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Abstract 

 

Transitivity and dense periodic points are two main ingredients of Devaney chaos. 

There are many stronger properties than these two main ingredients that have been 

studied as a shortcut to chaos. In this paper, we focus on two of these, locally 

everywhere onto and a strong dense periodicity property, and show the implication 

of these properties on the unit circle.  

 

Keywords: Devaney chaos, locally everywhere onto, exact, unit circle, strong 

dense periodicity property 

 

1 Dynamical System 
 

Dynamical systems are systems that change over time and they are very useful in 

modeling many different kinds of phenomena. Examples of dynamical systems 

include the mathematical models that describe the swinging of a clock pendulum, 

the flow of water in a pipe, and the number of fish in a lake. The time may be 

continuous (𝑇 = [0, ∞)) or discrete (𝑇 = ℕ) . When the system depends on a 

continuous time, we call it a continuous dynamical system, otherwise it is a discrete 

dynamical system. A continuous dynamical is represented by ordinary differential 

equations (𝑥̇ = 𝑓(𝑥) for one dimensional case) while a discrete dynamical system  
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consists of a space 𝑋 and a function 𝑓 that acting on the space into itself. In this 

paper, we will consider the discrete dynamical system and denote it as (𝑋, 𝑓).  

The dynamical study of (𝑋, 𝑓)  is all about the attempt to understand the 

behavior of evolution of every point 𝑥 ∈ 𝑋 under the iteration of function 𝑓 . 

Therefore, it describes how one state 𝑥 develops into another state 𝑓(𝑥) and so 

forth. Chaotic dynamics is the behavior of dynamical systems that are highly 

sensitive to small changes in initial conditions, so that small alterations can give 

rise to strikingly great consequences. Therefore, when the system is chaotic, the 

iteration of 𝑥 under 𝑓 is not approximated without perfect information of 𝑥.  

 

1.1 Chaotic Dynamical Systems 

 

Chaotic behavior is one of the interesting topics in the study of dynamical systems. 

Chaos theory is very interesting because surprisingly chaos can be found within 

almost trivial system. The tent map is an example of a system with simple equation 

but has a very complex behavior [6]. Conversely, a complex system can also exhibit 

a non-chaotic system. For an example there is complex biological system, which 

has been described as “anti-chaotic” [15]. Therefore, it is very important to define 

chaotic dynamical system clearly and various attempts have been made to give the 

notion of chaos a mathematically precise meaning, but chaos is not easy to define 

and there is no universally agreed definition of chaos. Li and Yorke [11] have firstly 

defined chaos in mathematical terms and the chaos in their sense is called Li-Yorke 

chaos. However, there are a number of different definitions of chaos and an 

incomplete list of other popular definitions includes distributional chaos [13], 

topological chaos [16], 𝜔-chaos [10], P-chaos [2], Block and Coppel chaos [3] and 

many more. One of the most frequently used is Devaney chaos [6], which isolates 

two essential ingredients of a chaotic function. 

 

Definition 1[6]: A dynamical system (𝑋, 𝑓)  is Devaney chaotic whenever it 

satisfies two conditions; 

 

i) Topologically transitive, that is for any two open nonempty sets 𝑈 and 𝑉, there 

is some 𝑛 ∈ ℕ such that 𝑓𝑛(𝑈) ∩ 𝑉 is nonempty; 

ii) Has a dense set of periodic points, i.e., that every open set contains a periodic 

point. 

 

Another well-known definition of chaos is topologically chaos i.e.  

 

Definition 2 [6]: A dynamical system (𝑋, 𝑓) is topologically chaotic whenever the 

system has positive entropy.  

 

Entropy is a tool to measure dynamical behavior of a system. There are some 

equivalent versions of its definition. Some examples and the original definitions 

can be found in [1, 18]. It has been shown that any topologically chaotic dynamical 

system is Li-Yorke chaotic [4] and any Devaney chaotic dynamical system is also  
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Li-Yorke chaotic [9].  The following are well-known results on the unit interval, 𝐼 

and the unit circle, 𝑆1  about positive entropy and topological chaos. However, 

there are some common remarkable results on the interval and on the circle, as 

follows; 

 

Theorem 3 [4,12]: If 𝑓 is a continuous map on the unit circle, then the following 

statements are equivalent: 

1. the entropy of 𝑓 is positive, 

2. there exists a closed invariant subinterval 𝐷 ⊆ 𝑆1 such that 𝑓|_𝐷 is Devaney 

chaotic, 

3. 𝑓 has a periodic point of period 𝑞2𝑝 for an odd 𝑞 and integer 𝑝. 

