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ARTICLE

Complex three-dimensional self-assembly in
proxies for atmospheric aerosols
C. Pfrang 1, K. Rastogi1, E.R. Cabrera-Martinez1, A.M. Seddon2,3, C. Dicko4, A. Labrador5, T.S. Plivelic 5,

N. Cowieson6 & A.M. Squires1,7

Aerosols are significant to the Earth’s climate, with nearly all atmospheric aerosols containing

organic compounds that often contain both hydrophilic and hydrophobic parts. However, the

nature of how these compounds are arranged within an aerosol droplet remains unknown.

Here we demonstrate that fatty acids in proxies for atmospheric aerosols self-assemble into

highly ordered three-dimensional nanostructures that may have implications for envir-

onmentally important processes. Acoustically trapped droplets of oleic acid/sodium oleate

mixtures in sodium chloride solution are analysed by simultaneous synchrotron small-angle

X-ray scattering and Raman spectroscopy in a controlled gas-phase environment. We

demonstrate that the droplets contained crystal-like lyotropic phases including hexagonal and

cubic close-packed arrangements of spherical and cylindrical micelles, and stacks of bilayers,

whose structures responded to atmospherically relevant humidity changes and chemical

reactions. Further experiments show that self-assembly reduces the rate of the reaction of

the fatty acid with ozone, and that lyotropic-phase formation also occurs in more complex

mixtures more closely resembling compositions of atmospheric aerosols. We suggest that

lyotropic-phase formation likely occurs in the atmosphere, with potential implications for

radiative forcing, residence times and other aerosol characteristics.
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Aerosols are key components of the climate system1–3.
Nearly all atmospheric aerosols contain organic com-
pounds that are often surface active, in particular fatty

acids. These include oleic acid found as the main component of
cooking4 and marine5, 6 aerosols. While cooking emissions are
not yet included in European emission inventories, they have
recently been estimated to contribute nearly 10% to the UK
national total anthropogenic emissions of small particulate matter
(PM2.5) averaging 320 mg per person per day based on mea-
surements at two sites in London7. From research on industrial
surfactants8, in contexts unrelated to atmospheric sciences, it is
known that related surfactants self-assemble into a range of 3D
aggregate structures referred to as lyotropic liquid-crystalline
phases. While a number of studies have investigated properties
and lifetimes of 2D self-assembled films at air–water and air–solid
interfaces9–14, there has been very little discussion on 3D phases
in atmospheric literature. Tabazadeh15 has suggested in a non-
experimental paper that the presence of micelles may impact a
number of important aerosol properties, potentially affecting
cloud nucleation, light scattering and lifetimes of organic com-
ponents in the atmosphere. Here we demonstrate that much more
complex 3D self-assembly occurs in proxies for atmospheric
aerosols. Many of these 3D structures are strongly anisotropic
and are known to significantly affect optical properties, diffusion,
viscosity, surface tension and water uptake; and therefore, in an
atmospheric context, may have a much more dramatic impact on
the atmospheric properties, as compared with micellar solutions
discussed by Tabazadeh (see Fig. 1).

A recent review outlines the importance of the reactivity of
bioaerosols (including fatty acids such as oleic acid) with the key
initiators of atmospheric oxidation: hydroxyl radicals (OH),
nitrate radicals (NO3) and ozone (O3)16. While atmospheric
lifetimes of volatile compounds are determined by chemical
kinetics17, 18, mass transport parameters are key additional factors
for organic aerosol components19–21. Tabazadeh suggests that
micelles may remove hydrophobic organic matter from the sur-
face and solubilise volatile organic material15. However, impor-
tant mass transport properties, such as diffusion and viscosity,
were not discussed; these will be greatly affected by complex 3D
self-assembled phases other than micellar solutions. So far, these
transport properties have been discussed in the context of gel-like,
semisolid and solid aerosol components previously considered to
be amorphous19. Here we argue that in some cases, this viscous

