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Aim: Imaging of blood flow in narrow channels and close to vessel walls is important in cardiovascular
research for understanding pathogenesis. Our aim was to provide novel nanoprobes with visible emission
and long lifetimes as trackers of flow. Materials & methods: Gold nanoparticles coated with an iridium
complex were prepared. Luminescence imaging was used to monitor their flows in different hematocrit
blood and in murine tissues. Results: The velocities are independent of hematocrit level and the nanopar-
ticles entering blood circulation can be clearly detected in vessels in lungs, mesentery and the skeletal
muscle. Conclusion: The work introduces for the first time iridium-based yellow-green luminescence with
nanoparticle size of 100 nm for visualizing and monitoring flows with much higher resolution than con-
ventional alternatives.

First draft submitted: 15 June 2017; Accepted for publication: 29 August 2017; Published online: 29
September 2017
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In cardiovascular research, visualization of the vascular tree and characterization of the blood flow across vessels is
valuable for an understanding of the disease pathogenesis and the controlled delivery of therapeutic agents. Recent
advances in fluorescence microscopy have revealed the potential of fluorescence imaging [1] to monitor changes in
cardiac structure upon therapeutic treatment [2]. However, methods for tracking blood flow based on fluorescently
labeled blood cells or microparticles in vitro and in vivo [3–5] limit the spatial resolution to a few micrometers,
which is problematic for narrow vessels and tracking flow rates near to the channel walls. The flow fields generated
within the sophisticated network of micrometer-sized blood vessels, produce unsteady flow phenomena that can also
influence pathophysiological responses within the vascular bed, such as inflammation and thrombosis. Luminescent
nanoparticles have been recognized as potential optical imaging probes, which can interrogate the complex spatial
and temporal information in flow dynamics [6–10]. Most importantly, they can provide rheological detail currently
unavailable in clinical practice, which employs organic fluorescent dyes (e.g., fluorescein angiography). Quantum
dots have been studied as potential imaging agents of the vasculature when they are coated with silica or polymer
shells for biocompatibility or increase of their size [8,11–13].It is important for the luminescent probes to be inert in
the challenging environment of blood and display clear luminescence signal due to the the high concentration of
the red blood cells (RBC) which absorb light and the many constituents in the plasma which can interact with the
probes. Gold nanoparticles are attractive in biomedical research due to their easily tunable size, water solubility and
low toxicity [14–18]. Their applications in fluorescence imaging are limited by the gold resonance which quenches
organic probe fluorescence [14].
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Figure 1. Luminescent iridium-coated gold nanoparticles in imaging of blood flows and in murine tissues.

In this paper, we introduce iridium-coated luminescent gold nanoparticles for imaging of blood flow dynamics.
We have developed, water-soluble iridium-coated nanoparticles using a surfactant-mediated coating strategy [19,20]

which allows formation of stable up to 100 nm luminescent gold nanoparticles in water. Gold provides an inert
scaffold with sizes that can be tuned for the requirement of imaging, yet retaining the water solubility. Gold’s high
affinity for thiols provides a versatile and efficient attachment method. By attaching the iridium metal complex onto
gold, we convey its distinct photophysical properties [5,21,22] to the nanoscale, leading to photostable nanoparticles
with long-lived, visible luminescence and a large Stokes shift, which is desirable for biomedical applications [23–25].
Although, iridium-coated gold nanoparticles [26–28] have been previously reported by other methods, their size was
limited to 5 nm and the nanoparticles were nonluminescent, even though iridium metal complexes are popular
molecular imaging probes in biological cells [29]. We have synthesized an iridium complex for attachment to gold
nanoparticles which offers an optical window for excitation (350–400 nm) and luminescence (500–700 nm)
where absorption of blood is relatively low (Figure 1) [30]. The gold nanoparticle allows attachment of multiple
photoactive metals and visualization of the probes in low concentrations, yet detectable by luminescence. We have
used a fluorinated surfactant for the preparation of the gold nanoparticles [19] 13 and 100 nm, IrS•AuNP13 and
IrS•AuNP100 respectively, which have been isolated and fully characterized. The 100 nm gold particles have been
identified as an ideal size for visualization in blood as they provide a surface with high coating of luminescent probes
and are visualized as nonaggregated particles in flow, even though they are in subdiffraction limit. The 13 nm
nanoparticles could not be visualized under the same conditions. The photophysical studies of the nanoparticles
reveal enhanced luminescence lifetimes and quantum yields as compared with the molecular iridium complex.
Using in vitro assays, we demonstrate that the 100 nm nanoparticles can be used as luminescent flow tracers in
blood and show that their velocity is not altered relative to that of (RBC), irrespective of the percentage hematocrit
reaching physiologically relevant values of RBC concentrations. Importantly, we also report their detection within
surgically excised organs from a murine animal model injected with the luminescent nanoparticles, which further
supports their potential as imaging agents.