In addition, if 𝑓 is a function on the interval, the statements 1,2 and 3 are also 

equivalent. 

 

The next remarkable result only holds on the unit interval. 

 

Theorem 4 [7]: On the unit interval, transitivity implies Devaney chaos. 

 

The surprising equivalence on the interval is because transitivity implies dense 

periodic points, but the converse is not necessarily true [7]. The result cannot be 

generalized to higher dimensions or the unit circle because the proof of this result 

uses the ordering in ℝ in an essential way. Furthermore, an irrational rotation on a 

circle is a transitive map but does not have any periodic points, which is a 

counterexample.  

 

1.3 Some Other Chaotic Characterizations 

 

In this paper, we also consider some other strong chaotic concepts that relate closely 

to two main ingredients of Devaney chaos i.e. locally everywhere onto and a strong 

dense periodicity property, which are defined as follows; 

 

Definition 5 [8]: Let 𝑓: 𝑋 → 𝑋 be a continuous map on a compact metric space 𝑋. 

The function 𝑓 is said to be locally everywhere onto or simply l.e.o or exact, if for 

every open subset 𝑈 ⊂ 𝑋 there exists a positive integer 𝑛 such that 𝑓𝑛(𝑈) =  𝑋.  

It is obvious from the definition that l.e.o implies transitivity. Since transitivity is 

equal to Devaney chaos on the interval, then we directly have the following 

 

Theorem 6: On the interval, locally everywhere onto implies Devaney chaos. 

 

On the unit circle, transitivity is not equal to Devaney chaos, so the above 

implication is not straightforward. We are going to clarify this in the next section.  

 

Definition 7 [7]: Let 𝑓: 𝑋 → 𝑋 be a continuous map on a compact metric space 𝑋. 

The function is said to poses a strong dense periodicity property whenever the  
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set 𝑃𝑛 is dense for all integer 𝑛 and 𝑃𝑛 is a collection of periodic points of prime 

period larger than 𝑛. 

 

As far as we are concerned, the property of strong dense periodic points were firstly 

introduced in 2015 [7] with following result on the interval. 

 

Theorem 8 [7]:  If 𝑓  is Devaney chaotic on a compact metric space with no 

isolated points, then the set of periodic points with prime period at least 𝑛 is dense 

for each 𝑛.  

 

Conversely, if 𝑓 is a continuous function from a closed interval to itself, for which 

the set of points with prime period at least 𝑛 is dense for each 𝑛, then there is a 

decomposition of the interval into closed subintervals on which either 𝑓 or 𝑓2 is 

Devaney Chaotic. 

 

Corollary 9: If 𝑓 is a continuous function from a closed interval to itself, for which 

the set of points with prime period at least 𝑛 is dense for each 𝑛, then there is a 

closed subinterval on which 𝑓 is Devaney Chaotic. 

 

This notion was firstly introduced in 2015 [7] and as far as we know, there is no 

other stronger dense periodicity property introduced to describe chaos. The identity 

map has dense periodic points but is not transitive. Having only fixed points become 

an obstacle for the system to be chaotic. Motivated by this example, it is important 

to highlight the stronger dense periodicity property, 𝑃𝑛 dense for all 𝑛. They show 

that for a system without any isolated point, this property is equivalent to Devaney 

chaos. On the interval they shown that if 𝑓 is a continuous function from a closed 

interval to itself, has 𝑃𝑛  dense for all 𝑛, then there is a decomposition of the 

interval into closed subintervals on which either 𝑓 or 𝑓2 is Devaney Chaotic.  