behaviour may arise from highly ordered 3D self-assembly of
surface-active species; or, at any rate, that viscosity and diffusion
cannot be fully understood without knowledge of self-assembly in
aerosol particles. In particular, complex 3D self-assembly may
provide a mechanism for slowing down the rate of certain reac-
tions involving the organic surfactant molecules themselves,
potentially accounting for an unresolved discrepancy whereby
their measured lifetimes in the atmosphere are much longer than
those predicted from chemical kinetics13, 14, 22, 23. A key question
is whether these ageing droplets will adopt a core–shell structure
with a layer of oxidised material hindering transport of the gas-
phase oxidants into the droplet core.20, 24, 25 An alternative—yet
unexplored—explanation could be that self-assembly slows down
oxidative decay throughout the droplet. Recent research by
Bateman et al. found that organic aerosols are predominantly in
the liquid state over the humid Amazon26, although the effect of
urban emissions (such as fatty acids) on the organic phase in their
study was inconclusive27. In rebound measurements used in field
studies, materials may appear liquid due to high-dissipation
energies26 while exhibiting high viscosities and slow transport
properties typically associated with solids. Specifically, 3D self-
assembled organic phases are known to show such complex vis-
coelastic behaviour28. In spite of the potential impact of micelle
and other lyotropic-phase formation on aerosol properties, this
aspect has not been explored experimentally to our knowledge.

Small-angle X-ray scattering (SAXS) is a powerful technique to
give detailed structural information on such aggregates on the
nanometre scale. To this end, we have recently developed an
experimental tool29 for the study of nanomaterial self-assembly in
levitated droplets where the droplets are surrounded by a gaseous
environment of controlled composition. The relative humidity
can be varied, and additional gaseous species can be added.

For the work presented here, we introduce the reactive species
ozone, and also interface our instrument with a Raman spectro-
meter using a fibre-optic probe. This new setup allows us to study
the changes in water content and chemical reactions in the self-
assembled levitated droplets by Raman spectroscopy while
simultaneously following the structural changes by synchrotron
X-ray scattering in a contactless sample environment. The
experimental setup is illustrated in Fig. 2. For the present
research, we investigate the physical and chemical transformation
of an atmospheric aerosol proxy representative of surfactant
molecules found in sea spray5, 6 and cooking4 emissions: levitated

Expected condition-
dependent phase
transformation

Inverse micelle
LII

Close-packed inverse micelles Inverse hexagonal phase
HII

Lamellar phase*
Lα

Micelle
LI

= Surfactant
molecule2 nm

(a) Fd3m (b) P63/mmc

Water Water

Increase in temperature, surfactant unsaturation,
length of hydrophobic tail; addition of hydrocarbons

Highly viscous;
restricted water mobility

Viscous; opaque;
diffusion strongly direction-dependent

Increase in relative humidity, headgroup
charge, pH; addition of humectants

Fig. 1 Complex 3D self-assembly of surfactant molecules in proxies for atmospheric aerosols. Lyotropic phases formed; impact on key properties of
atmospheric aerosols (highlighted in red); and proposed condition-dependent phase changes (yellow). All depicted phases were observed in our
experiments on levitated aerosol droplets. *The lamellar phase can exist over a much wider range of relative humidities than the other phases,
accommodating variations in water content by changing the spacing between the surfactant bilayers
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droplets of an oleic acid/sodium oleate mixture in brine (aqueous
NaCl solution). In order to simulate atmospheric droplet ageing,
we study two atmospherically relevant transformations of the
levitated aerosol droplets; in response to (i) changes in relative
humidity, and (ii) exposure to the gas-phase oxidant ozone.

Results
Dehumidification experiments. We performed a number of
dehumidification experiments in each case starting with 3%
surfactant in 97% brine, representing a high initial liquid water
content. At this composition, the system forms the inverse hex-
agonal (HII) phase, an array of cylindrical water channels sur-
rounded by curved surfactant monolayers (‘inverse cylindrical
micelles’) as shown in Figs. 1 and 3a. Such a phase has been
observed in sodium oleate/oleic acid in excess water30 and is
demonstrated by the SAXS peaks in a characteristic ratio of 1/d=
1:√3:231 where d is the spacing between adjacent lattice planes.

By controlling the relative humidity surrounding the droplet,
we can effectively change the water content of the levitated
droplet in equilibrium with this vapour, and therefore the
lyotropic-phase adopted, thereby resulting in phase transitions
that can be monitored in real time using time-resolved SAXS.

