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SHADOWING, ASYMPTOTIC SHADOWING AND S-LIMIT
SHADOWING

CHRIS GOOD, PIOTR OPROCHA, AND MATE PULJIZ

Abstract. We study three notions of shadowing property: classical shadowing
property, limit (or asymptotic) shadowing, and s-limit shadowing. We show
that classical and s-limit shadowing property coincide for tent maps and, more
generally, for piecewise linear interval maps with constant slopes, and are
further equivalent to the linking property introduced by Chen in [Che91].

We also construct a system which exhibits shadowing but not the limit shad-
owing property, and we study how shadowing properties transfer to maximal
transitive subsystems and inverse limits (sometimes called natural extensions).

Where practicable, we show that our results are best possible by means of
examples.

It seems that the first time shadowing appeared in the literature was in a paper
[Sin72] by Sinăı where it is shown that Anosov diffeomorphisms have shadowing and
furthermore that any pseudo-orbit has a unique point shadowing it. This type of
shadowing lemma subsequently appears in all sorts of hyperbolic systems especially
in their relation to Markov partitions and symbolic dynamics. We refer the reader
to monographs by Palmer [Pal00] and Pilyugin [Pil99]

:::::::::::
[Pil99,PS17].

Over time different variations of shadowing appeared in the literature driven by
different problems people tried to solve using it. Our interest in shadowing comes
from its relation to a type of attractors called ω-limit sets. Recall that an ω-limit
set of a point x ∈ X is the set of limit points of its forward orbit. It can be shown
that each ω-limit set is also internally chain transitive (ICT), meaning that under
the given dynamics and allowing small perturbations one can form a pseudo-orbit
between any two points of that set (precise definitions are given in Section 1).

As the ICT condition is more operational, we are interested in systems for which
these two notions coincide. It is easy to see that a form of shadowing condition
introduced by Pilyugin et al. [ENP97] called limit (or asymptotic) shadowing suffices.

Over the years it was shown that ωf = ICT (f) holds for many other systems.
Bowen in [Bow75] proved it for Axiom A diffeomorphisms; and in a series of papers
[BDG12,BR15,Bar10,BGO12,BGKR10,BGOR13] Barwell, Davies, Good, Knight,
Oprocha, and Raines prove it, amongst others, for shifts of finite type and Julia sets
for certain quadratic maps. It soon became apparent that most of these systems
satisfy both the classical and the asymptotic notion of shadowing. This led Barwell,
Davies, and Good [BDG12, Conjectures 1.2 and 1.3] to conjecture that the classical
shadowing alone will imply ωf = ICT (f). Recently, Meddaugh and Raines in

::::
with

::::::
Raines [MR13] answered this in the affirmative for interval mapsresolving thus one

2010 Mathematics Subject Classification. Primary 37E05; Secondary 37C50, 37B10, 54H20,
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2 CHRIS GOOD, PIOTR OPROCHA, AND MATE PULJIZ

of their conjectures. 1
:::
and

::::
with

::::::
Good

::::::::::
[GM18] has

::::::
shown

:::::
that,

:::
for

:::::::
general

::::::::
compact

::::::
metric

:::
X,

::::::::::::
ωf = ICT (f)

::
if
::::
and

:::::
only

:
if
::
f
::::::::
satisfies

:::::::::
Pilyugin’s

::::::
notion

:::
of

::::::
orbital

:::::
limit

:::::::::
shadowing

::::::
[Pil07].

:
In Section 3 we disprove the other conjecture by constructing

a system with shadowing but for which ωf ( ICT (f) and thus without limit
shadowing(Theorem 3.3).

:::::
This

::
is

:::
the

::::::::
content

::
of

::::::::
Theorem

:::
3.3.

Theorem 3.3.
:::::
There

::::::
exists

:
a
::::::::::
dynamical

::::::
system

::::::
(X, f)

:::
on

::
a
::::::::
compact

::::::
metric

:::::
space

:::::
which

:::::::
exhibits

::::::::::
shadowing

:::::
(SP)

:::
but

:::
for

::::::
which

:::::::::::::
ωf 6= ICT (f).

:

Interestingly, Meddaugh and Raines’s result did not answer whether for interval
maps classical shadowing implies limit shadowing. Trying to resolve this question
forms the second line of inquiry in this paper. Sadly, we are not yet able to provide
a definite answer for all interval maps but a great deal can be said for systems given
by piecewise linear maps with constant slopes. Indeed, Chen in [Che91] showed that
the linking condition is strong enough to completely resolve whether such a system
has shadowing.

Using the same condition we were able to show that for these systems shadowing
and linking are equivalent to a condition tightly related to limit shadowing called
s-limit shadowing. This notion stronger than either classical or limit shadowing was
introduced in [Sak03] where Sakai extended the definition of limit shadowing to
account for the fact that many systems have limit shadowing but not shadowing
[KO11,Pil99]. Below, we quote the two main results we obtain.

Theorem 2.2. Let f : I → I be a continuous piecewise linear map with a constant
slope s > 1. Then the following are equivalent:

(1) f has s-limit shadowing,
(2) f has shadowing,
(3) f has the linking property.

If furthermore the map is transitive, all of the above are additionally equivalent to:
(4) f has limit shadowing.

