genetic variations in genes of the DNA repair (7.4\%) or the mismatch repair (MMR) systems (4.5%) were observed (Figure 1C).

The methylation pattern of promoter regions of four preselected genes was also evaluated. The median percentage of methylated promoter regions in the tumor material was 11% at PAX5 (range: 198), 22% at PAX6 (range: 2-97), 17% at PYCARD (range: $1-94$) and 3% at GSTPI (range: 1-74). Considering all genes, the median value of mean methylation was 21% (range: 2-77). 33 tumors presented a promoter methylation status "high" (31% of cases).

A high BUBIB-PINK1 differential expression is a known negative prognostic marker in ACC [10]. Thus, we evaluated BUB1B and PINK1 mRNA expression levels in a subgroup of 38 FFPE tumor specimens with good RNA quality (32.5%). The analysis of this series revealed a high BUB1BPINKI differential expression in 16 cases (42%, Supplemental Figure 4).

Prognostic stratification

To evaluate the benefit of applying a molecular classification to prognosticate clinical outcome, we first investigated prognostic effectiveness of ENSAT tumor staging classification in our series. As expected, the median PFS was shorter for patients with metastatic disease (ENSAT 4, $n=23$) than for those with intermediate (ENSAT 3, $\mathrm{n}=28$) or early tumor stages (ENSAT 1 to 2, $\mathrm{n}=58$) ($P<0.0001$, chi-square=35.6, Figure 3A). However, using the mGRAS score (see Methods), we obtained an improved prognostic stratification by recognizing 4 subgroups with different clinical outcome, from
favorable prognosis (median PFS $=54$ months) to poor prognosis (median PFS=3 months) $(P<0.0001$, chi-square=49.0, Figure 3B).

Considering the results of the targeted molecular analysis, five events predicted a shorter PFS in univariate analysis: 1 . Presence of more than one mutation $(P=0.0015, \mathrm{HR}=2.12,95 \% \mathrm{CI}=1.3-3.4)$; 2. Noisy CNA pattern $(P=0.0038, \mathrm{HR}=2.46,95 \% \mathrm{CI}=1.3-4.5) ; 3$. Presence of alterations in $\mathrm{Wnt} / \beta-$ catenin signaling alone or together with $\mathrm{p} 53 / \mathrm{Rb}(P<0.0001) ; 4$. Promoter methylation status "high" $(P=0.0002, \quad \mathrm{HR}=2.9,95 \% \mathrm{CI}=1.7-5.0)$; 5. High BUB1B-PINK1 differential expression ($\mathrm{n}=38$, $P=0.0037, \mathrm{HR}=2.56,95 \% \mathrm{CI}=1.16-5.67)$. To investigate the applicability of a molecular prognostic classification in a clinical setting, we developed a simplified score excluding parameters that cannot be reliably and easily analyzed by targeted analysis in FFPE samples (i.e. CNA pattern and mRNA expression). At multivariate analysis including clinical/histopathological parameters, presence of alterations at Wnt / β-catenin alone or with $\mathrm{p} 53 / \mathrm{Rb}$ signaling and promoter methylation status "high" remained significant $(P=0.026, \mathrm{HR}=1.39,95 \% \mathrm{CI}=1.04-1.87$, and $P=0.003, \mathrm{HR}=2.03,95 \% \mathrm{CI}=1.27-$ 3.25 , respectively). We then combined genetic items in a molecular score as follows: number of somatic mutations $(0-1=0$ points, $>1=1$ point $)$, alterations in the Wnt / β-catenin and $\mathrm{p} 53 / \mathrm{Rb}$ pathways (none $=0$ points, only Wnt / β-catenin=1 point, Wnt / β-catenin+ $\mathrm{p} 53 / \mathrm{Rb}=2$ points) and promoter regions methylation pattern ($\leq 25 \%=0$ points, $>25 \%=1$ point) (overall points 0 to 4). This allowed us to separate four groups with PFS as endpoint: score 0 ($n=35$, median PFS=36 months), score 1 ($\mathrm{n}=30$, median PFS=9 months), score $2(\mathrm{n}=22$, median PFS $=6$ months) and score $3-4(\mathrm{n}=20$, median $\mathrm{PFS}=4$ months) $(P<0.0001$, chi-square $=34.4$; for definition see Figure 3C).

By merging mGRAS and molecular score into a combined (COMBI) score, we obtained a further improvement in the progression risk stratification. In particular, we better distinguished a group of patients with a really favorable prognosis (median PFS=54 months) and further three groups with good (median PFS=13 months), intermediate (median PFS $=6$ months) and poor prognosis (median PFS=3 months) ($P<0.0001$, chi-square $=68.6$; for definition see Figure 3D). When we tested the superiority of COMBI in respect to mGRAS score by discriminating patients with the best clinical outcome (at least 24 months free of disease progression), COMBI score showed a better prognostic performance, proven by superior specificity ($58.6 \mathrm{vs} 31.0 \%$) and accuracy (83.3% vs 74.5%).