An example of such a phase transition is illustrated in Fig. 3,
which shows the time evolution of the levitated droplet shortly
after injection in an atmosphere of 95% RH, which gradually
decreased to 80% RH. The chemical potential of water in the
vapour is lower than that in the 1 wt% NaCl solution according to

Raoult’s law (mole fraction xwater= 0.994), causing the droplet to
dehydrate, as illustrated in the Raman spectra by the rapid
decrease in the size of the H2O peak at ~3070–3700 cm−1

(Fig. 3b). This dehydration induces the structural transformation
shown in the SAXS data (Fig. 3a). In this case, the dehydration
caused a transformation from the HII phase into a set of peaks
that index to P63/mmc symmetry, consistent with a hexagonal
close-packed array of spherical micelles32.

The formation of such a structure from inverse micelles has
been reported previously only once: in precise bulk mixtures of
biological lipids such as dioleoylphosphatidylcholine, dioleoylgly-
cerol and cholesterol33. The assignment of the X-ray reflections is
shown in Supplementary Note 1.

On repeated runs with different droplets, an interesting range
of different phases was observed (Supplementary Note 1). In
more than one case, the HII phase transformed into the P63/mmc
close-packed hexagonal micellar phase; in other runs, it
transformed into a related close-packed inverse micellar phase,

5

In
 (

in
te

ns
ity

/a
rb

. u
ni

t)

In
te

ns
ity

/a
rb

. u
ni

t

4

3

0.01

b

a

0.02

01
0

01
1

01
2

11
0

01
3

11
2

20
011

0

10
0

1/d (Å–1)

0.03

t = –71 s
t = 413 s
t = 1427 s
t = 1652 s
t = 1914 s

Raman shift/cm
–1

t = 2214 s
t = 2395 s

3800

3700

3600

3500

3400

3300

3200

3100

3000

2900

2800

Tim
e

0.04
0.05 2500

2000

1500 t /s

1000

500

0

Fig. 3 Dehumidification experiment. a Time-resolved 1D SAXS data
showing the phase transition from HII to P63/mmc under humidity steadily
decreasing from ~95% down to 80% RH for an acoustically levitated
droplet of 1:1 oleic acid/sodium oleate initially at 3 wt% in 1 wt% NaCl
solution; the droplet was injected at t= −660 s (SAXS data were collected
in 35-s intervals; t= 0 s corresponds to the start of SAXS data acquisition);
b Raman spectra obtained simultaneously illustrate the reduction of the
broad H2O peak (~3070–3700 cm−1; spectra are normalised to CH band at
~2850–3000 cm−1; a 2D version of this figure is presented as
Supplementary Fig. 3c)
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Fig. 2 Experimental setup. a Schematic diagram of the simultaneous
Raman/acoustic levitation system contained in a flow-through
environmental chamber; b photograph of the online setup at MAX IV
Laboratory with Raman probe (laser off) and levitated 80-μm droplet (inlay
shows the microscopic image of a 80-μm droplet of our sample in the same
levitator); c photograph of offline setup with 532-nm laser exciting Raman
transitions in a large levitated droplet. Droplet locations in the photographs
are highlighted by white arrows
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with face-centred cubic (Fd3m) rather than hexagonal symmetry
(cartoon shown in Fig. 1; SAXS pattern and X-ray reflection
assignment in Supplementary Note 1). Such a phase has been
observed in the bulk in some lipid and surfactant systems
including sodium oleate/oleic acid30. The two close-packed
micellar phases are likely to be close in energy, and we suggest
that the differences reflect possible pathway-dependent meta-
stability, as variations in droplet dimensions lead to differences in
timescales of dehydration and structural transformation. How-
ever, we cannot rule out small differences in humidity at the
droplet itself beyond the precision of our experiment. At a lower
relative humidity, the HII phase transformed into a lamellar phase
shown by peak positions in the ratio 1:2. Finally, in certain long-
duration experiments, the sample transformed into a disordered
inverse micellar phase characterised by a single broad X-ray peak
(Supplementary Note 1).

In summary, the dehydration experiments led to surprisingly
complex 3D self-assembly of our atmospheric aerosol proxy in a
wide range of atmospherically relevant RH conditions.