Theorem 2.7. Let fs : [0, 1] → [0, 1] be a tent map with s ∈ (
√

2, 2] and denote
its core by C = [f2

s (1), fs(1)]
::::::::::::::::::::
C = [f2

s (1/2), fs(1/2)]. The following conditions are
equivalent:

(1) fs has s-limit shadowing property
(2) fs has shadowing property
(3) fs has limit shadowing property
(4) fs|C has s-limit shadowing property
(5) fs|C has shadowing property
(6) fs|C has limit shadowing property

The rest of the article is organised as follows. In Section 1 we introduce all the
basic notions we use. In Section 2 we prove our main results, Theorems 2.2 and
2.7. Section 3 clarifies the distinction between three notions of shadowing: limit,
s-limit, and classical shadowing. In there we also construct a system which exhibits
shadowing but not the limit shadowing property (Theorem 3.3). In Section 4 we
include few results providing sufficient conditions for shadowing on maximal limit

1It is worth noting here that neither classical nor limit shadowing implies the other — more on
this in Section 3.
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sets of interval maps. And finally Section 5 contains a result on shadowing of the
shift map in inverse limit spaces.

1. Preliminaries

An interval map f : [a, b] → [a, b] is piecewise monotone, if there are p0 = a <
p1 < . . . < pk < pk+1 = b such that f |[pi,pi+1] is monotone for i = 0, . . . , k and f is
piecewise linear if each f |[pi,pi+1](x) = ai + bix for some ai, bi ∈ R. If further each
ai ::
bi:is in absolute value equal to some s ≥ 0 we say that f is piecewise linear with

constant slope s.
A point x ∈ [a, b] is a critical point of f if x = a, x = b, or f is not differentiable

at x, or f ′(x) = 0. The set of critical point
::::::
points of f is denoted by Crit(f).

For every s ∈ (1, 2] define a tent map fs : [0, 1]→ [0, 1] by:

fs(x) =
{
sx if x ∈ [0, 1/2],
s(1− x) if x ∈ [1/2, 1].

Definition 1.1 (Pseudo-orbit). A sequence 〈x0, x1, x2, . . . 〉 is said to be a δ-pseudo-
orbit for some δ > 0 provided that d(f(xi), xi+1) < δ for each i ∈ N0. A finite
δ-pseudo-orbit of length l ≥ 1 is a finite sequence 〈x0, x1, x2, . . . , xl〉 satisfying
d(f(xi), xi+1) < δ for 0 ≤ i < l. We also say that it is a δ-pseudo-orbit between x0
and xl.

We say that the sequence 〈x0, x1, x2, . . . 〉 is an asymptotic pseudo-orbit provided
that lim

i→∞
d(f(xi), xi+1) = 0.

Definition 1.2. A point z ∈ X is said to ε
:
ε-shadow a sequence 〈x0, x1, x2, . . . 〉

for some ε > 0 if d(xi, f i(z)) < ε
:::::
ε > 0

::
if

::::::::::::::
d(xi, f i(z)) < ε

:
for each i ∈ N0. It is

asymptotically shadowing the sequence if lim
i→∞

d(xi, f i(z)) = 0.

Definition 1.3 (Shadowing). A dynamical system f : X → X is said to have
shadowing provided that for every ε > 0

::::
ε > 0

:
there exists a δ > 0 such that every

δ-pseudo-orbit is ε
:
ε-shadowed by some point in X.

::
If

:
a
:::::::::
sequence

::::::::
〈xn〉n∈N ::

is
:
a
::::::::::::::
δ-pseudo-orbit

::::
and

::
an

:::::::::::
asymptotic

:::::::::::
pseudo-orbit

:::::
then

::
we

:::::::
simply

::::
say

::::
that

::
it
:::
is

:::
an

::::::::::
asymptotic

:::::::::::::
δ-pseudo-orbit

:
.
:::::::::
Similarly,

:::
if

:
a
::::::
point

::
z

::
is

::::::::
ε-tracing

::::
and

:::::::::::::
asymptotically

:::::::
tracing

::::::::::::
pseudo-orbit

::::::::
〈xn〉n∈N,:::::

then
:::
we

::::
say

::::
that

::
z
::
is

::::::::::::
asymptotically

:::::::::
ε-tracing

::::::::
〈xn〉n∈N.

Definition 1.4 (s-limit shadowing). Let f : X → X be a continuous map on a
compact metric space X. We say that f has s-limit shadowing if and only if for
every ε > 0 there is δ > 0 such that the following two conditions hold:

(1) for every δ-pseudo-orbit 〈xn〉n∈N ⊂ X of f , there is y ∈ X such that y
ε-shadows 〈xn〉n∈N, and

(2) for every asymptotic δ-pseudo-orbit 〈zn〉n∈N ⊂ X of f , there is y ∈ X such
that y asymptotically ε-shadows 〈zn〉n∈N.

Remark 1.5. Note that s-limit shadowing implies
::::
both

:::::::
classical

::::
and

:
limit shadow-

ing.

Definition 1.6. Let f : X → X be continuous and let ε > 0. A point x ∈ X is
ε-linked to a point y ∈ X by f if there exists an integer m ≥ 1 and a point z such
that fm(z) = y and d(f j(x), f j(z)) ≤ ε for j = 0, . . . ,m.
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We say x ∈ X is linked to y ∈ X by f if x is ε-linked to y by f for every ε > 0.
A set A ⊂ X is linked by f is

:
if
:
every x ∈ A is linked to some y ∈ A by f .

Definition 1.7. Let f : [0, 1]→ [0, 1] be a continuous piecewise monotone map and
let Crit(f) be a finite set of critical points of f . We say f has the linking property if
Crit(f) is linked by f .

The following theorem is the main result in [Che91].

Theorem 1.8 (Chen [Che91]). Suppose f : [0, 1]→ [0, 1] is a map that is conjugate
to a continuous piecewise linear map with a constant slope2 s > 1. Then f has the
shadowing property if and only if it has the linking property.