Materials & methods
General
All solvents were purchased from Fisher or Sigma-Aldrich (Dorset, UK), all anhydrous solvents were dried over
3Å molecular sieves under N2 (g) for 1 h or by PureSolv-EN solvent purification system. Reagent grade 4,4′-
dimethoxy-2,2′-bipyridine, 6-bromohex-1-ene, HAuCl4, IrCl3, Zonyl7950 R© CH3C(=CH2)COOC2H4(CF2)nF
and 2-phenylpyridine were purchased from Sigma-Aldrich. 4,4′-dihydroxy-2,2′-bipyridine [31] BpyHex [19],
[Ir(ppy)2(μ-Cl)]2 [32] and AuNP13 [33] were synthesized according to published procedures. Detailed synthetic
scheme of the metal complex is included in the Supplementary Information.
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[Ir(ppy)2(BpyHex)]Cl The cyclometalled iridium(III) dimer [Ir(ppy)2(μ -Cl)]2 (634 mg, 0.591 mmol) and
BpyHex (310 mg, 0.876 mmol, 1.5 eq) were dissolved in CH2Cl2/CH3OH (45 ml, 2:1) and refluxed overnight at
60◦C under nitrogen. Following cooling, the solvent was removed in vacuo to render a yellow residue. The residue
was purified by chromatography on silica (CH2Cl2:CH3OH 10:1) Rf = 0.4,4 to give [Ir(ppy)2(BpyHex)] Cl as
a yellow powder (0.602 g, 0.677 mmol, 77% yield). Rf = 0.44 (CH2Cl2:CH3OH 10:1). 1H NMR (400 MHz,
d6-DMSO): δH = 8.46 (s, 2H, H3), 8.25 (d, 2H, 3JHd = 8.2 Hz, He), 7.98–7.88 (m, 4H, Hd/Hh), 7.69 (d, 2H,
3JHc = 5.6 Hz, Hb), 7.59 (d, 2H, 3JH5 = 6.6 Hz, H6), 7.28 (dd, 2H, 3JH6 = 6.6 Hz, 4JH3 = 2.5 Hz, H5), 7.19
(t, 2H, 3JHd ≈ 3JHb = 5.7 Hz, Hc), 7.00 (t, 2H, 3JHh ≈ 3JHj = 7.5 Hz, Hi), 6.88 (t, 2H, 3JHk ≈ 3JHi = 7.5 Hz,
Hj), 6.19 (d, 2H, 3JHj = 7.5 Hz, Hk), 5.90–5.76 (m, 2H, H11), 5.09–4.95 (m, 4H, H12/H13), 4.24 (t, 4H,
3JH8 = 6.3 Hz, H7), 2.16–2.06 (m, 4H, H10), 1.85–1.73 (m, 4H, H8), 1.59–1.46 (m, 4H, H9). 13C NMR
(100 MHz, d6-DMSO): δC = 150.5 (C6), 148.7 (Cb), 138.5 / 138.3 (Cd/C11), 131.1 (Ck), 130.1 (Cj), 125.9
(Ch), 125.0 (Cc), 123.8 (Ci), 121.9 (Ce), 115.1 (C12), 114.5 (C5), 111.9 (C3), 69.1 (C7), 32.6 (C10), 27.6 (C8),
24.5 (C9). TOF ES-MS(+): m/z 853.5 [M]+. IR νmax (cm-1): 3045, 2940, 1606, 1472, 1436, 1341, 1284, 1226,
1031, 994, 756.

IrSAc thioacetic acid (564 μl, 7.890 mmol) and 1,1′-azobiscyclohexane carbonitrile (ABCN, 756 mg,
3.093 mmol) in anhydrous tetrahydrofuran (THF; 10 ml) were heated at 60◦C under N2 (g) for 30 min.
[Ir(ppy)2(BpyHex)] Cl (600 mg, 0.675 mmol) in anhydrous THF (40 ml) was added dropwise to the mixture,
which was then stirred at 60◦C under N2(g). The progress of the reaction was monitored by the disappearance of
the terminal olefins by 1H NMR. Thioacetic acid (100 μl, 1.399 mmol) and ABCN (125 mg, 0.512 mmol) were
added after 18 h, another portion of thioacetic acid (120 ml, 1.679 mmol) and ABCN (150 mg, 0.614 mmol) was
added after 22 h. After a total of 45 h, the reaction was pushed to completion and the ABCN was quenched with
saturated NaHCO3 (aq) (150 ml). The solution was extracted with CH2Cl2/H2O and dried over MgSO4, and
filtered. The solvent was removed in vacuo to render a dark brown viscous residue which was purified by column
chromatography on silica (CH2Cl2:CH3OH 10:1) Rf = 0.56, to give IrBpySAc as a bright yellow solid (459 mg,
0.441 mmol, 65% yield). 1H NMR (400 MHz, d6-DMSO): δH = 8.44 (d, 2H, 4JH5 = 2.5 Hz, H3), 8.25 (d, 2H,
3JHd = 8.1 Hz, He), 7.96–7.86 (m, 4H, Hd/Hh), 7.68 (d, 2H, 3JHc = 5.1 Hz, Hb), 7.58 (d, 2H, 3JH5 = 6.4 Hz,
H6), 7.27 (dd, 2H, 3JH6 = 6.4 Hz, 4JH3 = 2.4 Hz, H5), 7.18 (t, 2H, 3JHd ≈ 3JHb = 5.7 Hz, Hc), 6.99 ((t, 2H,
3JHj ≈ 3JHh = 7.5 Hz, Hi), 6.88 (t, 2H, 3JHk ≈ 3JHi = 7.4 Hz, Hj), 6.18 (d, 2H, 3JHj = 6.6 Hz, Hk), 4.21 (t, 4H,
3JH8 = 6.1 Hz, H7), 2.83 (t, 4H, 3JH11 = 7.2 Hz, H12), 2.30 (s, 6H, H15),1.80–1.71 (m, 4H, H10), 1.56–1.48
(m, 4H, H8), 1.46–1.34 (m, 8H, H9/H11). 13C NMR (100 MHz, d6-DMSO): δC = 177.2/169.9/156.9/143.9
(quaternary C), 150.5 (C6), 148.7 (Cb), 138.5 / 125.0 (Cd/Ch), 131.1 (Ck), 130.1 (Cj), 123.8 (Cc), 121.9 (Ci),
119.9 (Ce), 114.5 (C5), 111.9 (C3), 69.2 (C7), 30.6 (C15), 29.0 (C8), 28.2 (C12), 27.7 (C10), 26.5 / 24.8 (C9/C11).
TOF MALDI-MS(+): m/z 1064.20 [M+Na]+., 1006.19 [M-Cl]+. HRMS (ES+): Calc. for C48H52IrN4O4S2

1005.3060, found 1005.3046 Anal. calcd for C48H52ClIrN4O4S2 : C 55.4, H 5.0, N 5.4. Found: C 55.1, H
4.9, N 5.2. IR νmax (cm-1): 2925, 1682, 1605, 1476, 1417, 1337, 1269, 1225, 1063, 1030, 952, 757. UV-VIS
(CH3CN) λmax [nm, (log ε)] = 228 (5.7), 256 (5.7), 295 (5.3), 346 (4.9), 420 (4.5).