Ozonolysis experiments. Our second set of experiments inves-
tigated atmospheric ageing by inducing chemical changes in our
aerosol proxy while observing the impact on the complex 3D self-
assembly. Ozonolysis of oleic acid has been shown to attack the
double bond half way along the hydrocarbon backbone, breaking
the 18-carbon chain in a complex mechanism involving Criegee
intermediates to produce shorter chains, with the major products
being nonanal, nonanoic acid, 9-oxo-nonanoic acid and azaleic
acid12, 34. We found that this ozonolysis led to extensive changes
in the SAXS data, suggesting a loss in order in the system, as
illustrated in Fig. 4a. In some cases, the complex-ordered 3D
phase (HII, lamellar, Fd3m or P63/mmc close-packed micellar)
was converted into a micellar solution characterised by a single
broad SAXS peak (Supplementary Note 2); in other cases, all
SAXS peaks disappeared, to be replaced by a featureless decay in
intensity with scattering angle (e.g., Fig. 4a). Note that this dis-
appearance of SAXS peaks is due to a loss of ordering, rather than
the disappearance of the material itself; Raman peaks confirmed
the presence of the carbon–hydrogen (CH) vibrations after ozo-
nolysis. Some of the oxidative products, such as the shorter 9-
carbon di-carboxylic acids, are much more water soluble than the
original 18-carbon fatty acid molecules, and so they may dissolve
in water rather than self-assemble; while others, such as nonanal,
are more volatile and so are likely to evaporate.

During ozonolysis, we observed by simultaneous Raman
spectroscopy in addition to the expected reduction of the
double-bond peak at 1650 cm−1 (see Fig. 4b) accompanying
uptake of water (see Supplementary Fig. 3b in Supplementary
Note 3); the final spectrum in Fig. 4b confirms quantitative
removal of the reactive site (C=C double bond) and formation of
nonanoic acid in the levitated droplet (see also Supplementary
Fig. 3a for a small, but characteristic change in CH band shape
and disappearance of a small peak at ~3020 cm−1 consistent with
nonanoic acid formation). The uptake of water is consistent with
a size increase found in micron-sized water droplets covered in
oleic acid35 and with reports of ozonolysed oleic acid being
slightly hygroscopic since reaction products are hydrophilic36. Al-
Kindi et al.37 recently reported some size dependence of the
ozonolysis of pure oleic acid droplets, suggesting that large
particles exhibit hydrophobicity when exposed to similar ozone
concentrations; our experiments with larger particles show the
formation of expected first-generation reaction products37

(nonanoic acid was confirmed to be formed and to remain in
the droplet; see Supplementary Fig. 3a in Supplementary Note 3);
we found clear evidence of initial water uptake during ozonolysis

(see Supplementary Fig. 2b) while subsequent loss of water of the
aged aerosol proxy is consistent with Al-Kindi et al.’s recent
findings.

Impact of self-assembly on the rate of oxidation. The complex
3D self-assembly in our samples appears to affect the behaviour
during ozonolysis compared with pure oleic acid droplets, a trend
that has been confirmed in offline work with the same fatty acid
mixture: Fig. 5 illustrates the substantially different kinetic
behaviour comparing pure oleic acid with our self-assembled fatty
acid/sodium oleate/brine sample. Further studies on a range of
droplet sizes (~80–200 μm in diameter) and ozone-mixing ratios
(~28–40 ppm) reproducibly confirmed this delayed reactive decay
of the self-assembled mixture (data not shown).

In summary, we have demonstrated that levitated droplets of
an atmospheric aerosol proxy spontaneously form complex 3D
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Fig. 4 Ozonolysis experiment. a Time-resolved 1D SAXS data showing the
disappearance of the P63/mmc phase following exposure to ozone from t
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sodium oleate initially at 3 wt% in 1 wt% NaCl solution (SAXS data were
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acquisition); b accompanying Raman spectra illustrating the clear reduction
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deformation band at ~1442 cm−1; a 2D version of this figure is presented as
Supplementary Fig. 3d); formation of nonanoic acid in the droplet was
confirmed: the final Raman spectrum at t= 5220 s shows—in addition to
the absence of the C=C band illustrated here—a characteristic change in
CH band shape (as shown in Supplementary Fig. 3a in Supplementary
Note 3)
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self-assembled phases, and change their self-assembly when
exposed to different relative humidities or to ozone. We have
further shown that this self-assembly itself affects the kinetics of a
chemical reaction. The atmospheric implications of these findings
are discussed below.