Moreover, the area under the ROC curve was higher for COMBI than for mGRAS score (0.872 , 95\%CI=0.800-0.943, vs 0.780, 95\%CI=0.689-0.871) (Supplemental Figure 5A-B [3]).

A heatmap sorted for prognosis including mGRAS score, molecular parameters and COMBI score is shown in Figure 4.

We then decided to compare the prognostic power of mGRAS and COMBI score evaluating the disease-free survival (DFS) in those 74 ACC patients that were successfully operated (R0). In this subgroup, only COMBI score was able to identify a category of patients with an extremely longer DFS: median DFS for COMBI 0-2 $(\mathrm{n}=23)=243$ months, COMBI 3-4 $(\mathrm{n}=30)=13$ months, COMBI 5-7 $(\mathrm{n}=18)=5.5$ months, COMBI 8-13 $(\mathrm{n}=3)=3$ months ($\mathrm{P}<0.0001$, Chi-Square 50.98 , see Supplemental Figure 6).

Prediction of response to therapy

In patients treated with adjuvant mitotane ($\mathrm{n}=39$), a low COMBI score ($0-2$) was slightly more powerful to predict a longer disease-free survival then a low mGRAS $(0-1)(P=0.0001$, chisquare $=21.5$, vs $P=0.0058$, chi-square $=12.5$). However, similar results were obtained considering patients with superimposable disease stages that did not receive adjuvant mitotane ($\mathrm{n}=49$) (COMBI score: $P=0.0001$, chi-square $=27.5$, mGRAS: $P=0.0008$, chi-square $=16.8$), thus suggesting no specific relationship between molecular alterations and response to mitotane.

In patients with advanced ACC, none of the single molecular events showed a significant predictive role for response to mitotane monotherapy ($n=34$), EDP-M ($n=52$), gemcitabine plus capecitabine ($\mathrm{n}=36$) and/or streptozotocin $(\mathrm{n}=44$). These analyses were performed by considering both objective response to the investigated drugs and time to progression during treatment.

Actionable molecular alterations

Having chosen a NGS panel that includes several known pharmacologically targetable genetic alterations allowed us to directly look for their presence in ACC. According to the level of evidence (OncoKB website), we found at least one alteration in a drug targetable gene in 64 of our 107 patients. The list and specifics of 17 actionable genetic alterations are reported in Table 2. Most interesting
ones are CN gains at gene CDK4 (43\% of cases) that are accessible by different CDK4/6 inhibitors already approved for other types of solid tumors. Moreover, recurrent alterations at NOTCH1, targeted by gamma secretase inhibitors, NF1, targeted by MEK inhibitors, or at MDM2, targeted by MDM2 inhibitors, were recognized. Mutations in other known druggable genes, such as those coding for receptor tyrosine kinases $(E G F R, K I T$, and $R E T)$, members of the DNA repair system $(A T M, B R C A 1$, and BRCA2), PTCH1 and TSC1/TSC2 were detected in a small percentage of samples (<3\%). In two ACC samples we identified the well-known Val600Gly activating mutation in the gene BRAF, which is found in approximately 50% of papillary thyroid carcinomas and is directly actioned by BRAF and/or MEK inhibitors. Finally, mutations and/or CN losses were also observed in MMR genes MLH1, MSH2, and MSH6, which are associated with response to immune checkpoint inhibitors such as PD1/PDL1 inhibitors.

Discussion

The present study represents the largest study combining targeted NGS and methylation analysis on ACC samples ($\mathrm{n}=117$) using FFPE tissue specimens that are easily obtainable during routine histopathological workup. Our results clearly demonstrate that these analyses are feasible on FFPE material. Furthermore, we propose a new combined histological, clinical, and molecular score that improves the prognostic stratification in this rare disease (COMBI score). Finally, we identify actionable molecular events in 60% of patients.

Interestingly, we could evaluate the genetic profile of consecutive tumors from 10 patients. In these cases, we found a good concordance between primary and recurrent tumors in terms of both TMB and mutated genes, similarly to what is described for other cancer types [37]. Thus, we considered only the first available tumor sample for each single patient ($\mathrm{n}=107$). Overall, we confirmed the presence of frequent ACC-associated alterations (Figure 1A). Notably, we also detected in a smaller percentage of cases alterations previously not clearly associated with ACC $(>2.5 \%$, i.e. mutations at NOTCH1, CIC, and BRCA1/2, amplifications in STK11, GNAll and deletions in TNFRSF14, SMARCBI). In terms of signaling pathways, the most frequently involved were $\mathrm{p} 53 / \mathrm{Rb}$ and Wnt/ β-catenin, as expected. In 22 samples (20.6\%) we observed alterations in both signaling pathways representing an important negative prognostic marker - a. A rate that was already reported in literature [89]. In the group with worst prognosis also 3 patients (2.8%) with alterations in CTNNB1 and TP53 were observed. While Ragazzon et al. found alterations in CTNNB1 and TP53 mutually exclusive, a small number of patients in the cohort of Assié et al. and Zheng et al. had variants in both genes, thus also supporting our data. We also found alterations in genes involved in chromatin remodeling, as expected [89 9138 3. More surprisingly, we also observed recurrent genetic alterations affecting members of the MMR (i.e. MLH1, MSH2, MSH6) or homologous recombination DNA repair system (i.e. ATM, BRCA1, BRCA2).