IrSH To IrSAc (50 μl, 7.96 mM in MeCN, 398 nmol) was added NH4OH(aq) solution (50 μl, 30% w/w).
The mixture was stirred for 10 min in a sealed vial to render IrSH directly prior to titration into the colloid. TOF
MALDI-MS(+): 920.15 [M-Cl]+.

IrS•AuNP13 Zonyl7950 R© (MW ca. 500, 1 μl, 1.15 g ml-1) was added in a solution of 13 nm citrate gold
nanoparticles (1 ml, 9 nm nanoparticles, ζ potential at 2 nm in deionized water = -40 ± 5 mV, diameter = 13 ± 4 nm
[dynamic light scattering (DLS) number distribution], = 29 ± 12 nm [86%], 998 ± 624 nm [14%; DLS intensity
distribution]) to give fluorosurfactant coated nanoparticles (9 nm nanoparticles), with a final fluorosurfactant
concentration of approximately 1 ml. Isolated Z•AuNP13, by three rounds of centrifugation, decantation of
the supernatant and resuspension of the pellet have a ζ potential of -61 ± 4 mV (2 nm in deionized water)
and diameter of 20 ± 2 nm (DLS number distribution), and of 32 ± 15 nm (DLS intensity distribution). A
solution of IrSH (20 μl, 3.5 mM [made in situ, NH4OH(aq) 30% w/w:CH3CN (1:1) solution]) was added to the
fluorosurfactant/nanoparticle mixture (not isolated), and was stirred for 20 min. The particles were centrifuged
at 12,000 × g for 15 min and the supernatant was decanted from each pellet to remove unbound material.
The nanoparticles were resuspended in deionized water, and this was repeated twice to give IrS•AuNP13 UV-Vis
(H2O) λmax [nm] = 522 surface plasmon resonance (SPR). Diameter = 19 ± 5 nm (DLS number distribution),
= 340 ± 166 nm (60%), 33 ± 1 nm (38%), 4567 ± 844 nm (2%) (DLS intensity distribution), ζ potential =
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-35 ± 3 mV (isolated, 2 nm in deionized water diluent). Inductively coupled plasma optical emission spectroscopy
(ICP-OES) Au:Ir atomic ratio = 106:1.

IrS•AuNP100 Zonyl7950 R© (MW ca. 500, 1 μl, 1.15 g ml-1) was added to 1 ml of AuNP100 (ζ potential at
4 pM in deionized water diluents = -33 ± 3 mV) to give fluorosurfactant coated nanoparticles with a ζ potential
(4 pM in deionized water diluent) = -47 ± 3 mV. IrSH (15 μl, 3.4 mM) solution was added to the nanoparticles
and the solution was shaken and allowed to equilibrate at room temperature for 20 min. The coated particles
were centrifuged at 13,000 rpm for 90 s and resuspended in deionized water three-times to remove any unbound
material, to give IrS•AuNP100. UV-Vis (H2O) λmax [nm] = 568 (SPR). ζ Potential (4 pM in deionized water
diluent) = -33 ± 3 mV.

Nanoparticle characterization
The ζ potential and DLS measurements were performed using a Beckman-Coulter (High Wycombe, UK) DELSA
NanoC system. The ζ potentials are quoted as the average of six runs and the machine was calibrated with a
Malvern Instruments zeta potential transfer standard. DLS measurements are calculated by CONTIN analysis
of the scattered light intensity autocorrelation function. Nanoparticle Tracking Analysis was performed using a
Nanosight LM-10 (Nanosight, Salisbury, UK) system equipped with a 488 nm laser in scattering mode, using
the analysis of at least 2000 tracks. Transmission electron microscopy (TEM) was performed using a JEOL JEM-
1200EX electron microscope fitted with a Gatan camera by drying colloid onto Formvar R©-coated copper grids
(Agar Scientific, Stansted, UK). ICP-OES was performed on colloidal suspensions which were digested in ultrapure
aqua regia and then diluted ten-fold in deionized water, to gain gold and iridium concentrations at the University of
Warwick, using a Perkin-Elmer 5300DV ICP-OES system. PlasmaCal Calibration standards of 1000 ppm gold and
iridium (QMX Laboratories, Dunmow, UK) were diluted to determine linear calibration curves with R2 > 0.999
in all cases. For confocal microscopy imaging of the nanoparticles, the aqueous colloid was mixed with hydromount
nonfluorescing aqueous mounting media (national diagnostics), and mounted between a glass coverslip and a glass
microscope slide, and dried in the fridge for 24 h before imaging to set the particles into a rigid matrix.

Spectroscopic studies
Photophysical measurements and luminescence microscopy UV-Vis absorption spectroscopy measurements were
performed on a Varian Cary 5000 spectrometer and steady-state luminescence measurements were executed on
an Edinburgh Instruments FLS920 spectrometer. Quantum yield measurements were made on the spectrometer
using an integrating sphere. Emission lifetimes were measured with a 375 nm diode laser excitation source and the
time-correlated single-photon counting module of the FLS920, and were tail-fitted with the Edinburgh Instruments
F900 software. Epiluminescence images were acquired with the FLSP920 appended to an Olympus IX71 Inverted
Microscope and confocal laser scanning microscopy was performed using a Leica TCS SP2 confocal microscope
(Leica Microsystems, Milton Keynes, UK).

MTT assay
Cells were seeded in a 96-well plate at density of 8000 cells per well. Following incubation for 24 h at 37◦C in
5% CO2, removal of media and a phosphate-buffered saline (PBS) wash, particles or water in complete media
at the required concentrations were added for a further 24-h incubation. After 24-h treatment the cell media
was removed and cells washed twice with PBS, followed by incubation in complete cell media containing MTT
(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) at a concentration of 0.5 mg ml-1 (100 μl per
well). After 3-h incubation, the supernatant was discarded and DMSO (200 μl per well) added to dissolve the
resultant formazan crystals. Absorbance against a DMSO blank was immediately read in a microplate reader at
590 nm. Percentage cell viability was expressed relative to the untreated cells in complete media.