Potential atmospheric implications. The complex 3D nanos-
tructures formed surprisingly readily in our proxy of atmospheric
aerosols have physical properties that differ in a number of
fundamental ways from the micellar solutions proposed else-
where in discussions in the atmospheric literature15. For example,
although the presence of micelles in micron-sized atmospheric
particles may not significantly affect their light scattering15, dif-
ferent effects may be observed from structures such as the
lamellar or hexagonal phases that we identified, as they are
optically anisotropic. In bulk, this causes the samples to be opa-
que, scattering light much more strongly38, although we should
exercise caution here on extrapolating across different length
scales: in bulk samples, the scattering arises from disclinations at
domain boundaries; the optical properties of 10–100-nm parti-
cles, each likely to be a single domain with randomly oriented
optical anisotropy, are hard to predict. Similarly, while quoted
diffusion coefficients in micelles (7 × 10−11 m2 s−1)39, 40 are an
order of magnitude lower than values for individual surfactant
molecules in solution41 or in liquid hydrocarbon molecules of
comparable size42 (in both cases ~5 × 10−10 m2 s−1), in lamellar
and hexagonal phases, diffusion becomes anisotropic; in the
lamellar phase, for example, measured lateral diffusion coeffi-
cients within the plane of the bilayer sheet are in the range of 5 ×
10−12 m2 s−1 to 3 × 10−11 m2 s−1 42, 43, while diffusion in the
orthogonal direction is orders of magnitude slower42. In close-
packed micellar structures, where the micelles cannot themselves
diffuse, surfactant diffusion is still further hindered; the diffusion
coefficient in a cubic close-packed Fd3m phase, similar to the one
we report here, was 3 × 10−13 m2 s−1 42. Complex 3D self-
assembly can therefore produce a 1000-fold reduction in
diffusion.

Finally, the complex self-assembly greatly affects viscoelastic
behaviour. Liquid-like particulate matter has been defined as

having viscosity η< 102 Pa s26. Studies of different lyotropic phases
have shown complex frequency-dependent viscoelastic beha-
viour;28, 44 for comparison, we can use their values of storage
and loss modulus (G′ and G″, respectively) obtained from
oscillatory shear at angular velocity ω= 1 s−1 to estimate a
comparable viscosity value from the size of the complex viscosity
obtained through the relationship η= |η*(ω)| =√(G′2 +G″2) × ω
−1 45. This gives values of ~102 Pa s for the lamellar Lα phase, 104

Pa s for the inverse hexagonal HII phase28 and 105 Pa s for a close-
packed inverse micellar Fd3m phase, thereby falling in the
semisolid range26, 46.

The effects on diffusion and viscosity have implications for
rates of reactions, as we argue below. In addition, rebound
measurements employed in key field studies of atmospheric
aerosols19, 26 have been used as a method to report on the solid/
liquid nature of aerosol particles—a matter of some current
controversy19, 26, 27. However, the reported results will depend on
the interplay between storage (elastic) and loss (viscous)
components of the complex modulus, which themselves depend
on timescale and deformation amplitude for lyotropic phases47.
Rebound measurements and their interpretation in terms of
phase behaviour of atmospheric aerosols should therefore be
reconsidered in light of this, given the key importance of the
particle phase state for atmospheric secondary organic aerosols in
particular48.

Self-assembly of fatty acids into complex lyotropic phases can
therefore dramatically affect a range of physical properties. These
in turn are likely to have atmospheric implications. We consider
two areas in particular: cloud nucleation, and lifetimes of organic
species.

The thermodynamic factors describing water uptake, droplet
growth and cloud nucleation depend on two competing terms:
the ‘Kelvin effect’ arising from surface tension, and the ‘Raoult
effect’ from the chemical potential of water within the droplet,
mainly influenced by dissolved solutes49, 50. Both of these terms
will be affected by self-assembly of organic materials to form
lyotropic phases within the droplet, through mechanisms whose
theory is well understood: (a) surface tension decreases on
increasing free surfactant concentration in solution, and decreases
much more slowly when self-assembly occurs, limiting the ability
to reduce surface tension below ~10 dyne cm−1 (10 mNm−1)15;
and (b) lyotropic-phase formation introduces further terms to
water chemical potential, producing an effect on water uptake
equivalent to the dissolved solute in the Raoult term: we have
shown how the chemical potential effect can be quantified in our
previous experimental and theoretical work on related lyotropic
phases formed by biological surfactant molecules; for example,
lamellar-phase formation has an effect on water chemical
potential of approx. −130 J mol−1. To put this in perspective, this
is equivalent to the effect of a relative humidity of 95%51, or a
sodium chloride solution of concentration 8 wt%.