Concerning the prognostic role of molecular markers, we could confirm in our FFPE series the impact of already proposed molecular markers already proposed in studies on fresh-frozen material [8 9 31]. However, the investigation of the CN pattern was not easily achievable starting from targeted analysis in FFPE material. Similarly, the isolation of high quality RNA from FFPE tissue was
successful in only 32.5% of samples, allowing investigation of mRNA expression in only a subset of patients. Therefore, we excluded these markers from further analysis. A simplified molecular prognostic score was then devised which includes mutational load, alterations in $\mathrm{p} 53 / \mathrm{Rb}$ and Wnt / β catenin pathway and promoter methylation status "high". However, importantly, only by merging molecular alterations with clinical/histopathological parameters included in mGRAS into a COMBI score, we obtained the best discrimination among ACC patients with different prognostication. COMBI score was particularly supportive to identify patients with an extremely favorable clinical outcome, showing the best predictive accuracy for discriminating patients without disease recurrence/progress within the first 24 months after primary surgery when compared to mGRAS score. The superiority of COMBI score was even more evident when considering the capability to predict DFS in patients successfully operated. These findings might play a key role in clinical practice, helping to better select patients that do not need aggressive treatment, thus sparing unnecessary side effects to patients and costs for the community.

A targeted approach to molecular analysis has been recently proposed by Assie and colleagues [39], who validated targeted NGS for calling simultaneously mutations, chromosome alterations and DNA methylation status. Such analysis might have clinical benefits, but still needs to be validated in FFPE material. Considering other cancer types, genetic analysis by targeted NGS and methylation analysis by pyrosequencing have been performed in FFPE tumour specimens obtaining good results [40-42]. Nevertheless, this kind of approach had not been tested in ACC samples until now. In general, it is now the task to prove that proposed molecular-driven scores are clinically helpful to guide clinicians in patient care. To this end, only a multicenter, prospective and randomized trial will provide reliable answers, but the international ACC community seems to be well connected to perform such effort.

Furthermore, we intended to investigate the potential predictive role of molecular alterations for response to systemic chemotherapies. However, none of the evaluated alterations were associated with the response to any standard pharmacological therapy in ACC. This might have different explanations, including the heterogeneity of treatments usually used in this kind of patients and the complexity of the molecular background of ACC.

Finally, we intended to identify potentially druggable molecular events. A similar approach has been used in few previous studies in small series of patients (up to 40) demonstrating the presence of potentially actionable genomic alterations in a subset of ACC [19 20]. In our study, we concentrated on molecular events targeted by drugs already available for solid tumors (OncoKB). Based on our analysis, the most promising candidate is the gene CDK4. Specifically, CN gains at the $C D K 4$ locus are already reported in the literature on ACC [8 19 20], but we observed them in an even higher percentage of cases ($>40 \%$). These alterations were confirmed with FISH analysis. Our findings may be clinically relevant because selective CDK4/6 inhibitors palbociclib and ribociclib have been approved by FDA for treatment of breast cancer [43]. Phase I-III studies are now ongoing with other CDK4/6 inhibitors in solid tumors (https://clinicaltrials.gov/) [44]. Moreover, although they have not been tested in ACC patients yet, CDK4/6 inhibitors have been shown to reduce cell viability in ACC cell lines [45 46].

Another promising drug target is NOTCH1 gene, which was gained in $>20 \%$ of cases in present series and in $>40 \%$ in a previous study [47]. Notch pathway might represent an interesting target as it was reported to be activated in ACC [48] and can be actioned by different gamma secretase inhibitors (GSI) or monoclonal antibodies [49]. For instance, the GSI PF-03084014 has already been tested in Phase I study in patients with advanced solid tumors [50]. Presence of copy number gains at MDM2 (7\% of cases) might also be considered encouraging targets as MDM2 inhibitors such as DS3032b or RG7112 have been reported to reduce cell proliferation in MDM-amplified liposarcoma [51]. An interesting therapeutic option is also represented by targeting the BRCA-related DNA repair system (altered in >7\% of cases) by PARP inhibitors (i.e. olaparib, nirapanib and rucaparib) [52] that are approved for treatment of BRCA-mutant ovarian. Moreover, mutations in targetable genes coding for receptor tyrosine kinases (EGFR, KIT, RET), members of mTOR pathway (TSCI/2) and BRAF were detected in rare cases. Finally, in 4.5% of cases, we observed mutations or CN losses in members of the MMR system (MSH2, MSH6, MLH1), which have been reported as predictive biomarkers for antitumor effects of checkpoint PD1/PDL1 inhibitors (i.e. pembrolizumab or novolumab [53 54]). Our findings on actionable targets open up new therapeutic avenue for subsets of ACC patients.