Isolation of RBC & preparation of defined percentage hematocrit suspensions
Venous blood from healthy individuals was added to citrate phosphate dextrose adenine solution (Sigma-Aldrich) in
sterile 15 ml round bottom polystyrene tubes (Sterilin, Appleton Woods, Birmingham, UK) at ratio of 9:1 following
informed consent and with approval from the University of Birmingham Local Ethical Review Committee. RBCs
were isolated by centrifugation (2500 rpm, 10 min) and washed twice with 10 ml PBS (3000 rpm, 10 min). RBC
pellets from 27 ml venous blood were pooled and centrifuged (3000 rpm, 5 min) to pack cells. The supernatant
was removed and the packed RBC diluted 1:1 with PBS. RBC concentration was determined using a Coulter

2728 Nanomedicine (Lond.) (2017) 12(22) future science group



Tailoring iridium luminescence & gold nanoparticle size for imaging of microvascular blood flow Research Article

Particle Count and Size Analyzer (Beckman Coulter). Hematocrit (% packed cell volume) of the RBC suspension
was also measured using the microhematocrit method in which RBC suspension was drawn into glass capillary
tubes under capillary action and one end of the tube sealed by melting the glass. The capillary tube was centrifuged
(15,000 × g, 5 min) to separate the RBC from the liquid phase and hematocrit was calculated by dividing the
length of the RBC column into the total length of the RBC suspension column. No corrections were made
for small volumes of solution trapped within the tightly packed RBC. A total of 2.5 ml suspensions of known
hematocrit were prepared by dilution with PBS. In order to allow tracking of RBC, the preparations were spiked
with 2.8 × 107 CellTracker GreenTM/5-Chloromethylfluorescein Diacetate (CMFDA; Molecular Probes, Life
Technologies, Paisley, UK)-labeled RBC per 2.5 ml RBC suspension. The number of labeled RBC added was
negligible compared with the total present (0.27–0.79%) and was kept constant, irrespective of the hematocrit, in
order that the frequency of labeled cells passing the field of view under flow conditions was uniform across test
conditions. To investigate effects of RBC aggregation on the dynamics of nanoparticles under flow conditions,
62.5% of the fluid phase was replaced with solutions of different molecular weight dextrans: 1.6% high molecular
weight 500 kDa dextran (Dextran500) to induce aggregation and 3.25% low-molecular-weight 40-kDa dextran
(Dextran40) as a viscosity control.

Fluorescent labeling of RBC
The 90 × 106 washed RBCs were suspended in 15 ml CMFDA (10 μm) diluted in nonsupplemented medium
M199 (Gibco, Invitrogen, Paisley, Scotland) and incubated (37◦C, 5% CO2) for 40 min. Cells were pelleted by
centrifugation (1500 rpm, 5 min) then resuspended in 15 ml medium M199 supplemented with 10% fetal calf
serum and incubated (37◦C, 5% CO2) for 40 min. Cells were pelleted by centrifugation (1500 rpm, 5 min),
washed in 15 ml PBS (1500 rpm, 5 min) and resuspended in 800 μl PBS. A total of 250 μl volumes were added
per 2.5 ml preparation of each percentage of RBC suspension (hematocrit) as a component of the total diluent
volume.

Flow imaging
Assays were performed using a flow system as described previously [34]. Briefly, prefabricated channel slides of
rectangular cross-section (μ-slide VI0.1 noncoated, Ibidi GmbH, Martinsried, Germany), channel dimensions
17 mm length (y-axis) x 1 mm width (x-axis) x 0.1 mm depth (z-axis), were pretreated with 4% bovine serum
albumin solution in PBS for 3 h, rinsed with PBS and mounted on the stage of an inverted microscope (Olympus
IX-71) fitted with an LUCPLFLN 40X objective lens, numerical aperture 0.6, field number 22 and a variable
focus collar with a working distance 2.7–4 mm. A solution of 2 pM nanoparticles in PBS buffer with 0–30% v/v
RBC was used to examine the effect of hematocrit, and perfusing the IrS•AuNP100/RBC suspensions through
a model vessel (cuboid microchannel) at a volumetric flow rate of 5 μl min-1 (equivalent to a wall shear rate of
50s-1). In order to facilitate independent tracking of the RBC for comparative purposes, the hematocrit was spiked
with <1% CMFDA-labeled RBC, and the two luminescence channels were separated by excitation wavelength:
IrS•AuNP100 were imaged with λexc = 355 nm, λem > 510 nm, and the labeled RBC were imaged with
λexc = 475 nm, λem > 510 nm.

The observation plane was located in the center of the channel with respect to the x-axis. Two image sets each
containing 500 16-bit images taken with 4 × 4 binning (128 × 128 pixels) were acquired at 64 frames per second
at each depth. The microscope was focused on the channel wall for the first image sequence (the channel wall was
identified by focusing on occasional nanoparticles that had become stuck on the wall), and then the focal point
was varied by increments of 5 μm through the z-axis and image sequences captured at each depth in the channel.
Image sets were converted to audio video interleave files for offline analysis of particle velocity.