Complex 3D self-assembly is likely to affect mass transport
inside aerosol droplets both due to a reduction in diffusion, and
due to increased viscosity which itself decreases both diffusion
and convection. These in turn cause a reduction in the rates of
chemical reactions. Figure 5 illustrates that our self-assembled
mixture shows substantially delayed oxidative degradation
compared to the liquid fatty acid: more than 80% of self-
assembled reactant remains over the timescale of the experiment,
even at ozone levels far above atmospheric concentrations, in
stark contrast to pure oleic acid that is readily oxidised losing its
unsaturated character with less than 20% of reactant remaining.
Atmospheric lifetimes of oleic acid would thus be substantially
extended, and it is likely that this is true for many other molecules
incorporated into such a complex 3D self-assembled matrix
within aerosol particles. This has implications for transport
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distances of pollutants and offers an alternative explanation for
atmospheric residence times that are found to be much longer
than those obtained from kinetic experiments of the individual
reactive species13, 20, 21.

In the following paragraphs, we discuss the reasons why we
believe that this complex 3D self-assembly could occur in real
atmospheric aerosols: first, we consider the relative abundance of
fatty acids in atmospheric material together with the impact of
other major components of atmospheric aerosols on the complex
self-assembly; finally, we discuss how the different size scales found
in atmospheric aerosols may impact on a complex self-assembly.

Fatty acids represent a significant proportion of marine (up to
15 ng m−3)6 and urban aerosol; cooking organic aerosol emissions
was recently estimated to be surprisingly high at 7400 tons per
year, thus corresponding to nearly 10% of the total man-made
PM2.5 in the United Kingdom based on measurements in
London7. Nevertheless, atmospheric aerosol composition is far
more complex. We have carried out experiments on more
complex mixtures, introducing other representative components
of atmospheric aerosols: first sugar (fructose) and then hydro-
carbon (hexadecane). Two mixtures were prepared: fatty acid/
sugar (sodium oleate:oleic acid: fructose ratio 1:1:1.8) and fatty
acid/sugar/hydrocarbon (sodium oleate:oleic acid:fructose:hexa-
decane ratio 1:1:1.8:0.6). The fatty acid/sugar/hydrocarbon ratios
were chosen according to ratios found by Wang et al. in field
studies of real atmospheric aerosols in the Chinese city of
Chongqing in winter, where the three main classes of organic
components were fatty acids, sugars and alkanes (3244, 2799 and
948 ng m−3, respectively)52. For experimental ease, the mixtures
were analysed not as levitated droplets but as dry coatings on the
inside of X-ray capillary tubes, which were exposed to high and
low relative humidities (see ‘Methods’ section). As demonstrated
in Fig. 6, both the sodium oleate/oleic acid/fructose and the
sodium oleate/oleic acid/fructose/hexadecane systems showed
complex 3D self-assembly. SAXS patterns from the sodium
oleate/oleic acid/sugar system on humidification clearly show
three Bragg peaks from the inverse hexagonal (HII) phase, with
further peaks indicating additional coexisting phases. On drying,
the structure changes, but different Bragg peaks are nonetheless
observed. The sodium oleate/oleic acid/sugar/hydrocarbon mix-
ture showed a different self-assembly. While it was not possible to
assign the peaks to a particular symmetry phase—indeed, more
than one phase may be present—the presence of multiple peaks
shows the existence of periodic ordering on the nanometre-length
scale, while the reversible responses to humidity changes show
lyotropic-phase formation.

The presence of other molecules is likely to impact the self-
assembly reported here, but, we expect that fatty acid self-
assembly still occurs in their presence as discussed below.
Uncharged water soluble components (such as glycerol and
simple sugars)6 have been shown to dissolve in the aqueous
region (labelled ‘water’ in Fig. 1) of the self-assembled structure,
acting as a humectant51, 53 and allowing the self-assembly to
occur at lower relative humidities. Charged water soluble
inorganic components will have the same effect, but in addition,
by changing ionic strength and head group charge, will shift the
phase boundaries between different self-assembled structures54.
Other surfactants abundant in atmospheric aerosols such as fatty
alcohols6 will, depending on the similarity of the molecular
structure, either mix with the fatty acid molecules and affect the
self-assembled structure, or else self-assemble independently,
likely in similar 3D structures55. Hydrophobic aerosol compo-
nents will partition into the non-aqueous regions of the self-
assembled phases (see surfactant tail regions in the phases
displayed in Fig. 1) promoting the formation of inverse (‘water-
in-oil’) phases (i.e., moving left in Fig. 1)31.