In conclusion, our study demonstrates that molecular classification based on targeted genetic analysis is able to improve the prognostication of ACC patients when combined with clinical/histopathological parameters. This approach paves the way to a personalized management of ACC, allowing better decisions about need for adjuvant therapies and/or frequency of periodical post-operative monitoring. Additionally, our targeted panel can at the same time identify druggable targets. In some cases, these results may be used to select patients for clinical trials or off-label use of specific anti-cancer drugs. The fact that all this is possible in readily available FFPE material is a major step towards precision medicine in this rare disease.

Acknowledgements

The authors are grateful to Ms. Martina Zink for excellent technical support and Ms. Michaela Haaf for coordinating the ENSAT Registry. This work has been carried out with the help of the Interdisciplinary Bank of Biomaterials and Data of the University Hospital of Würzburg and the Julius Maximilian University of Würzburg (IBDW). The implementation of the IBDW has been supported by the Federal Ministry for Education and Research (Grant number FKZ: 01EY1102).

References

1. Fassnacht M, Johanssen S, Quinkler M, et al. Limited prognostic value of the 2004 International Union Against Cancer staging classification for adrenocortical carcinoma: proposal for a Revised TNM Classification. Cancer 2009;115(2):243-50 doi: 10.1002/cncr. 24030.
2. Else T, Kim AC, Sabolch A, et al. Adrenocortical carcinoma. Endocr Rev 2014;35(2):282-326 doi: 10.1210/er.2013-1029.
3. Lippert J AS, Liang R, et al. . Targeted molecular analysis in adrenocortical carcinomas: a strategy towards improved personalized prognostication. Figshare Deposited 19 June 2018 doi: 10.6084/m9.figshare. 6608093.
4. Erdogan I, Deutschbein T, Jurowich C, et al. The role of surgery in the management of recurrent adrenocortical carcinoma. The Journal of clinical endocrinology and metabolism 2013;98(1):181-91 doi: 10.1210/jc.2012-2559.
5. Margonis GA, Kim Y, Prescott JD, et al. Adrenocortical Carcinoma: Impact of Surgical Margin Status on Long-Term Outcomes. Ann Surg Oncol 2016;23(1):134-41 doi: 10.1245/s10434-015-4803-x.
6. Beuschlein F, Weigel J, Saeger W, et al. Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection. The Journal of clinical endocrinology and metabolism 2015;100(3):841-9 doi: 10.1210/jc.2014-3182.
7. Libe R, Borget I, Ronchi CL, et al. Prognostic factors in stage III-IV adrenocortical carcinomas (ACC): an European Network for the Study of Adrenal Tumor (ENSAT) study. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2015;26(10):2119-25 doi: 10.1093/annonc/mdv329.
8. Assie G, Letouze E, Fassnacht M, et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 2014;46(6):607-12 doi: 10.1038/ng.2953.
9. Zheng S, Cherniack AD, Dewal N, et al. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell 2016;29(5):723-36 doi: 10.1016/j.ccell.2016.04.002.
10. de Reynies A, Assie G, Rickman DS, et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 2009;27(7):1108-15 doi: 10.1200/JCO.2008.18.5678.
11. Jouinot A, Assie G, Libe R, et al. DNA Methylation Is an Independent Prognostic Marker of Survival in Adrenocortical Cancer. J Clin Endocrinol Metab 2017;102(3):923-32 doi: 10.1210/jc.2016-3205.
12. Fassnacht M DO, Else T, Baudin E, Berruti A, de Krijger RR, Haak HR, Mihai R, Assie G, Terzolo M. European Society of Endocrinology Clinical Practice Guidelines on the Management of Adrenocortical Carcinoma in Adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol 2018
13. Reidy-Lagunes DL, Lung B, Untch BR, et al. Complete Responses to Mitotane in Metastatic Adrenocortical Carcinoma-A New Look at an Old Drug. Oncologist 2017;22(9):1102-06 doi: 10.1634/theoncologist.2016-0459.
14. Megerle F, Herrmann W, Schloetelburg W, et al. Mitotane Monotherapy in Patients With Advanced Adrenocortical Carcinoma. J Clin Endocrinol Metab 2018;103(4):1686-95 doi: 10.1210/jc.2017-02591.
15. Fassnacht M, Terzolo M, Allolio B, et al. Combination chemotherapy in advanced adrenocortical carcinoma. The New England journal of medicine 2012;366(23):218997 doi: 10.1056/NEJMoa1200966.
16. Sperone P, Ferrero A, Daffara F, et al. Gemcitabine plus metronomic 5-fluorouracil or capecitabine as a second-/third-line chemotherapy in advanced adrenocortical carcinoma: a multicenter phase II study. Endocrine-related cancer 2010;17(2):445-53 doi: 10.1677/ERC-09-0281.
17. Henning JEK, Deutschbein T, Altieri B, et al. Gemcitabine-Based Chemotherapy In Adrenocortical Carcinoma: A Multicentric Study On Efficacy and Predictive Factors. The Journal of clinical endocrinology and metabolism 2017 doi: 10.1210/jc.201701624.
18. Costa R, Carneiro BA, Tavora F, et al. The challenge of developmental therapeutics for adrenocortical carcinoma. Oncotarget 2016;7(29):46734-49 doi: 10.18632/oncotarget. 8774.
19. De Martino MC, AI Ghuzlan A, Aubert S, et al. Molecular screening for a personalized treatment approach in advanced adrenocortical cancer. The Journal of clinical endocrinology and metabolism 2013;98(10):4080-8 doi: 10.1210/jc.2013-2165.
20. Ross JS, Wang K, Rand JV, et al. Next-generation sequencing of adrenocortical carcinoma reveals new routes to targeted therapies. J Clin Pathol 2014;67(11):968-73 doi: 10.1136/jclinpath-2014-202514.
21. Fassnacht M, Berruti A, Baudin E, et al. Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomised, phase 3 study. The Lancet. Oncology 2015;16(4):426-35 doi: 10.1016/S1470-2045(15)70081-1.
22. McShane LM, Altman DG, Sauerbrei W, et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). Nature clinical practice. Urology 2005;2(8):416-22