In the proof of Proposition 15 in [Che91], Chen shows the following implication.

Lemma 1.9 (Chen [Che91]). Let f : [0, 1] → [0, 1] be a map with constant slope
s > 1. If f has linking property then there is ε̂ > 0 such that for every ε ∈ (0, ε̂)
there is N = N(ε) > 0 such that for every x ∈ X there is an integer n = n(x, ε) < N
such that

B(fn(x), sε) ⊂ fn+1(B(x, ε) ∩ f−1(Bn−1(f(x), s2ε)))
where Bk(x, ε) = {y ∈ [0, 1] : |f i(x)− f i(y)| < ε for i = 0, . . . , k}.

Finally, we define two important notions whose relation with shadowing will soon
become apparent.

Definition 1.10 (Internally Chain Transitive sets). An f -invariant and closed set
A ⊆ X is said to be internally chain transitive if given any δ > 0 there exists a
δ-pseudo-orbit between any two points of A that is completely contained inside
A. By ICT (f) we denote the

:::::::
minimal

:
set containing all ICT subsets of X

::
as

:::
its

::::::::
elements. This is a subset of the hyperspace of all closed non-empty subsets of X
which we denote by 2X .

Definition 1.11 (ω-limit sets). The ω-limit set of a point x ∈ X is the set of limit
points of its orbit:

ωf (x) =
∞⋂
i=1

∞⋃
j=i
{f j(x)}.

It can be shown that each ω-limit set is a non-empty, closed, and f -invariant subset
of X, see e.g. [BC92, Chapter IV]. In particular, this means that all of them also
belong to 2X . By

ωf = {ωf (x) | x ∈ X} ⊆ 2X ,
we denote the set of all ω-limit sets in the system.

It is known (see e.g. [BGOR13]) that any ω-limit set is also internally chain
transitive. We thus have the following inclusion of sets in the hyperspace 2X :

ωf ⊆ ICT (f).
For some systems this is a strict inclusion and it is not hard to find such examples.
It is much more interesting to try to characterise systems in which ωf and ICT (f)
coincide. This would be useful as it is easier to check if a given set is ICT than if it
is an ω-limit set.

2Note that the slope is actually ±s but throughout the text for definiteness we always take s
to be the positive value.
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2. Shadowing condition

Lemma 2.1. Let f : X → X be a continuous map on the compact metric space X.
Assume that there exist constants λ ≥ 1 and ε̂ > 0 such that for every ε ∈ (0, ε̂),
there exist a positive integer N = N(ε) and η = η(ε) > 0 such that for each x ∈ X,
there exist a positive integer n = n(x, ε) ≤ N satisfying

f
(
B(fn(x), ε+ η)

)
⊂ {fn+1(y) : d(x, y) ≤ ε,(2.1)

d(f i(x), f i(y)) ≤ λε, 1 ≤ i ≤ n}.
Then f has s-limit shadowing property.

Proof. By [CKY88, Lemma 2.4] (see also [CKY88, Lemma 2.3]) assumptions are
sufficient for shadowing, therefore it is enough to prove that for every sufficiently
small ε > 0 (we may take ε < ε̂) there is δ > 0 such that every asymptotic
δ-pseudo-orbit is asymptotically ε-traced.

Fix any ε > 0, put ε0 = ε/3λ, let η0 = min 〈η(ε0), ε0〉 and δ be such that
d(fk(x0), xk) < η0 for any δ-pseudo-orbit 〈xi〉ki=0, where k = 1, 2, . . . , N(ε0). We
will show that the above δ is as desired.

Fix any asymptotic δ-pseudo-orbit 〈xi〉∞i=0. Denote δ0 = δ and for every m > 0
we define εm = ε0/2m, let ηm = min 〈η(εm), εm〉 and let 0 < δm < εm be such that
d(fk(x0), xk) < ηm for any δm-pseudo-orbit 〈xi〉ki=0, where k = 1, 2, . . . , N(εm).

For any x ∈ X denote
A(x, n, γ) = {y : d(x, y) ≤ γ, d(f i(x), f i(y)) ≤ λγ, 1 ≤ i ≤ n}.

We define integers mk, nk, jk, and sets Wk for all k ≥ 0 as follows.
m0 = 0, j0 = 0, n0 = n(x0, εj0), W0 = A(xm0 , n0, ε0).

Next, for k ≥ 1 we put
mk = mk−1 + nk−1 = n0 + . . .+ nk−1.

By the definition of jk−1 the sequence 〈xi〉∞i=mk
is an asymptotic δjk−1 -pseudo-orbit.

If it is also δjk−1+1-pseudo-orbit then we put jk = jk−1 + 1 and put jk = jk−1
otherwise. Finally, let

nk = n(xmk
, εjk

),
Wk = Wk−1 ∩ f−mk−1(f(A(xmk

, nk, εjk
))
)
.

First, we claim that for every k ≥ 0 we have
(2.2) fmk+1(Wk) ⊂ f

(
A(xmk

, nk, εjk
)
)
.

We will prove the claim by induction on k. For k = 0 the claim holds just by the
definition, since

fm0+1(W0) = f(W0) = f(A(xm0 , n0, ε0))
Next, fix any s ≥ 0 and suppose that the claim holds for all 0 ≤ k ≤ s. Since, by
definition we have

fms+1+1(Ws+1) = fms+1+1(Ws ∩ f−ms+1−1(f(A(xms+1 , ns+1, εjs+1))
))

= fms+1+1(Ws) ∩ f(A(xms+1 , ns+1, εjs+1))
it remains to prove that

f(A(xms+1 , ns+1, εjs+1)) ⊂ fms+1+1(Ws).
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Observe that by the choice of js we have that 〈xi〉∞i=ms
is a δjs

-pseudo-orbit and
hence

d(f j(xms
), xms+j) < ηjs

for every 0 ≤ j ≤ N(εjs
).