 

2 The Unit Circle 
 

The unit circle can be represented in many different ways. For this work, we let 𝑆1 

denote the unit circle in the plane, i.e. 𝑆1  =  {(𝑥1, 𝑥2) ∈ ℝ × ℝ|𝑥1
2 + 𝑥2

2 = 1}. By 

using basic trigonometry, for every 𝑥 ∈ 𝑆1, there exists a unique 𝜃 ∈ [0, 2𝜋) such 

that 𝑥 =  (𝑥1, 𝑥2)  =  (𝑐𝑜𝑠(𝜃 + 2𝜋𝑘), 𝑠𝑖𝑛(𝜃 + 2𝜋𝑘)) for all natural numbers 𝑘. 

Therefore, every element of the unit circle 𝑥 may sometimes be referred to by its 

angle 𝜃 ∈ [0, 2𝜋) measured in radians, in the standard manner. For every 𝑥, 𝑦 ∈
𝑆1, the metric 𝑑 of 𝑥 and 𝑦 will be the length of the minor arc between 𝑥 and 𝑦. 

So, if 𝑥 =  (𝑐𝑜𝑠(𝜃1  + 2𝜋𝑘), 𝑠𝑖𝑛(𝜃1  + 2𝜋𝑘))  and 𝑦 =  (𝑐𝑜𝑠(𝜃2 +
2𝜋𝑘), 𝑠𝑖𝑛(𝜃2 + 2𝜋𝑘))  and 𝜃1 < 𝜃2  then 𝑑(𝑥, 𝑦)  =  𝑚𝑖𝑛{𝜃1 − 𝜃2, 𝜃2 − 𝜃1}  in 

radians. Therefore we denote (𝑥, 𝑦) = (𝑦, 𝑥) as the collection of all elements in 𝑆1 

in the minor arc between 𝑥 and 𝑦 and call it a subarc of 𝑆1. The collection of 

subarcs (𝑥, 𝑦) forms a basis of open sets for the topology of 𝑆1. 
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2.1 Representation of the Circle Maps 

Analogous to the interval map, we then call a function 𝑓: 𝑆1 → 𝑆1 a circle map. 

When dealing with a circle map, we can think the unit circle 𝑆1 as the interval 

[0, 2𝜋) with 0 and 2𝜋 identified. Therefore a continuous map 𝑓 on 𝑆1 will be 

associated with an interval map 𝐹 on [0, 2𝜋) which satisfies some properties. 

 

Definition 10: Let 𝑓 be a circle map on 𝑆1. Corresponding to 𝑓, we define an 

interval map 𝐹  on [0,2𝜋] ⊂ ℝ  by 𝐹(𝜃) = 𝑓(𝜃)  for every 𝜃 ∈ [0,2𝜋)  and 

𝐹(2𝜋) = 𝑓(0). 

 

For example, the Doubling Map 𝑔: 𝑆1 → 𝑆1  defined by the expression 𝑔(𝜃) =
2𝜃 , the interval map 𝐺: [0,2𝜋) → [0,2𝜋)  which can be associated to 𝑔  is a 

piecewise linear defined by 𝐺(𝑥) = 2𝑥(𝑚𝑜𝑑 2𝜋)  where its graph is given in 

Figure 1. 

 

 
Figure 1: The graph of 𝐺 where 𝑔 is the Doubling Map on the unit circle 

 

Referring to the graph of 𝐺  in Figure 1, 𝐺  is discontinuous at 𝜋 and 𝐺(𝜋) =
𝑔(𝜋) = 0 . In general, 𝐹  is discontinuous at 𝜃 ∈ [0,2𝜋)  whenever 𝐹(𝜋) =
𝐹(𝜋) = 0 since it is either  lim

𝑥→𝜃−
𝐹(𝑥) ≠ lim

𝑥→𝜃+
𝐹(𝑥) or lim

𝑥→𝜃
𝐹(𝑥) ≠ 𝐹(𝜃). So for 

any continuous circle map 𝑓, the corresponding interval map 𝐹 is continuous at 𝜃 

if 𝐹(𝜃) ≠ 0. Therefore there are subintervals of [0,2π] where 𝐹 is continuous in 

the real sense whenever we restricted to the subinterval. 

 

Lemma 11:  Let 𝑓  be a continuous circle map and 𝐹  be the interval map 

corresponding to 𝑓. If (𝜃1, 𝜃2) ⊆ [0,2𝜋] is strongly invariant under 𝐹  and 0 ∉
(𝜃1, 𝜃2) then 𝐹|(𝜃1,𝜃2) is continuous. 