Atmospheric aerosols exist in a wide range of sizes with most
particles accumulating in the 0.1–2.5-μm range. In the present
study, we investigated levitated particles with radii ranging from
30 μm to 1 mm with all droplets exhibiting complex 3D self-
assembly. For thermodynamically equilibrated phases, no sub-
stantial size dependence is expected; Richardson et al.56 reported
no significant size dependence on the self-assembled structure of
related lyotropic phases in surfactant films ranging from 0.5 to
1.5-μm thickness exposed to relative humidities of 36–90%; these
phases could also be reproducibly obtained in repeated hydration/
dehydration cycles demonstrating that they are thermodynami-
cally stable. The same phases with identical nanostructure
dimensions were also found by us29 in large levitated droplets
of up to 2-mm diameter, confirming consistent self-assembly
from 500-nm films to 2-mm droplets, i.e., covering the key size
range for atmospheric particles. If some of the phases identified in
our atmospheric aerosol proxy were not thermodynamically
stable states, the exact phase observed at a given point in the
experiment would depend on timescales and therefore droplet
size, but complex self-assembly would still be expected to occur.

In summary, we have demonstrated that proxies for an ageing
atmospheric aerosol form surprisingly complex 3D self-assembled
lyotropic phases. These phases will substantially alter the optical
and transport properties of these droplets. While real atmospheric
aerosol contains a far more complex mixture of organic and
inorganic components, our study provides evidence that the
formation of complex 3D self-assembled phases could occur in
atmospheric aerosols with a potential impact on key aerosol
properties.

This insight was made possible by our experimental setup
allowing droplets containing self-assembled atmospheric
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Fig. 6 SAXS of more complex atmospheric aerosol proxies. a Fatty acid/
sugar (sodium oleate:oleic acid:fructose ratio 1:1:1.8) and b fatty acid/
sugar/hydrocarbon (sodium oleate:oleic acid:fructose:hexadecane ratio
1:1:1.8:0.6) mixtures based on aerosol compositions found in the Chinese
city Chongqing in winter52. In each experiment, SAXS data were obtained
from capillary coatings first in a humidified environment (N2, relative
humidity, RH, >90%), that was then dried (N2, RH <20%) and finally re-
humidified (N2, RH >90%). The SAXS patterns are shown in sequence
from top to bottom in each case
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surfactant molecules to be acoustically levitated, and analysed
simultaneously using SAXS and Raman spectroscopy in a
contactless sample environment.