In particular d(fns(xms), xms+ns = xms+1) < ηjs and thus

B(xms+1 , εjs
) ⊂ B(fns(xms

), εjs
+ ηjs

).

By the definition of ns we also have that

f
(
B(fns(xms), εjs + ηjs)

)
⊂
{
fns+1(y) : d(xms , y) ≤ εjs ,

d(f i(xms), f i(y)) ≤ λεjs , 1 ≤ i ≤ ns
}

= fns+1(A(xms
, ns, εjs

)).

Combining the two above observations with the assumptions of induction we obtain
that

f(A(xms+1 , ns+1, εjs+1)) ⊂ f(B(xms+1 , εjs
)) ⊂ f(B(fns(xms

), εjs
+ ηjs

))
⊂ fns+1(A(xms , ns, εjs)) = fns(fms+1(Ws))
= fms+1+1(Ws).

This completes the induction, so the claim is proved.
Note that since every set A(x, n, γ) is closed, we have a nested sequence of

closed non-empty sets W0 ⊃ W1 ⊃ . . . and therefore there is at least one point
z ∈

⋂∞
k=0Wk. We claim that for k = 0 and 0 ≤ i ≤ m1 or for k > 0 and each

mk < i ≤ mk+1 we have
d(f i(z), xi) ≤ 2λεjk

.

Again we prove it by induction on k. First, let k = 0 and fix any 0 ≤ i ≤ n0 =
n(x0, ε0) < N(ε0). Since z ∈W0 = A(x0, n0, ε0) we have that d(f i(z), f i(x0)) ≤ λε0
and additionally, by the definition of δj0 = δ0 we have that d(f i(x0), xi) < ε0. Hence
d(f i(z), xi) ≤ (λ+ 1)ε0 ≤ 2λε0. The first step of induction is complete.

Now fix any k > 0 and any mk < i ≤ mk+1. Denote t = i−mk − 1 and observe
that 0 ≤ t < nk = n(xmk

, εjk
). Observe that by (2.2)

f i(z) = f t(fmk+1(z)) ∈ f t(fmk+1(Wk)) ⊂ f t+1(A(xmk
, nk, εjk

))

and so d(f i(z), f t+1(xmk
)) < λεjk

. Additionally, by the choice of jk and δjk
we have

that d(f t+1(xmk
), xmk+t+1) < εjk

. Combining these two inequalities we obtain that

d(f i(z), xi) ≤ λεjk
+ εjk

≤ 2λεjk
.

The claim is proved.
Observe that since 〈xi〉∞i=0 is an asymptotic pseudo-orbit the sequence 〈jk〉∞k=0

is unbounded (i.e. limk→∞ εjk
= 0) and hence z asymptotically traces 〈xi〉∞i=0.

Additionally,
d(f i(z), xi) ≤ 2λεjk

≤ 2λε0 < ε

and so, in fact, z is asymptotically ε-tracing the sequence 〈xi〉∞i=0 which ends the
proof. �

The equivalence of shadowing and linking for piecewise linear maps with a
constant slope was demonstrated by Chen in [Che91]. In fact, in the proof of
[Che91, Proposition 15] it is shown that for these maps the linking property implies
a stronger condition (2.1) with λ = s2 and η = (s− 1)ε where s is the slope of the
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map. This observation together with Lemma 2.1 immediately gives the following
theorem.
Theorem 2.2. Let f : I → I be a continuous piecewise linear map with a constant
slope s > 1. Then the following are equivalent:

(1) f has s-limit shadowing,
(2) f has shadowing,
(3) f has the linking property.

If furthermore the map is transitive, all of the above are additionally equivalent to:
(4) f has limit shadowing.

Remark 2.3. It is worth noting that this is the best one could hope for as a simple
example shows that it is possible to construct a (non-transitive) constant slopes
piecewise linear map with limit shadowing but not the other properties. Indeed,
take a tent map f = fs for which the critical point c = 1/2 forms a three cycle
c 7→ f(c) 7→ f2(c) 7→ c. This corresponds to the slope being equal to the golden
ratio s ≈ 1.6180 and the map is shown on Figure 1. Both the map f over [0, 1] and
the restriction f |[f2(c),f(c)] have the linking property and thus all the shadowing
properties we are consider in this article.

Now take a point d = 1/(s+ s2) ∈ (0, f2(c)) which is a preimage of the interior
fixed point under two iterates. The map f |[d,f(c)] no longer has linking as the
prefixed point d is clearly not ε-linked to any of the critical points {d, 1/2, f(c)} for
sufficiently small ε. This implies that this restriction does not have the shadowing
property. We claim, however, that it has limit shadowing.

To this end, take any asymptotic pseudo-orbit 〈xi〉∞i=0 in [d, f(c)]. Substitute
any xi ∈ [d, f2(c)) in this sequence with f2(c) and denote the new sequence of
points in [f2(c), f(c)] by 〈yi〉∞i=0. It is easy to check that this is still an asymptotic
pseudo-orbit for the map f |[f2(c),f(c)] which, we established, has s-limit shadowing. If
we now take a point z ∈ [f2(c), f(c)] which asymptotically shadows the pseudo-orbit
〈yi〉∞i=0, then it is easy to show that it must also asymptotically shadow the original
pseudo-orbit 〈xi〉∞i=0.