Calculation of particle velocity from audio video interleave
Audio video interleaves were processed in the open source ImageJ64 software as 3D projections of the x-axis/y-
axis/time stacks, and were projected onto the x-axis. Background was subtracted from the images using a sliding
paraboloid with 1.0 pixel rolling ball radius. Flowing luminescent nanoparticles or stained RBC appeared as
diagonal tracks within the y-axis versus time projection. The angles of 20–30 track lines were measured manually
at each depth and the velocities of the particles, with respect to the flow axis (vy), were calculated. To avoid bias,
every line encountered on movement left to right across the y-axis versus time projection was measured.
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Tissue studies in mice
C57/Bl6 mice were obtained from Charles River (UK), and experiments conducted in accordance with the UK
Animals (Scientific Procedures) Act under Home Office license PPL 30/2789. Mice were anesthetized using
isoflurane (3%, balance oxygen) and pilot data gathered initially using intracardiac or tail-vein injections of 100–
500 μl sterile 80 pM nanoparticle samples suspended in PBS, thereafter carotid artery infusions were performed to
ensure homogeneous distribution of particles in organ perfusion. Animals were sacrificed at different times from
2-min to 1-h postinjection by cervical dislocation. Results reported for the 5- to 30-min postinjection as detailed
below for ICPMS studies. Tissues including the mesentery, lung and extensor halluces proprius skeletal muscle were
excised and immersed in 4% paraformaldehyde in PBS for 15 min, washed with 3× PBS, and mounted onto glass
coverslips with Vectashield (Vector Labs) mounting medium. Tissues were imaged within 5 h of euthanasia using
an inverted microscope (Olympus IX-71) fitted with an LUCPLFLN 40× objective lens, numerical aperture 0.6,
field number 22 and a variable focus collar with a working distance 2.7–4 mm. In addition, the following organ
samples were excised for digestion: lung, heart, spleen, gut, kidney, liver, brain, hindlimb muscle (gastrocnemius).
Results are reported from M2 to M3 which were 5 min and M5 was 30-min postinjection. Tissue was frozen
immediately postexcision, and then later defrosted for analysis. Glass vials were cleaned thoroughly with ultrapure
aqua regia (HCl:HNO3, 3:1, using ultrapure grade acids) before use. The organs were weighed, and then digested
in sealed vials in aqua regia (3 ml) and heated to 100◦C for 10 h. Samples were cooled and filtered (to remove and
insoluble material) into Falcon tubes, and diluted to 10 ml. The samples were then analyzed for gold concentration
by inductively coupled plasma mass spectrometry, performed on a 7500cx Agilent instrument. Gold concentrations
were determined using PlasmaCal Calibration standard (QMX laboratories) of gold with R2 >0.999 with linear
calibration curve in all cases.

Results & discussion
Preparation & characterization of IrS•AuNP
The iridium complex, IrSH was synthesized from the bis-cyclometallated μ-dichloro bridged complex, [Ir(ppy)2(μ-
Cl)]2 [32], and bipyridine ligand, bpyhex, following introduction of the thioacetal group [19]. Prior to addition to
the nanoparticles, the iridium complex IrSAc was fully characterized and its photophysical properties studied in
both aerated CH3CN and aerated water with 1% CH3CN, to emulate the solvent conditions within an aqueous
colloidal dispersion, while facilitating solubility. The IrSAc complex absorbs light in the UV-Vis with dominating
bands at 230 and 255 nm attributed to 1LC transitions and a weaker broad profile which extends from 300 to
450 nm characteristic of 1MLCT (metal to ligand charge transfer) transitions observed for the phenypyridine
cyclometallated complexes [35,36]. Excitation of IrSAc in both aerated CH3CN and aerated water with 1% CH3CN
solutions at 405 nm produced a signal with a peak maximum of 585 nm in acetonitrile and 570 nm in 1% CH3CN
in H2O (Figure 2). At low temperature, 77 K, the luminescence shifts of approximately 50 nm in the blue, which
is indicative of a charge-transfer excited state (Supplementary Information). The luminescence quantum yield of
aerated solution of IrSAc is increased in water to a value of 5% compared with 3% in CH3CN accompanied
by an increase of the lifetime (Figure 2). Addition of the Zonyl7950 R© surfactant, which is used subsequently in
the formation of gold nanoparticles, led to a further increase in the luminescence lifetime and an increase of the
quantum yield of the complex to 12%.

Water soluble gold nanoparticles, Au13NP and Au100NP, were prepared from seeds initially synthesized by the
citrate-reduction method [33], followed by a modified step-wise growth procedure, to give AuNP100 with an SPR
peak maximum at 566 nm in an agreement with previous studies [37]. The nanoparticles were then treated with
the fluorosurfactant, Zonyl7950 R©, in order to attach the iridium complex to the nanoparticles, without inducing
flocculation and subsequent aggregation of the particles by directly replacing the negatively charged citrate shell
with a cationic complex [19]. The IrSAc complex was treated with ammonium hydroxide to produce IrSH before
addition to nanoparticles. A change of the ζ potential from -33 ± 5 mV of the nonfunctionalized Au100NP to
-47 ± 3 mV was observed upon coating with the surfactant, followed by a further shift to -33 ± 3 mV upon
addition of a solution of freshly prepared IrSH. The shift of the Au13NP followed a similar trend from -40 ± 5
to -61 ± 4 and subsequently to -35 ± 5 mV. The change of the ζ potential to more positive numbers from the
Zonyl-coated particles is indicative of the change of nanoparticle surface environment coated with the positively
charged iridium metal center. The iridium-coated nanoparticles were isolated by centrifugation and dispersed in
deionized water. TEM images of IrS•AuNP100 (Figure 3) showed mostly spherical particles with a diameter of
100 ± 10 nm, the particle clusters were apparent due to the drying process of the solution on the grid. The particle
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Figure 2. Photophysical studies of the IrSAc molecular probe in solution. (A) UV-Vis absorption and luminescence
spectra (λexc = 405 nm) of 20 μm IrSAc in CH3CN (solid line) and in 1% CH3CN in H2O (blue hashed line); (B) Table of
the luminescence lifetime data for IrSAc.

size was also measured in solution by nanoparticle tracking analysis, which revealed a mean particle diameter of
80 nm and a modal diameter of 100 nm (Figure 3) and by DLS, with a hydrodynamic radius of 70 ± 20 nm in
the number distribution (Supplementary Information). Aggregation did not occur upon addition of IrSH to the
surfactant coated gold nanoparticles, as evidenced by the DLS, nanoparticle tracking analysis, TEM sizing of the
IrS•AuNP100 particles and the retention of the SPR position of the particles in the UV-Vis spectrum (Figure 3).
The SPR peak appears at 522 nm for IrS•AuNP13 and 568 nm for IrS•AuNP100, and even though the charge
transfer band of the iridium is masked by the nanoparticle SPR in the UVvis, it shows clearly at the excitation
spectrum. To evaluate if the brightness of the particles was sufficient for imaging, we mounted the nanoparticles
IrS•AuNP100 on a coverslip and performed confocal fluorescence imaging studies (λexc = 405 nm). Clear, bright
yellow spots of the nanoparticles were detected (Figure 3) characteristic of iridium luminescence. TEM images
of the IrS•AuNP13 nanoparticles also reveal spherical particles and sizing information by DLS is also obtained
(Supplementary Information).