Proof. Since 𝐹(𝜃1, 𝜃2) = (𝜃1, 𝜃2) and 0 ∉ (𝜃1𝜃2), then for every 𝜃 ∈ (𝜃1, 𝜃2), 

𝑓(𝜃) ≠ 0. Therefore 𝐹 is continuous at 𝜃.                             ▄ 

 

Finally we will give some remarks on the relationship between a circle map 𝑓 and 

its corresponding interval map 𝐹. 

 

Remark 12: The following are facts about 𝑓 and 𝐹 for a continuous circle map 

𝑓; 

1. If 𝑓 has dense periodic points then so does 𝐹. 
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2. For any 𝜃 ∈ (0,2𝜋) , 𝜃  is a periodic point of period 𝑛  under 𝑓  iff 𝜃  is a 

periodic point of period 𝑛 under 𝐹. 

3. If 𝐹 is transitive, then so is 𝑓. 

4. For any subset (𝜃1, 𝜃2) ⊂ (0,2𝜋), (𝜃1, 𝜃2) is invariant under 𝑓 iff (𝜃1, 𝜃2) is 

invariant under 𝐹. 

 

This representation of the circle map is useful for our further discussion on the 

dynamics of the circle maps later. 

 

2.2 The Chaotic Behavior of Circle Maps 

 

Even though transitivity implies Devaney chaos on the interval, the same is not true 

on the circle. However Silverman [14] proved that transitivity almost implies 

Devaney chaos, as follows: 

 

Theorem 13 [14]: Let 𝑓: 𝑆1 → 𝑆1 be a transitive continuous circle map. If 𝑓 is not 

one-to-one, then 𝑓 is Devaney chaotic. 

 

Using this result, we will show the significant implication of locally everywhere 

onto on the circle map. 

 

Theorem 14: Let 𝑓: 𝑆1 → 𝑆1 be a continuous map on the circle. If 𝑓 is l.e.o. then 

𝑓 is Devaney chaotic. 

Proof. Let 𝑈 and 𝑉 be two disjoint open sets. Since 𝑓 is l.e.o, there exists 𝑘 such 

that 𝑓𝑘(𝑈) = 𝑓𝑘(𝑉) = 𝑆1 . Therefore there exists 𝜃1 ∈ 𝑉 and 𝜃2 ∈ 𝑈 such that 

𝑓𝑘(𝜃2) = 𝑓𝑘(𝜃1). Hence 𝑓 is not one-to-one and by Theorem 13, 𝑓 is Devaney 

chaotic.                                                  ▄ 

 

Nevertheless, dense periodic points in the definition of Devaney chaos may be 

weaken to the existence of two periodic points. 

 

Theorem 15: Suppose that 𝑓: 𝑆1 →  𝑆1 is a continuous circle map with periodic 

points of periods 𝑚 <  𝑛. If 𝑓 is transitive, then 𝑓 is Devaney chaotic. 

  

Proof. We claim that 𝑓 is not one-to-one.  Let 𝑥1, … , 𝑥𝑚 be period 𝑚 orbit and 

let 𝑦1, … , 𝑦𝑛 be a period 𝑛 orbit written so that they run anti-clockwise around 𝑆1. 

If we do not have 𝑓(𝑦𝑖) = 𝑦{𝑖+1}  for each  𝑖 (𝑚𝑜𝑑 𝑛) , then some interval 

[𝑦𝑖, 𝑦{𝑖+1}]  will have image that contains some 𝑦𝑗  in its interior, so that 𝑓 is not 

1-1. 

So assume that we have 𝑓(𝑦𝑖) = 𝑦{𝑖+1} for each 𝑖 (𝑚𝑜𝑑 𝑛).  Since m < n, there is 

an interval [𝑦𝑖, 𝑦{𝑖+1}]  which contains some 𝑥𝑗  but with the property that 

𝑓[𝑦𝑖, 𝑦{𝑖+1}]  =  [𝑦{𝑖+1}, 𝑦{𝑖+2}]  does not contain any  𝑥𝑘 .  Since 𝑥𝑗  is in 

[𝑦𝑖, 𝑦{𝑖+1}]  but  𝑓(𝑥𝑗) is not in 𝑓[𝑦𝑖, 𝑦{𝑖+1}]  =  [𝑦{𝑖+1}, 𝑦{𝑖+2}], some point in the 

interior of [𝑦𝑖, 𝑦{𝑖+1}] must map to 𝑦{𝑖+1}, so that 𝑓 is not 1-1.          ▄ 
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Our next result is the implication of having the strong dense periodicity property. 