To conclude, f[d,f(c)] :::::::
f |[d,f(c)] :is indeed a piecewise linear map with constant

slopes which has limit shadowing but not the linking property and consequentially
it does not have the shadowing property. �

We now proceed to prove Theorem 2.2.

Proof of Theorem 2.2. Equivalence of (2) and (3) is provided by Theorem 1.8. If f
has linking property then assumptions of Lemma 2.1 are satisfied, which shows that
(1) is a consequence of (3). Remaining implication (1) =⇒ (2) is trivial.

In the transitive case the implication (4) =⇒ (2) follows from a result by
Kulczycki, Kwietniak, and Oprocha [KKO14, Theorem 7.3] whereas the converse
(1) =⇒ (4) is immediate by definition. �

In [Par66] Parry showed that any transitive continuous piecewise monotone map
of a compact interval is conjugate to a piecewise linear map with a constant slope of
the same entropy. By a result of Blokh [Blo82] (for a proof see [BC87]) the entropy
h of a transitive interval map is strictly positive (actually h ≥ log

√
2) and thus this

slope is eh > 1. As each of the four properties in the theorem above is preserved
under conjugations, this argumentation allows us to substitute the constant slopes
assumption in the previous theorem with transitivity of the map.
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0 1

1

d f2(c) c f(c)

Figure 1. A map with limit shadowing but without the classical
shadowing property

Corollary 2.4. For every transitive continuous piecewise monotone map of a
compact interval

:
,
:
all four properties: s-limit shadowing, limit shadowing, classical

shadowing, and the linking property are equivalent.

It is natural to ask at this point if the characterisation in Theorem 2.2 extends
to maps with countably many monotone pieces. It turns out that the answer is no
as the following example shows.

Example 2.5. We construct a piecewise linear map with a constant slope s > 1
and countably many pieces of monotonicity which has the linking property but does
not have shadowing.

The key steps of the construction are represented in Figure 2. We first construct
a nucleus of the map depicted in Figure 2(a) where each critical point is mapped
onto another critical point in the rescaled version of the map. To be precise, the
critical point denoted by C1 in Figure 2(a) is mapped to C+

2 — the rescaled (by a
factor µ < 1) copy of the critical point C2 which is in turn mapped to the original
point C2. The slope is everywhere the same and is denoted by s > 3. If we denote by
a the length of the first (and third) piece of monotonicity of the nucleus one easily
deduces that the parameters a, s, µ have to satisfy the following set of equations:

sa = 1 + µ(1− a)
sµa = µ+ a

4sa = s+ 1.

This system has a solution and approximate numerical values of the parameters are:
a ≈ 0.301696, µ ≈ 0.657298, s ≈ 4.83598.

Once the nucleus is constructed, one takes two µ-scaled copies of it and glues
them to either ends of the nucleus. Then another two µ2-scaled copies are added,
and so on ad infinitum. This process gives us the map depicted on Figure 2(b)
which we denote by f : [0, 1]→ [0, 1] after it has been rescaled to the unit interval.

Note that each critical point of f (except 0 and 1 which are fixed) is pre-periodic
and is eventually mapped onto the cycle C1 7→ C+

2 7→ C2 7→ C−1 7→ C1 on the
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a a
µ

1

µ
C1

C2

C+
1

C+
2

C−
1

C−
2

(a) The nucleus of the map

µ

1

µ

µ2

µ2

(b) The map f with the linking property

Figure 2. Construction of the map which has linking but not
shadowing

nucleus. Thus f has linking. It is not hard to see that f is also topologically mixing.
Namely its slope exceeds 2 and so every open interval U ⊂ [0, 1] must eventually
cover two critical points (i.e. fn(U) contains two consecutive critical points), which
in turn implies that for every ε > 0 there is m > 0 such that [ε, 1 − ε] ⊂ fm(U).
This proves topological mixing. Unfortunately, it is not completely clear if f has
shadowing, and to ensure this we make a simple modification.

Let g : [−1, 1]→ [−1, 1] be a map given by:

g(x) =
{
−f(x) if x ≥ 0,
f(−x) if x < 0.

It is clear that g also possesses the linking property and constant slopes but it
cannot have shadowing. The reason is that the map g is transitive but not mixing
as g2 has invariant intervals [−1, 0] and [0, 1], thus no point can have a dense
orbit in [−1, 1] under g2. On the other hand, g2 is chain transitive on [−1, 1] as
for any δ-pseudo-orbit jumping across on the other side of the origin poses no
problem. If g had shadowing then so would g2 and this would contradict a result
from [MR13, Corollary 6] which says that for any interval map with shadowing any
ICT set is also an ω-limit set. /

Example 2.6. By [KO10] the standard tent map f2 can be perturbed to a map
f : [0, 1]→ [0, 1] such that:

(1) f has shadowing property and is topologically mixing,
(2) inverse limit of [0, 1] with f as a unique bonding map is the pseudo-arc, and

as a consequence f has infinite topological entropy (see [Mou12]).
By the above f is not conjugated to a piecewise-linear map with constant slope,
since all these maps have finite entropy.

The answer to the question whether f has s-limit shadowing is unknown to the
authors. /
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Theorem 2.7. Let fs : [0, 1] → [0, 1] be a tent map with s ∈ (
√

2, 2] and denote
its core by C = [f2

s (1), fs(1)]
::::::::::::::::::::
C = [f2

s (1/2), fs(1/2)]. The following conditions are
equivalent:

(1) fs has s-limit shadowing property
(2) fs has shadowing property
(3) fs has limit shadowing property
(4) fs|C has s-limit shadowing property
(5) fs|C has shadowing property
(6) fs|C has limit shadowing property

Proof. The equivalence (1)⇐⇒ (2) is provided by Theorem 2.2. Similarly, since fs|C
is an unimodal map with a constant slope, we obtain the equivalence (4)⇐⇒ (5).
In fact by Theorem 2.2 we know that for maps fs and fs|C shadowing is equivalent
to linking.