ICP-OES gave an estimation of the metal ratio, iridium:gold, of the IrS•AuNP100 nanoparticles. Measurements
of the digested IrS•AuNP100 nanoparticles gave an elemental composition of about 2000 Au atoms per Ir atom,
which is approximately 23,000 iridium complexes per IrS•AuNP100 nanoparticle, based upon the estimation
that the 100 nm particles having 45.5 million gold atoms per nanoparticle, adapted from the previously reported
calculation [19]. This corresponds to a footprint area of approximately 12 Å × 12 Å, in agreement with the metal
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Figure 3. Characterization data and photophysical properties of iridium-coated nanoparticles. (A) Nanoparticle
tracking analysis of IrS•AuNP100, showing relative number distribution of size (?), with a mean size of 80 nm, and a
modal diameter of 100 nm. The cumulative number distribution is displayed (- - -). (B) Transmission electron
micrograph of IrS•AuNP100, with zoomed-in image (inset) (C) Excitation, λem = 550 nm (- - -) and emission spectra
λexc = 405 nm (?) of 10 pM IrS•AuNP100, inset UV-Vis absorption spectrum of IrS•AuNP100 10 pM. (D) Confocal
fluorescence image of IrS•AuNP100 mounted onto a coverslip with hydromount, λexc = 405 nm, λem = 500–800 nm.

complex size. For IrS•AuNP13 an atomic ratio of 106 Au atoms per Ir atom was found which corresponds to 940
iridium complexes per gold nanoparticle.

The isolated nanoparticles are emissive upon excitation at 405 nm, with a peak λmax at 570 nm, as observed
for the molecular complex in aqueous solution. A signature illustrating that the emission of the nanoparticles is
originated from the iridium metal center is given by the excitation spectrum (Figure 3C) as it displays the features
of the iridium-absorption spectrum. The quantum yields of luminescence of the IrS•AuNP13 and IrS•AuNP100
nanoparticles were found to be 14 and 19% respectively, compared with only 5% for the complex in a predominantly
aqueous environment. The increase of the quantum yield is attributed to the interaction of the molecular complex
with the Zonyl7950 R© fluorosurfactant. Independent examination of the quantum yield of the molecular complex
IrSH in the solution with excess of Zonyl7950 R©. showed an of the IrSH quantum yield to 12% which is a similar
increase observed for the coated 13 and 100 nm gold particles within the expected error of the quantum yield
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y

x 40 μm 40 μm

Figure 4. Luminescence imaging of iridium
nanoparticles and RBC in flow. Overlay of time frames of
selected consecutive luminescence images at 30 frames
per second of: (A) IrS•AuNP100 (left, λexc = 355 nm,
λem nm >510 nm) and (B) green-stained RBC
(λexc = 475 nm, λem nm > 510 nm) flowing in 10%
hematocrit at 12 μm channel depth, 5 μl min-1 flow rate.

measurement. The effect of the coating of the fluorinated surfactant on metal complexes at different distances from
the gold nanoparticle has been shown in a different study [38].

The luminescence lifetime of the IrS•AuNP100 aerated solution showed a biexponential decay fitted for 90 ns
(10%) and 400 ns (90%), significantly higher than the IrSAc complex in water and similar with that in the presence
of the surfactant. These results are in agreement with the quantum yield studies showing that the fluorosurfactant
not only facilitates stable colloid formation but also enhances the brightness of the particles. The luminescence
signal of the nanoparticles IrS•AuNP100 seems far less oxygen-sensitive that the IrSAc with a deaerated lifetime
of 85 ns (10%) and 420 ns (90%). This may be due to the inaccessibility of oxygen to the iridium luminescent
center due to the protection by the surfactant and is highly desirable for biological imaging applications for two
reasons: first, blood and biological tissue has significant triplet oxygen present, and quenching would reduce the
brightness of luminescent probes in situ; second, the quenching process of triplet O2 with a triplet excited state
usually produces singlet oxygen, which is highly reactive and has associated toxicity [39]. Finally, an MTT assay
showed that there was no statistically significant change (p > 0.05) in cell viability following treatment of cells
with any of the nanoparticles tested as assessed by one-way ANOVA and a post-hoc Tukey t-test (Supplementary
Information). These results are in agreement with previous studies of the Zonyl-coated nanoparticles [19].

Imaging of luminescent IrS•Au100NP in flows with red blood cells

To study the flow dynamic behavior of the IrS•AuNP100 particles and their potential as tracers to measure flow
dynamics in the microvasculature, we initially studied them in vitro in cuboid microchannels as model vessels.
Imaging studies of flows of the IrS•AuNP100 particles were evaluated against conventionally stained suspensions
(RBC) with CellTracker GreenTM CFMDA which has close emission to the iridium probe (Figure 4).

There were noticeable, visual differences between the appearances of the IrS•AuNP100 and the dye-labeled
RBC tracks (Figure 4) demonstrating the strong potential of the 100 nm gold nanoparticles for imaging flows
against stained RBC which are approximately 70-times larger. The nanoparticle tracking appeared as smaller, more
well-defined spots of luminescence signal with more variance in the x-direction. It has been shown that when
blood flows through vessels the flow fields enhance substance diffusion to a greater degree than simple Brownian
motion [40] and in vitro models of micron tracer particles within RBC suspensions have also shown significant radial
dispersions within the flow [41].