 

Proposition 16: Let 𝑓: 𝑆1 → 𝑆1 be a continuous map on the unit circle 𝑆1 with 

𝑃𝑛  dense for all 𝑛 . If there exists a closed subarc 𝐴 ⊂ 𝑆1  which is strongly 

invariant under 𝑓 and 0 ∉ 𝐴, then there exists a closed subarc 𝐵 ⊂ 𝑆1 such that 

𝑓|𝐵 is transitive. 

Proof. Let 𝐴 ⊂ 𝑆1  such that it is strongly invariant under 𝑓  and 0 ∉ 𝐴 . By 

Remark 12, 𝐴 is invariant under 𝐹. Since 0 ∉ 𝐴, Lemma 11 then gives that 𝐹|𝐴 

is continuous.  We can then apply Corollary 9 to obtain a closed subarc B of 𝐴 on 

which 𝐹|𝐵 is transitive. But then 𝑓|𝐵is also transitive.                  ▄ 

 

The next question is to ask whether 𝑃𝑛 dense for all n can assure the existence 

of the invariant open subarc of 𝑆1 so that the system will have a chaotic subsystem 

(in sense of Devaney) and have positive entropy (topologically chaotic). We give 

the positive answer in the main theorem in this section as follows; 

 

Theorem 17: Let 𝑓: 𝑆1 → 𝑆1  be a continuous map on the unit circle 𝑆1 . If 𝑓 

satisfies 𝑃𝑛 dense for all 𝑛, then the entropy of 𝑓 is positive. 

Proof. Suppose 𝑓 has dense 𝑃𝑛  for all 𝑛 but is not transitive on 𝑆1. We firstly 

claim that there exists a subarc (𝜃1, 𝜃2) ⊂ [0,2𝜋) such that 𝑓𝑚(𝜃1, 𝜃2) = (𝜃1, 𝜃2) 

for some integer 𝑚. Since 𝑓 is not transitive, there exists an open subarc 𝐴 such 

that ∪𝑖∈ℕ 𝑓𝑖(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ [0,2𝜋). 

 

Let 𝜃 ∈ 𝐴 such that 𝑓𝑛(𝜃) = 𝜃 with the smallest period in 𝐴. Therefore for every 

𝑚 ∈ ℕ and for every 𝑖 = 0,1,2, ⋯ , 𝑛 − 1, 𝑓𝑚𝑛+𝑖(𝐴) contain 𝑓𝑖(𝜃). Since 𝑓 has 

dense periodic points in [0, 2𝜋), for every 𝑖, 𝑓𝑚𝑛+𝑖 (𝐴) is a non-degenerate subarc 

i.e. it is neither empty nor reduced to a single point. Hence for every 𝑖 =
0,1,2, ⋯ , 𝑛 − 1 , 𝐾𝑖 =∪𝑚∈ℕ 𝑓𝑚𝑛+𝑖(𝐴)  is a non-degenerate subarc and 

⋃ 𝑓𝑖
𝑖∈ℕ (𝐴) = ⋃𝑖=0

𝑛−1𝐾𝑖. Therefore ⋃𝑖=0
𝑛−1𝐾𝑖 is strongly invariant and 𝑓𝑚(𝐾𝑖) = 𝐾𝑖 

for every 𝑖 = 0,1,2, ⋯ , 𝑛 − 1 and for some 𝑚 ≤ 𝑛 − 1. 

Suppose (𝜃1, 𝜃2) + [0, 2𝜋) such that 𝑓𝑚(𝜃1, 𝜃2) = (𝜃1, 𝜃2) for some integer 𝑚. 