Methods
Raman acoustic levitation with simultaneous SAXS. The atmospherically rele-
vant amphiphile system investigated in this study was a mixture of the surfactants
oleic acid ((Z)-octadec-9-enoic acid) and sodium oleate (sodium (Z)-octadec-9-
enoate; 1:1 weight ratio, in a 3% w/w solution of 1 wt% aqueous NaCl solution) that
formed the inverse topology hexagonal phase in bulk. This sodium oleate/oleic
acid/brine system was a liquid of sufficiently low viscosity that it could be injected
directly into the acoustic levitator. Oleic acid and sodium oleate were purchased
from Sigma-Aldrich (UK) and used as received. Our experimental setup is based on
a modified commercial levitator (tec5, Oberursel, Germany) with a fixed transducer
frequency of 100 kHz and a variable HF power of 0.65–5W. A concave reflector
was mounted on a micrometre screw for adjustment of the reflector–transducer
distance. The distance between the transducer front face and the reflector was set to
~26 mm with a maximum distance variation of ±6 mm. The levitator was enclosed
in a custom-built flow-through Pyrex environmental chamber fitted with X-ray-
transparent windows and access ports for relative humidity and temperature
measurements, as well as gas supply and removal. A Raman probe (i-Raman, B&W
Tek) was inserted into the chamber and the 532-nm laser was focused onto the
levitated droplet (working distance ~15 mm). The fibre delivered up to 40 mW to
the tip of the probe (source output: 495 mW). This chamber was placed in the
sample area of beamline I911–4 at MAX IV Laboratory57 and we controlled the
gas-phase environment surrounding the ultrasonically levitated droplets. Samples
were acoustically trapped in the portable ultrasonic levitator developed in-house, as
shown schematically and as photographs in Fig. 2a–c. The desired relative
humidity, RH, was achieved by controlling the ratios of flows of dry and H2O-
saturated O2 from a gas cylinder. Ozone, O3, was generated at ppm levels (~20–50
ppm) by photolysis of O2 using a commercial pen-ray ozoniser (Ultra-Violet
Products Ltd, Cambridge, UK) in a flow of O2. These ozone concentrations were
chosen to be able to observe an oxidative decay during the limited timescale of
synchrotron experiments and are substantially higher than those generally
encountered in the atmosphere (atmospheric ozone levels rarely exceed 0.1 ppm).
The total gas flow was kept constant at ~0.2 L min−1 when varying RH and [O3].
The liquid samples were introduced by means of a microlitre syringe (Hamilton).
The droplets were detached from the tip of the needle of the syringe by altering the
reflector–transducer distance and simultaneously adjusting the sound pressure to
stabilise the levitated droplets. The levitator was mounted on an x-, y- and z-stage
for precise alignment of an X-ray beam and levitation zone. SAXS experiments
were carried out using a beam size of 0.3 × 0.3 mm full-width at half-maximum.
The wavelength was 0.91 Å and data were collected over a q range of 0.006–0.37 Å
−1. Exposure times were typically 30–60 s for an average trapped droplet diameter
of ~0.5–2 mm. Droplet diameters after dehumidification were ~60–100 μm. During
the beam time experiment, we levitated more than 20 individual droplets of our
sample and completed at least 5 runs of 2-h dehumidification and 5 runs of 2-h
ozonolysis experiments obtaining time-resolved X-ray data. X-ray data were ana-
lysed using an in-house-developed macro (YAXS) for ImageJ.

Offline Raman acoustic levitation. Offline Raman experiments (see Fig. 5) were
performed using the same levitator, flow system and ozone generator. A stainless-
steel environmental chamber with a flat glass window for the Raman laser was used
instead of the cylindrical Pyrex chamber employed in the X-ray studies. This
chamber was interfaced with a Renishaw InVia Raman microscope via a fibre-optic
probe using a long working distance objective (Olympus SLMPLN 20×) that
focused the 532-nm laser onto the levitated droplet (droplet diameters were
~80–200 μm). The fibre-coupled objective delivered up to 30 mW into the envir-
onmental chamber (source output: 300 mW).

Studies of more complex capillary coatings by SAXS. Subsequent experiments
on more complex mixtures (see Fig. 6) were carried out on samples coated inside
1.5-mm-diameter glass capillary tubes. Oleic acid, sodium oleate, fructose
((3S,4R,5R)-1,3,4,5,6-pentahydroxyhexan-2-one) and hexadecane were dissolved at
10 wt% in ethanol (oleic acid and hexadecane) and methanol (fructose and sodium
oleate), respectively. Oleic acid and hexadecane dissolved readily on vortexing.
Fructose and sodium oleate were sonicated in methanol for 5 min, and the fructose
solution was then warmed to 45 °C while shaking for 2 h to ensure complete
dissolution. The solutions were combined in the volume ratios oleic acid:sodium
oleate:fructose 1:1:1.8 and oleic acid:sodium oleate:fructose 1:1:1.8:0.6 to mimic the
aerosol composition found by Wang et al. for Chongqing in winter52. Approxi-
mately 50–80 mL of the solution was introduced into a 1.5-mm-diameter thin-
walled glass capillary tube embedded in a metal cylinder (custom-made at B21
beamline) and gently warmed while tipping the capillary backwards and forwards
to produce a coating. The tube was then placed in a vacuum oven at 50 °C for at
least an hour to ensure evaporation of ethanol and methanol. This produced a
coating on average of 0.1-mm thickness (estimated assuming distribution over a
capillary tube section of length 1 cm), although considerable variations in thickness
could be seen visually. For humidity control, the tube was connected to a nitrogen

line, either via a water bubbler for high humidity (>95% RH) or directly, for low
humidity (<20% RH), and analysed using SAXS on beamline B21 at the Diamond
Light Source.

Data availability. All key data for this work are presented in this paper or the
Supplementary Information. The raw data supporting the findings of this study are
available from the corresponding authors on request.
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