23. Chakravarty D, Gao J, Phillips SM, et al. OncoKB: A Precision Oncology Knowledge Base. JCO precision oncology 2017;2017 doi: 10.1200/PO.17.00011.
24. Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. Journal of computational biology : a journal of computational molecular cell biology 2004;11(2-3):377-94 doi: 10.1089/1066527041410418.
25. Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in Genie. Journal of computational biology : a journal of computational molecular cell biology 1997;4(3):311-23 doi: 10.1089/cmb.1997.4.311.
26. Pertea M, Lin X, Salzberg SL. GeneSplicer: a new computational method for splice site prediction. Nucleic acids research 2001;29(5):1185-90
27. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic acids research 2009;37(9):e67 doi: 10.1093/nar/gkp215.
28. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nature methods 2010;7(4):248-9 doi: 10.1038/nmeth0410-248
29. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nature methods 2014;11(4):361-2 doi: 10.1038/nmeth. 2890.
30. Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMGAMP Guidelines. Am J Hum Genet 2017;100(2):267-80 doi: 10.1016/j.ajhg.2017.01.004.
31. Juhlin CC, Goh G, Healy JM, et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma. J Clin Endocrinol Metab 2015;100(3):E493-502 doi: 10.1210/jc.2014-3282.
32. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods in molecular biology 2000;132:365-86
33. Fujita PA, Rhead B, Zweig AS, et al. The UCSC Genome Browser database: update 2011. Nucleic acids research 2011;39(Database issue):D876-82 doi: 10.1093/nar/gkq963.
34. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25(14):1754-60 doi: 10.1093/bioinformatics/btp324.
35. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20(9):1297-303 doi: 10.1101/gr.107524.110.
36. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26(6):841-2 doi: 10.1093/bioinformatics/btq033.
37. Meric-Bernstam F, Frampton GM, Ferrer-Lozano J, et al. Concordance of genomic alterations between primary and recurrent breast cancer. Molecular cancer therapeutics 2014;13(5):1382-9 doi: 10.1158/1535-7163.MCT-13-0482.
38. Assie G, Jouinot A, Bertherat J. The 'omics' of adrenocortical tumours for personalized medicine. Nat Rev Endocrinol 2014;10(4):215-28 doi: 10.1038/nrendo.2013.272.
39. Garinet S, Neou M, de La Villeon B, et al. Calling Chromosome Alterations, DNA Methylation Statuses, and Mutations in Tumors by Simple Targeted Next-Generation Sequencing: A Solution for Transferring Integrated Pangenomic Studies into Routine Practice? The Journal of molecular diagnostics : JMD 2017;19(5):776-87 doi: 10.1016/j.jmoldx.2017.06.005.
40. Tiedje V, Ting S, Herold T, et al. NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget 2017;8(26):42613-20 doi: 10.18632/oncotarget. 17300.
41. Walter RFH, Rozynek P, Casjens S, et al. Methylation of L1RE1, RARB, and RASSF1 function as possible biomarkers for the differential diagnosis of lung cancer. PLoS One 2018;13(5):e0195716 doi: 10.1371/journal.pone. 0195716.
42. Einaga N, Yoshida A, Noda H, et al. Assessment of the quality of DNA from various formalin-fixed paraffin-embedded (FFPE) tissues and the use of this DNA for nextgeneration sequencing (NGS) with no artifactual mutation. PLoS One 2017;12(5):e0176280 doi: 10.1371/journal.pone. 0176280.
43. Ramos-Esquivel A, Hernandez-Steller H, Savard MF, Landaverde DU. Cyclin-dependent kinase 4/6 inhibitors as first-line treatment for post-menopausal metastatic hormone receptor-positive breast cancer patients: a systematic review and meta-analysis of phase III randomized clinical trials. Breast Cancer 2018 doi: 10.1007/s12282-018-0848-6.
44. Deng Y, Ma G, Li W, Wang T, Zhao Y, Wu Q. CDK4/6 Inhibitors in Combination With Hormone Therapy for HR(+)/HER2(-) Advanced Breast Cancer: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Clin Breast Cancer 2018 doi: 10.1016/j.clbc.2018.04.017.
45. Hadjadj D, Kim SJ, Denecker T, et al. A hypothesis-driven approach identifies CDK4 and CDK6 inhibitors as candidate drugs for treatments of adrenocortical carcinomas. Aging (Albany NY) 2017;9(12):2695-716 doi: 10.18632/aging. 101356.
46. Fiorentini C, Fragni M, Tiberio GAM, et al. Palbociclib inhibits proliferation of human adrenocortical tumor cells. Endocrine 2018;59(1):213-17 doi: 10.1007/s12020-017-1270-0.
47. Ronchi CL, Sbiera S, Leich E, et al. Single nucleotide polymorphism array profiling of adrenocortical tumors--evidence for an adenoma carcinoma sequence? PLoS One 2013;8(9):e73959 doi: 10.1371/journal.pone. 0073959.
48. Ronchi CL, Sbiera S, Altieri B, et al. Notch1 pathway in adrenocortical carcinomas: correlations with clinical outcome. Endocr Relat Cancer 2015;22(4):531-43 doi: 10.1530/ERC-15-0163.
49. Lamy M, Ferreira A, Dias JS, Braga S, Silva G, Barbas A. Notch-out for breast cancer therapies. N Biotechnol 2017;39(Pt B):215-21 doi: 10.1016/j.nbt.2017.08.004
50. Messersmith WA, Shapiro GI, Cleary JM, et al. A Phase I, dose-finding study in patients with advanced solid malignancies of the oral gamma-secretase inhibitor PF03084014. Clin Cancer Res 2015;21(1):60-7 doi: 10.1158/1078-0432.CCR-14-0607.
51. Ray-Coquard I, Blay JY, Italiano A, et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol 2012;13(11):1133-40 doi: 10.1016/S1470-2045(12)70474-6.
52. Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis-Filho JS. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle 2011;10(8):1192-9 doi: 10.4161/cc.10.8.15273.
53. Le DT, Uram JN, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015;372(26):2509-20 doi: 10.1056/NEJMoa1500596.
54. Feng YC, Ji WL, Yue N, Huang YC, Ma XM. The relationship between the PD-1/PD-L1 pathway and DNA mismatch repair in cervical cancer and its clinical significance. Cancer Manag Res 2018;10:105-13 doi: 10.2147/CMAR.S152232.