Let c = 1/2 be the unique critical point of fs in (0, 1). Note that Crit(fs) =
{0, c, 1} and Crit(fs|C) = {f2

s (c), c, fs(c)}. As fs(1) = 0 and fs(0) = 0, both 0 and
1 are linked to 0 by fs. Similarly, both c and fs(c) are linked to f2

s (c) by fs|C . Thus
for s < 2 checking for the linking property in fs (resp. fs|C) boils down to checking
whether c is linked to itself (resp. whether f2

s (c) is linked to itself).
But if c is linked to itself then clearly f2

s (c) is also linked to c and thus also to
f2
s (c). For the converse note that if s < 2 the only pre-image of f2

s (c) under fs|C is
fs(c) and in turn the only pre-image of fs(c) is c. It is now straightforward to check
that if f2

s (c) is linked to itself then c must also be linked to itself. Thus we have
showed (1)⇐⇒ (2)⇐⇒ (4)⇐⇒ (5) (note that for s = 2 this is trivially satisfied).

If f has s-limit shadowing then by definition it has limit shadowing, therefore
the implications (1) =⇒ (3) and (4) =⇒ (6) are trivially satisfied.

It is proved in [KKO14] that if a map is transitive and has limit shadowing then
it also has shadowing. But it is well known (e.g. see [BB04, Remark 3.4.17]) that
each fs|C is transitive, hence the implication (6) =⇒ (5) is also valid.

To close the circle of implications it now only remains to show (3) =⇒ (6). To
this end we fix any asymptotic pseudo-orbit 〈xi〉∞i=0 ⊂ C and let z ∈ [0, 1] be a point
which asymptotically traces it under action of fs. Observe that the set Λ = ω(z, fs)
is fs-invariant and thus Λ ⊂ C. Note that for

√
2 < s < 2 (again for s = 2 the

implication (3) =⇒ (6) trivially holds) the fs-invariant set Λ cannot be contained
in {f2

s (c), fs(c)} but must intersect the interior of C. Hence there exist an integer
n ≥ 0 such that fn(z) ∈ C and so fn+j(z) ∈ C for every j ≥ 0. If we fix any point
y ∈ C such that fn(y) = fn(z) then clearly y is asymptotically tracing 〈xi〉∞i=0.
This completes the proof. �

3. How do limit shadowing, s-limit shadowing, and classical shadowing
relate to each other

In this section we describe the distinction between three notions of shadowing:
limit (LmSP), s-limit (s-LmSP), and classical shadowing property (SP).

Pilyugin in [Pil99, Theorem 3.1.3] showed that for circle homeomorphisms the
property SP implies LmSP. In fact, he gave efficient characterisations of both SP
and LmSP for orientation preserving circle homeomorphisms which fix a nowhere
dense set containing at least two points (see [Pil99, Theorems 3.1.1 and 3.1.2]).
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Pilyugin’s results roughly state that such a homeomorphism with a hyperbolic
(either repelling or attracting) fixed point has LmSP, and it further has SP if the
repelling and attracting fixed points alternate. We abstain from stating the full
characterisation precisely and instead refer the interested reader to the book [Pil99].

Using this, it is not hard to construct maps that land in areas denoted by (a), (b),
and (c) in the Venn diagram in Figure 3. The corresponding graphs are depicted in
Figure 4. (Note that the circle is represented as the interval [−1, 1] with endpoints
identified.)

(a)

(b)

(c)

(d)

SP LmSP

s-LmSP
SP — Shadowing property
LmSP — Limit shadowing property
s-LmSP — s-limit shadowing property

Figure 3. Shadowing properties

The map in Figure 4(a) has exactly one repelling (at ±1) and one attracting fixed
point (at 0). They are alternating and thus this circle homeomorphism has SP and
LmSP. It trivially has s-LmSP as any point other than ±1 is attracted to 0, and
therefore for 0 < ε < 1/2 any orbit that ε-shadows an asymptotic δ-pseudo-orbit
(where δ = δ(ε) is implied by SP) is in fact asymptotically shadowing it.

The map in Figure 4(b) has a repelling fixed point at ±1 and so it has LmSP.
But it does not have SP because the fixed point at 0 is non-hyperbolic.

The last graph in Figure 4(c) is an extension to the interval [−1, 1] of the map
given by Barwell, Good, and Oprocha in [BGO12, Example 3.5]. Our map is given
by the following equation:

Φ(x) =
{
x+ 1

2π
√

2x sin(2π ln |x|) if x ∈ [−1, 0),
x3 if x ∈ [0, 1].

One readily checks that this is indeed a strictly increasing map on [−1, 1]. It has
a sequence of fixed points converging to the fixed point at 0 and each of them is
hyperbolic (by convention 0 is also hyperbolic as the limit of hyperbolic fixed points).
The repelling and attracting fixed points alternate, thus this homeomorphism (call
it φ) has both SP and LmSP. It, however, does not have s-LmSP and the argument
is essentially the one in [BGO12]. We present it below for completeness.

For ε = 1/2 and any small δ > 0 one can find a fixed point xδ ∈ (0, δ) and an
integer N ∈ N large enough such that

〈1/2, φ(1/2), . . . , φN (1/2), 0, xδ, xδ, xδ, . . . 〉

is an asymptotic δ-pseudo-orbit. Any point that could potentially ε-shadow this
pseudo-orbit would have to be in (0, 1). The orbit of such a point would eventually
converge to 0 and would not asymptotically shadow the pseudo-orbit above.