To determine the effects of depth of microchannel and hematocrit level, we studied suspensions of IrS•AuNP100
with stained-RBC (2 pM nanoparticles in PBS buffer) with varied hematocrit, 0–30% v/v RBC. Video sequences
of IrS•AuNP100 and stained-RBC were recorded at 64-frames per second, at varying depths into the channel,
and were tracked manually to gain velocity vy data (Figure 5). The IrS•AuNP100 and labeled RBC were tracked
sequentially at each depth from their emission (λem > 510 nm) by switching the excitation wavelength between
λexc = 355 nm for IrS•AuNP100 and λexc = 475 nm for the Green stained-RBC. For IrS•AuNP100 suspended
only in PBS buffer and in 0% hematocrit, the particles could be tracked throughout the whole channel, and the
expected parabolic flow profile was observed. A flow maximum of approximately 1100 μm s-1 was comparable to
the simple model maximum flow value of 1250 μm s-1, assuming a Poiseuille flow between infinitely wide parallel
plates (Figure 5A). This not only substantiated the suitability of the nanoparticles for determining flow rates but
also facilitated calibration of the starting depth for the image sequences by fitting the data with a second-order
polynomial and setting the turning-point as the center of the channel (i.e., channel depth of 50 μm).
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Figure 5. Velocity measurements of iridium nanoparticles in flow. (A) Schematic presentation with selected images
to illustrate the experiment. (B) Plot of measured vy of IrS•AuNP100 suspended in PBS buffer, 0% hematocrit, at
different depths up to 72 μm from the wall of a cuboidal channel (depth 100 μm) when perfused at rate 5 μl min-1, ()
data point, (—) median vy. IrS•AuNP100 were visualized by their luminescence (λem > 510 nm); (C) Median vy of
IrS•AuNP100 (white bars) and green-stained RBC (shaded bars) in varied hematocrit (from 0 to 30%) at depths up to
25 μm from the channel wall when perfused at 5 μl min-1 through a cuboidal channel (depth 100 μm). (D) Relative
velocity vy of IrS•AuNP100 to vy of RBC in varied hematocrit levels.
PBS: Phosphate-buffered saline; RBC: Red blood cell.

In our studies, luminescence microscopy imaging of the particles and the stained-RBC was possible up to a
depth of approximately 25 μm into the 10–30% hematocrit suspensions; beyond this, visualization was impaired
by the opacity of the blood suspension at the visible wavelengths used. It is blood flow within the narrow channels
of the vascular tree (from several tens of microns to as small as 8 μm diameter) that is the least understood. These
observations indicate that the IrS•AuNP100 would be suitable for imaging of such small channels. Videos of the
nanoparticles in flow at different hematocrit levels in microchannels can be found in Supplementary Information.

Due to the significant size difference between IrS•AuNP100 and RBC, we hypothesized that hematocrit might
affect the ability of nanoparticle tracers to follow the flow paths faithfully in the suspension. Indeed, blood rheology
can significantly affect the flow characteristics of smaller hematopoietic cells in vivo, such as margination of platelets
to the walls of blood vessels [42,43]. However, we observed that the hematocrit did not affect the velocity vy of
the particles at any of the depths studied, and normalization of the velocity of IrS•AuNP100 to the velocity of
RBC (Figure 5C) showed that the particles followed the flow speeds of the RBC in all cases. The presence of
fibrinogen and other macromolecules within blood often supports the assembly of RBC into tube-like aggregates,
known as ‘rouleaux’, at low shear rates, and plug-flow dynamics can arise, which tend to blunt the flow profile and
alter the degree of margination of certain species within particulate flow [44]. RBC aggregation can be artificially
manipulated in vitro using dextrans of different molecular weights [43]. In the studies above, RBC were suspended
in PBS and thus not undergoing aggregation. Therefore, in order to investigate whether aggregation conditions
may alter the velocity of the nanoparticles in flow, 30% hematocrit was prepared in 1% Dextran500 (aggregating)
and 2% Dextran40 (nonaggregating viscosity control), and IrS•AuNP100 and RBC were tracked up to a depth
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of 25 μm (Supplementary Information). RBC aggregation was verified by bright-field microscopy using a static
sample, but under flow conditions aggregation did not appear to alter the velocity, vy of either the IrS•AuNP100
or the RBC indicating that aggregation of plug flow does not affect the tracking efficiency of the nanoparticles. In
addition, the number of tracks seen near the wall (at a depth of 6 μm) over 500 frames was equivalent in both
dextrans, indicating that plug-flow induced margination was not observed. These results are noteworthy in terms
of the ability of nanoparticles to act as faithful flow tracers regardless of their position within the channel, perhaps
regardless of the architecture of the vasculature being examined. This may be significant for the study of blood
vasculature in vivo in the early diagnosis of such conditions as heart disease, ischemia, embolism, aneurysm and
stroke where abnormal changes inflow are indicative of the pathological state and, hence, prophylactic treatment
can be initiated. While these are mainly large vessel disorders, flow disturbance will be most marked near the
wall, and thus potentially open to visualization using nanoparticles. In addition, cell-vessel wall interactions during
thrombosis or inflammation, and in the formation of atherosclerotic plaques, could potentially be studied. Our
nanoparticles, therefore, present a unique opportunity to explore the microvasculature or disturbance of flow near
the wall of larger vessels, in terms of resolution and size, and when combined with their ability to track blood
flow faithfully under a range of blood rheologies, they represent a highly suitable tool for imaging. Furthermore,
it is important to be able to study the fate of nanoparticles introduced into the circulatory system. An important
criterion for tracers to study whole-body nanoparticle distributions is their detection by inexpensive methods; as
we have demonstrated here, our nanoparticles can be easily visualized both in blood and in tissues (vida infra) due
to their brightly luminescent iridium(III) complex coating.