Legend to figures

Figure 1. Recurrent genetic alterations observed by targeted next generation sequencing and Sanger sequencing (ZNRF3) in adrenocortical carcinoma. A) Somatic protein-altering mutations detected in the present series of FFPE tumors ($\mathrm{n}=107$) and in the series of snap-frozen tumors available in the literature ($\mathrm{n}=182$); B) Copy number (CN) alterations (gains and losses) detected in the present series of FFPE tumors ($\mathrm{n}=107$). Heterozygosis=duplicated with a fold change between 1.25 and 1.75 , homozygosis=duplicated with a fold change > 1.75. C) Altered signaling pathways identified by curated analysis. Alterations are defined by somatic mutations and copy number gains or losses.

Figure 2. Example of CDK4 copy number (CN) gains. A) CN analysis by targeted next generation sequencing in one FFPE tumor slide with homozygous CDK4 amplification (view of all genes covered in the panel); B) zoom view of the CDK4 locus at chr. 12); and C) validation by FISH analysis in the same FFPE tumor slide (Dual Color Probe: CDK4 in green and CEN12 in red). D) CN analysis by targeted next generation sequencing in one FFPE tumor slide with homozygous CDK4 amplification (view of all genes covered in the panel); E) zoom view of the CDK4 locus at chr. 12); and F) validation by FISH analysis, respectively. G) CN analysis by targeted next generation sequencing in one FFPE tumor slide without CDK4 amplification (view of all genes covered in the panel); H) zoom view of the CDK4 locus at chr. 12); and I) validation by FISH analysis, respectively.