We have already said that Pilyugin ruled out the possibility of a circle home-
omorphism in the region marked by (d) on Figure 3. If one drops the bijectivity
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0 1

1

−1

−1

(a) A map with s-LmSP

0 1

1

−1

−1

(b) LmSP but not SP

0 1

1

−1

−1

(c) SP, LmSP, not s-LmSP

Figure 4. Circle homeomorphisms with various shadowing properties

requirement and asks only for continuity, the answer seems to be unknown. Until
recently it was unknown whether such a system exists on any compact metric space.

To see why this might be interesting, recall that any ω-limit set is also an ICT set.
As any ICT set can be traced in the limit by an asymptotic pseudo-orbit, for systems
with LmSP, ICT sets and ω-limit sets coincide. If SP necessarily implied LmSP
then this would give a positive resolution to a problem posed by Barwell, Davies,
and Good [BDG12, Conjectures 1.2 and 1.3]. They asked if for a tent map (or more
generally any dynamical system on a compact metric space) with SP, ICT (f) = ωf .

The answer to [BDG12, Conjecture 1.2] came from Meddaugh and Raines in
[MR13]. They showed that the set ICT (f) must be closed in 2X , the hyperspace of
closed non-empty subsets of X furnished with the Hausdorff distance. Assuming
SP they further show that the closure of ωf in 2X is equal to ICT (f):

ωf = ICT (f).
When combined with a result by Blokh, Bruckner, Humke, and Smítal [BBHS96]
that the set ωf is already closed for any continuous map f : [0, 1]→ [0, 1], this yields
the positive answer for all interval maps.

Their resolution did not, however, resolve whether SP implies LmSP even for
interval maps. Indeed, we believe that this question is still open.

Question 3.1. Is it true that for interval maps SP implies LmSP?

Surprisingly, the answer to [BDG12, Conjecture 1.3] is negative as we shall now
show. We shall construct a system (Theorem 3.3) on the Cantor set with SP but
for which ICT (f) 6= ωf . This in particular implies that this system does not have
LmSP and thus lies in the region (d). Independently, Gareth Davies found a similar
example which remains unpublished.

3.1. A system in SP ∩ (LmSP)c. Let A be an alphabet, i.e. a finite discrete set
of symbols. Recall that a word over A is a finite sequence of elements in A. If one
can find a finite collection of words W such that a shift space X is precisely the
set of sequences in which none of the words from W appears, then that shift space
is said to be of finite type. Walters in [Wal78] showed that shifts of finite type are
precisely those shift spaces with the shadowing property.

Proposition 3.2 (Walters [Wal78]). A shift space over a finite alphabet is of finite
type if and only if it has the shadowing property.
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We can now proceed with the construction. We fix the alphabet A = {0, 1} and
for each k ∈ N0 we set

Xk = {ξ ∈ Σ2 | any two 1s in ξ are separated with at least (k + 1) 0s},
and

X∞ = {ξ ∈ Σ2 | ξ has at most one symbol 1}.
Note that each Xk is in fact a shift space of finite type where the set of forbidden
words is exactly

{10 . . . 0︸ ︷︷ ︸
l zeros

1 | 0 ≤ l ≤ k} = {11, 101, 1001, . . . , 10 . . . 0︸ ︷︷ ︸
k zeros

1}.

We also set N = {1/2k | k ∈ N ∪ {0,∞}} where 1/2∞ = 0 by the convention. The
topology on N is taken to be inherited from the real line, and the observant reader
might realise that N and X∞ are in fact homeomorphic. The space N × Σ2 is a
compact metric space equipped with the max-distance:

d((a1, ξ1), (a2, ξ2)) = max{|a1 − a2|, dΣ2(ξ1, ξ2)},
where dΣ2 is the standard metric on the full shift Σ2.

On N × Σ2 we define a continuous map f as the product of the identity on N
and the shift map σ on Σ2:

f(a, ξ) = (a, σ(ξ)).
This is easily seen continuous. Finally, we take

X = {(a, ξ) ∈ N × Σ2 | a = 1
2k and ξ ∈ Xk, for some k ∈ N ∪ {0,∞}},

or equivalently

X = {0} ×X∞ ∪
∞⋃
k=0

{
1/2k

}
×Xk.

This is clearly an f -invariant subset of N ×Σ2. We below show that X is also closed
and that the map f restricted to X provides the counter-example we have been
looking for.

Theorem 3.3.
:::::
(X, f)

:::
is

:
a
::::::::::
dynamical

:::::::
system

:::
on

::
a
::::::::
compact

:::::::
metric

:::::
space

::::::
which

::::::
exhibits

::::::::::
shadowing

:::::
(SP)

:::
but

::::
for

:::::
which

:::::::::::::
ωf 6= ICT (f).

:

Let us briefly describe the idea behind the construction. The map f on each space{
1/2k

}
×Xk is conjugated to a shift of finite type and hence, by Proposition 3.2,

f has shadowing on those subspaces. The space {0} ×X∞ on the other hand is
not of finite type and does not have shadowing. In the construction we exploit the
fact that the sequence of spaces

〈{
1/2k

}
×Xk

〉
k∈N0

converge to {0} ×X∞ in the
hyperspace 2X as k →∞. This allows us to shadow pseudo-orbits in the subspace
{0} ×X∞ using real orbits in the space

{
1/2k

}
×Xk for k large enough. In this

way we succeeded (Lemma 3.5) to impose shadowing on f in the whole space by
having shadowing on a family of proper subspaces approximating X in the limit.