Choose 𝜙 ∈ [0,2𝜋]) such that 0 ∉ [𝜃1 + 𝜙, 𝜃2 + 𝜙] and define a continuous circle 

map 𝑔: 𝑆1 → 𝑆1  such that 𝑔(𝜃) = 𝑓𝑚(𝜃 − 𝜙) + 𝜙 . We then claim that [𝜃1 +
𝜙, 𝜃2 + 𝜙] is strongly invariant under 𝑔. By Remark 4.8, it is sufficient to show 

that the closed subinterval [𝜃1 + 𝜙, 𝜃2 + 𝜙] is strongly invariant under the interval 

map 𝐺 . Since 𝑓𝑚(𝜃1, 𝜃2) = (𝜃1, 𝜃2)  then 𝑔(𝜃1 + 𝜙, 𝜃2 + 𝜙) = (𝜃1 + 𝜙, 𝜃2 +
𝜙) i.e. 𝐺(𝜃1 + 𝜙, 𝜃2 + 𝜙) = (𝜃1 + 𝜙, 𝜃2 + 𝜙). Since 0 ∉ [𝜃1 + 𝜙, 𝜃2 + 𝜙] then 

the interval map 𝐺  is continuous on the interval [𝜃1 + 𝜙, 𝜃2 + 𝜙] . This gives 

𝐺[𝜃1 + 𝜙, 𝜃2 + 𝜙] = [𝜃1 + 𝜙, 𝜃2 + 𝜙] . By Proposition 16, there exists 𝐵 =
[𝛩1, 𝛩2] ⊆ [𝜃1 + 𝜙, 𝜃2 + 𝜙] such that 𝐺|𝐵 is transitive. 

 

For 𝐵 = [𝛩1, 𝛩2], we claim that 𝑓|[𝛩1−𝜙,𝛩2−𝜙]  is transitive. So let (𝛼1, 𝛼2) and 

(𝛽1, 𝛽2)  be any subarcs of [𝛩1 − 𝜙, 𝛩2𝜙] . Therefore (𝛼1 + 𝜙, 𝛼1 + 𝜙)  and 
(𝛽1 + 𝜙, 𝛽2 + 𝜙) are subarcs of 𝐵 = [𝛩1, 𝛩2]. Since 𝐺|𝐵 is transitive, there exists 
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an integer 𝑙 such that 𝑔𝑙(𝑥) ∈ (𝛽1 + 𝜙, 𝛽2 + 𝜙) for some 𝑥 ∈ (𝛼1 + 𝜙, 𝛼2 + 𝜙). 

Therefore 𝑓𝑚𝑙(𝑥) ∈ (𝛽1, 𝛽2) for some 𝑥 − 𝜙 ∈ (𝛼1, 𝛼2). Hence 𝑓|[𝛩1−𝜙,𝛩2−𝜙] is 

transitive. By Theorem 3 𝑓 has positive entropy.           ▄ 

 

3 Conclusion 
 

It is interesting to highlight the implication of another chaos characterization, 

locally everywhere onto which is stronger than transitivity. Locally everywhere 

onto implies Devaney chaos on two spaces, the interval and the unit circle. This is 

a surprise result since transitivity is equal to Devaney chaos on the interval but not 

on the unit circle. 

We end by highlighting the difference between the implication of 𝑃𝑛 dense for 

all 𝑛 on the interval and on the unit circle. On the interval, 𝑃𝑛  dense for all 𝑛 

implies that the whole system can be decomposed into subsystems where every 

subsystem is Devaney chaotic. Therefore, the system with no invariant proper 

subinterval is Devaney chaotic whenever it satisfies this strong dense periodicity 

property. In fact, this strong property implies that the system has positive entropy. 

That also happens on the unit circle. 𝑃𝑛  dense for all 𝑛 can guarantee that the 

system on the unit circle has positive entropy i.e. is behaving topologically chaotic. 

Unlike what happens on the interval, this stronger density property cannot 

guarantee that the whole system is chaotic in the sense of Devaney even if it does 

not have any invariant proper subset. This is because the only invariant subinterval 

under 𝐹 is the whole interval [0, 2𝜋) which contains 0 and therefore discontinuity 

of 𝐹  at some points is possibly occurs. Hence its prevent us to use the same 

argument to show that the whole system is Devaney chaotic. However, it is an 

interesting fact that this strong property can guarantee that a Devaney chaotic 

subsystem exists which means the stronger property is more significant than the 

property of dense periodic points since dense periodic points does not implies any 

sort of chaos. 
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