Figure 3. Prognostication of clinical outcome (progression-free survival) in 107 patients with adrenocortical carcinoma according to different parameters. A) Initial ENSAT tumor stage (1 to 4); B) Modified GRAS score including ENSAT tumor stage (1 or $2=0,3=1,4=2$), Ki67 index ($0-9=0$, $10-19=1, \geq 20=2$), R status ($R 0=0, R X=1, R 1=2, R 2=3$), age (<50 years $=0, \geq 50$ years $=1$) and symptoms ($\mathrm{no}=0$, yes $=1$) (overall points $0-9$); C) Molecular score including number of somatic mutations $(0-1=0,>1=1)$, alterations in the Wnt / β-catenin and $\mathrm{p} 53 / \mathrm{Rb}$ pathways (none $=0$, only Wnt / β catenin $=1$, Wnt $/ \beta$-catenin $+\mathrm{p} 53 / \mathrm{Rb}=2$) and promoter regions methylation pattern ($\leq 25 \%=0,>25 \%=1$) (overall points 0 to 4); D) COMBI score including mGRAS and molecular score (overall points 0 to 13).

Figure 4. Heatmap representing the clinical outcome of the 107 patients with adrenocortical carcinoma in relationship with the evaluated clinical/histopathological score (mGRAS), the most relevant and "easy-to-apply" molecular parameters and the calculated COMBI score. Patients are subdivided into four different "prognosis" subgroups according to PFS: favorable prognosis by PFS >24 months ($\mathrm{n}=29$), good prognosis by PFS 12-24 months ($\mathrm{n}=13$), intermediate prognosis by PFS $6-11$ months ($\mathrm{n}=20$) and bad prognosis by PFS <6 months $(\mathrm{n}=40$). The remaining 5 patients who were still alive at the last follow up were considered as "not applicable" in terms of prognosis classification because of an insufficient time-span of follow up.

Legend to Tables

Table 1. Baseline clinical/histopathological characteristics of 107 patients with adrenocortical carcinoma included in the study.

Table 2. Potential drug targets identified by next-generation sequencing in 107 patients with adrenocortical carcinomas.

Table 1. Baseline clinical/histopathological characteristics of 107 patients with adrenocortical carcinoma included in the study.