Fate of luminescent IrS•Au100NP injected into mice
A solution of IrS•AuNP100 nanoparticles in PBS was injected into mice and excised tissue sections of the
lungs, mesentery and extensor hallucis proprius skeletal muscle were imaged upon wet mounting onto coverslips.
IrS•AuNP100 were observed by epiluminescence microscopy in all tissues (Figures 6 & 7).

An approximately 100 μm diameter blood vessel was located within the mesentery tissue. Under bright-field
microscopy, RBC filling the vessel and endothelial cells lining the vessel, were visible (Figure 6A) and spots of
luminescence detected at the emission range of the IrS•AuNP100 were clearly visible in the image (Figure 6B).
Characteristic skeletal muscle fibers were visible in the extensor hallucis proprius striated muscle under bright-field
microscopy (Figure 6C) and point-sources of luminescence indicative of the nanoparticles were observed under
epiluminescence detection. A signature of the origin of the luminescence is given by collection of the steady-state
luminescence spectra from the fields of view. They displayed the characteristic peak expected for IrS•AuNP100
(Figure 6D inset), which together with luminescence lifetimes (measured from image with a 375 nm laser at 550 nm
to be 86 ns (15%) and 320 ns (85%), confirmed that the nanoparticles had reached the small vessels within this
tissue. The nanoparticles were similarly detected in the tissue from the lung (Figure 7) showing clear detection of
the iridium signal.

To gain an understanding of the biodistribution of the nanoparticles we examined the gold content in organs
using inductively coupled plasma mass spectrometry. We report the analysis of the gold content of excised organs
in four different specimens (Figure 8).

Our studies showed zero background with negative controls (M6, saline injection), a dose-dependent effect with
injected particle number (a consistent M3 > M2 signal) and a longer circulation effect (M5) which also confirms
clearance from gut, kidney and brain. It is of interest that clearance of nanoparticles (unlike microparticles) may
be greater in the viscera (e.g., liver and spleen with sinusoidal, fenestrated endothelium) rather than the lung (with
continuous endothelium).

This accumulation is likely to reflect the normal clearance mechanisms for foreign bodies and hence accumulation
in lung and liver is to be expected. The NP biodistribution is more likely to be unperturbed by haemodynamics
(unlike e.g., microspheres where they may be streaming with arterial flow). Finally, the short circulate time is an
order of magnitude shorter than the latest time point, confirming that the results are as expected for these acute
studies.

Conclusion
We have shown that our approach using a fluorinated surfactant to coat gold nanoparticles led to luminescent iridium
nanoparticles as bright probes with an optical window of luminescence detectable in blood and are introduced as
attractive flow tracers in blood, giving measured particle velocities that are independent of the hematocrit, showing
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40 μm

40 μm

Figure 6. Optical imaging of iridium nanoparticles in excised tissues. Bright field (A & C) and luminescence images
([B & D] λexc = 405 nm, λem >510) of a small blood vessel in the mesentery (A & B), with the white arrow indicating
the endothelial cells lining the vessel (adipocytes are evident as spherical objects beneath the vasculature), and in the
skeletal muscle (C & D) of a mouse injected with IrS•AuNP100, with the black arrow indicating the striated muscle
fibers; blood vessels appear between fibers. The steady-state emission spectrum obtained from the field of view in
image d is shown (inset).

Figure 7. Transmission (A), epiluminescence (B) and overlay (C) of transmission and epiluminescence images (λexc = 405 nm, λem >510)
of blood capillaries in lung tissue of a mouse (sample M3) injected with IrS•AuNP100.
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Figure 8. Gold content in four specimen mice,
administered by carotid artery cannulation IrS•AuNP100
(80 pM, M2- 100 μl, M3 -200 μl 5-min postinjection), or
(80 pM, M5–500 μl 30-min postinjection). M6 is a control,
with a saline carotid artery cannulation injection.

no interaction with other parts of the media. Most importantly the size of the 100 nm nanoparticles, IrS•AuNP100,
is ideal for imaging for the nanoparticles as not only they track blood flow reliably but they can be detected using
conventional fluorescence microscopes with good resolution. The nanoparticles report on flow close to the vessel
walls, where disease such thrombosis, inflammation and plaque formation require detailed flow velocity analysis
but also can be studied in depths up to 25 μm in physiologically relevant hematocrit levels. The particles entered
blood circulation when injected in mice and they were detected within surgically-excised organs by luminescence
imaging. The 100 nm nanoparticles were clearly detected in the vasculature in small vessels with the characteristic
iridium signal, which is away from any auto-fluorescence or scattering, representing their potential for in vivo
imaging and tracking. Interestingly, they show good clearance from blood by liver and spleen 5-min postinjection
in low nanoparticle loading, although further studies may provide more detail about clearance pathways. Our
approach provides a paradigm of nanoparticle development which has potential to in vivo imaging using near-infra
red emitting probes. Studies of blood flow dynamics using nanoparticles will not only improve our understanding
of the circulatory system function but can also enable new levels of analysis in blood flow studies in in vivo disease
models.
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Summary points

� Gold nanoparticles, 13 and 100 nm, are coated with a luminescent surface active iridium metal complex to yield
IrS•AuNP13 and IrS•AuNP100, respectively.

� The nanoparticles display yellow-green luminescence, with a peak centered at 570 nm and exhibit enhanced
quantum yields compared with the molecular complex and lifetimes up to 420 ns.

� It is estimated by inductively coupled plasma optical emission spectroscopy that about 23,000 iridium complexes
are attached per IrS•AuNP100 nanoparticle.

� Analysis of nanoparticle velocities in narrow channels shows that they are independent of hematocrit level.
� The IrS•AuNP100 nanoparticles report on flow at the vessel walls, and can be studied down to depth of 25 μm in

the channel.
� Injection of the nanoparticles into mice shows that the nanoparticles enter blood circulation.
� Luminescence imaging reveals nanoparticles in vessels in lungs, mesentery and the skeletal muscle. Spectral

collection of the images shows the characteristic iridium luminescence profile and lifetime.
� The nanoparticles show good clearance from organs based on inductively coupled plasma–massspectrometry

analysis of tissues.
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