Parameter	
N	107
Sex (M/F)	46/61
Baseline (at time of diagnosis)	
$\begin{aligned} \text { Age }- \text { yrs (median, range) } \\ -\quad<50 \text { years }-\mathrm{n}(\%) \\ -\quad \geq 50 \text { years }-\mathrm{n}(\%) \\ \hline \end{aligned}$	$\begin{gathered} 49(18-87) \\ 57(53.3) \\ 50(46.7) \\ \hline \end{gathered}$
Clinical presentation (available data) - Incidentally - n (\%) - Tumor-related - n (\%) - Hormone-related - n (\%)	107 $31(29.0)$ $45(42.0)$ $31(29.0)$
Hormone secretion (available data) - Glucocorticoids alone - n (\%) - Mixed secretion - n (\%) - Endocrine inactive - n (\%) - Others (androgens, mineralcorticoids, estrogens) - n (\%) - Unknown - n	$\begin{gathered} 81 \\ 24(29.6) \\ 25(30.8) \\ 25(30.8) \\ 7(8.6) \\ 26 \\ \hline \end{gathered}$
Initial ENSAT tumor stage (available data) $\begin{aligned} & 1-2-\mathrm{n}(\%) \\ & 3-\mathrm{n}(\%) \\ & 4 \text { (metastatic) }-\mathrm{n}(\%) \end{aligned}$	107 $56(52.3)$ $28(26.2)$ $23(21.5)$
Resection status (available data) $\begin{aligned} & \mathrm{R} 0-\mathrm{n}(\%) \\ & \mathrm{RX}-\mathrm{n}(\%) \\ & \mathrm{R} 1-\mathrm{n}(\%) \\ & \mathrm{R} 2-\mathrm{n}(\%) \\ & \text { Unknown - } \end{aligned}$	104 $74(71.1)$ $16(15.4)$ $5(4.8)$ $9(8.6)$ 3
Ki67 proliferation index (median, range) - $0-9$ - n (\%) - $10-19-\mathrm{n}(\%)$ - $\quad \geq 20-\mathrm{n}(\%)$	$12(1-90)$ $31(29.0)$ $33(30.8)$ $43(40.2)$
$\begin{aligned} & \hline \text { Type of tumor } \\ & \text { Primary - } \mathrm{n}(\%) \\ & \text { Local recurrence - } \mathrm{n}(\%) \\ & \text { Metastasis - } \mathrm{n}(\%) \\ & \hline \end{aligned}$	$\begin{gathered} 89(83.2) \\ 9(8.4) \\ 9(8.4) \\ \hline \end{gathered}$
During follow up	
Duration of follow up - months (median, range) Deaths - n (\%)	$\begin{gathered} 31(3-274) \\ 54(50.5) \\ \hline \end{gathered}$
```Local therapeutic approaches Additional surgeries - n (\%) Radiotherapy (tumor bed or metastasis) - n (\%) Iodometomidate - n (\%)```	$\begin{gathered} 26(24.3) \\ 19(17.8) \\ 7(6.5) \\ \hline \end{gathered}$
Mitotane   Adjuvant setting - n (\%)   Palliative setting - n (\%)	$\begin{aligned} & \hline 73 \text { (68.2) } \\ & 39(36.4) \\ & 34(31.8) \end{aligned}$
Cytotoxic chemotherapies None $-\mathrm{n}(\%)$ Platinum-compounds $-\mathrm{n}(\%)$ Streptozotocin $-\mathrm{n}(\%)$ Gemcitabin plus Capecitabin $-\mathrm{n}(\%)$	$\begin{aligned} & 45(42.1) \\ & 52(48.6) \\ & 44(41.1) \\ & 36(33.6) \\ & \hline \end{aligned}$

Abbreviations: $\mathrm{F}=$ female; $\mathrm{M}=$ male; $\mathrm{n}=$ number of patients; $\mathrm{n} . \mathrm{a}=$ not available; $\mathrm{ns}=$ not significant; $\mathrm{R} 0=$ complete resection; R1=microscopic incomplete resection; R2=macroscopic incomplete resection; RX=uncertain resection; yrs=years.

Table 2. Potential drug targets identified by next-generation sequencing in 107 patients with adrenocortical carcinomas.
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Gene } \\ \text { symbol }\end{array} & \text { Description } & \begin{array}{l}\text { Type of observed } \\ \text { alteration }\end{array} & \begin{array}{l}\text { \% } \\ \text { samples }\end{array} & \text { Potential targeted therapy } & \begin{array}{l}\text { Level } \\ \text { evidence }{ }^{\text {A }}\end{array} \\ \hline \text { DNA level } & \begin{array}{l}\text { of } \\ \text { dependent } \\ \text { kinase }\end{array} & \text { CN gains } & \text { Missense mutation }\end{array}\right\}$

Abbreviations: CN=copy number; NCSLC=non-small cell lung cancer; TKI=tyrosine kinase inhibitor.
${ }^{\text {A }}$ Evidence by OncoKB website (http://oncokb.org/\#/, (21)): Level 1=FDA-approved biomarker; Level 2A= standard care biomarker in this indication; Level 2B: Standard care biomarker in another indication, Level 3A= predictive biomarker according to clinical evidence in this indication; Level 3B= predictive biomarker according to clinical evidence in another indication Level $4=$ predictive biomarker according to biological evidence. ${ }^{\mathrm{B}}$ not the same molecular alteration.


D)

GYWU699

G)


58.14058 .14158 .14258 .143 58.144 58.14558 .14658 .147
Pos $\left[10^{\wedge} 6\right]$
H)

$58.14058 .14158 .142 \quad 58.14358 .14458 .14558 .146 \quad 58.147$
Pos $\left[10^{\wedge} 6\right]$


GYWU1267

58.140 58.14158 .14258 .14358 .14458 .14558 .14658 .147 Pos [10^6]

F)

I)

A)

-O ENSAT tumor stage $1(\mathrm{n}=6) \rightarrow$ ENSAT tumor stage $3(\mathrm{n}=28)$
$\rightarrow$ ENSAT tumorstage $2(\mathrm{n}=50) \rightarrow$ ENSAT tumorstage $4(\mathrm{n}=23)$
B)


- © mGRAS score 0-1 ( $\mathrm{n}=16$ ) $\rightarrow$ mGRAS score 4-5 ( $\mathrm{n}=32$ )
$\rightarrow$ mGRAS score 2-3 $(\mathrm{n}=44) \rightarrow$ mGRAS score 6-9 $(\mathrm{n}=15)$
D)

$\begin{array}{ll}\text {-๑. COMBI score 0-2 }(n=24) & - \text { ComBI score 5-7 }(n=22) \\ \rightarrow-\text { combI score 3-4 }(n=32) & \rightarrow \text { combI score 8-13 }(n=19)\end{array}$


Click here to access/download
Supplemental Material 20180716_Supplemental Figures.docx


[^0]:    General rights
    Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

    - Users may freely distribute the URL that is used to identify this publication.
    - Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
    -User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) - Users may not further distribute the material nor use it for the purposes of commercial gain.

    Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    When citing, please reference the published version.

    ## Take down policy

    While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

    If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