It remains to be seen that for this system ωf 6= ICT (f). The counter-example is
the set {0}×X∞ which is not an ω-limit set of any of the points in X (Theorem 3.3).
Yet, it is the limit of the sequence of subspaces

{
1/2k

}
×Xk as k → ∞, each of

which is an ω-limit set of a point in X. This, when combined with the result of
Meddaugh and Raines, implies that {0} ×X∞ is an ICT set but not an ω-limit set.
We shall now proceed with proving these claims.
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Lemma 3.4. X is a closed and hence a compact subset of N × Σ2.

Proof. Let (a, ξ) be a point in N × Σ2 \ X. If a = 1/2k > 0, this means that
ξ ∈ Σ2 \Xk. Since Xk is closed in Σ2 there is an open set V around ξ that does
not intersect Xk. Since U = {a} is an open (and closed) set in N , U × V is an open
neighbourhood containing (a, ξ) that does not intersect X.

If a = 0 and ξ 6∈ X∞ then there exists a k ∈ N0 so that word 10 . . . 0︸ ︷︷ ︸
k zeros

1 occurs

somewhere in ξ. Take V to be the set of all 0-1 sequences in Σ2 which have this
word at the same position as ξ does. This set is easily seen to be clopen. It is indeed
what is called a cylinder set in Σ2 (see e.g. [LM95]). Setting U = [0, 1/2k) ∩ N
one readily checks that U × V is an open neighbourhood containing (a, ξ) but not
intersecting X. �

Lemma 3.5. (X, f) has shadowing.

Proof. Let ε > 0 and additionally assume ε < 1. Choose a k ∈ N so that ε/2 ≤
1/2k < ε. Set δ = min{ε/4, δ1(ε), . . . , δk(ε)} > 0, where each δj(ε) for 1 ≤ j ≤ k
is a positive number chosen so that every δj(ε)-pseudo-orbit in Xj is ε-shadowed.
This can be done by Proposition 3.2. We claim that for this δ, every δ-pseudo-orbit
in X is ε-shadowed by a real orbit.

Let 〈(an, ξn)〉n∈N0 be a δ-pseudo-orbit in X. We shall distinguish two cases.
Case 1. We first suppose that a0 > ε/2. If a1 > a0 then a1 ≥ 2a0 and hence

|a1 − a0| > ε/2 > δ. On the other hand, if a1 < a0 then 2a1 ≤ a0 and
hence |a0 − a1| ≥ a0/2 > ε/4 ≥ δ. Therefore, it must be that a1 = a0 and
inductively an = a0 for all n ∈ N. Which means that in this case the whole
pseudo orbit is actually contained in the same subspace

{
1/2m

}
×Xm where

a0 = 1/2m.
Clearly m ≤ k. Since δ ≤ δm(ε), we have that 〈ξn〉n∈N0 is a δm(ε)-pseudo-

orbit in Xm, hence we can choose a point ξ∗ that ε-shadows it. But then
the point (a0, ξ

∗) clearly ε-shadows the initial pseudo-orbit.
Case 2. We now suppose a0 ≤ ε/2. A similar argument to the one above shows

that an ≤ ε/2, and hence an ≤ 1/2k for all n ∈ N. Since (Xn)n∈N0 form
a decreasing sequence of sets, each ξn is contained in the space Xk. The
sequence 〈ξn〉n∈N0 is a δk(ε)-pseudo-orbit in Xk, hence there exists a point
ξ∗ that ε-shadows it. Again, it is readily checked that (1/2k, ξ∗) ε-shadows
the initial pseudo-orbit. �

(X, f) is a dynamical system on a compact metric space which exhibits shadowing
(SP) but for which ωf 6= ICT (f).

Proof of Theorem 3.3. It suffices to note that {0} ×X∞ is an ICT set that is not
an ω-limit set of any of the points in X. If it were an ω-limit set of some point
(a, ξ) ∈ X, it would have to be that a = 0. But it is not hard to see that the ω-limit
set of any point in {0} × X∞ is the singleton {(0, 0∞)} as they are all pre-fixed
points. Here by 0∞ we denote the sequence in Σ2 consisting only of zeros. Therefore
the set {0} ×X∞ is not in ωf .

It remains to be shown that {0} ×X∞ is in ICT (f). To simplify notation we
shall instead show that the set X∞ is ICT under the shift map σ. This is clearly an
equivalent statement. Let δ > 0 and let ξ and η be any two points in X∞. We can
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always choose k ∈ N such that σk(ξ) = 0∞. If η = 0∞ we are done as

〈ξ, σ(ξ), . . . , σk(ξ) = η〉
is a δ-pseudo-orbit between ξ and η.

If otherwise η = 0m10∞ for some m ∈ N0, choose n > m large enough so that
the point ζ = 0n10∞ is δ-close to 0∞. Then one can check that

〈ξ, σ(ξ), . . . , σk(ξ) = 0∞, ζ, σ(ζ), . . . , σn−m(ζ) = η〉
is a δ-pseudo-orbit between ξ and η. �

Dynamical system (X, f) in Theorem 3.3 is not transitive but it is possible to
modify it and produce a transitive system on the Cantor set with SP but not LmSP.

Theorem 3.6.
:::::
There

:::::
exists

::
a

:::::::::::
topologically

::::::::
transitive

::::::::::
dynamical

::::::
system

:::
on

:
a
::::::::
compact

::::::
metric

:::::
space

:::::
which

:::::::
exhibits

::::::::::
shadowing

:::::
(SP)

:::
but

:::
for

::::::
which

::::::::::::
ωf 6= ICT (f)

::::
and

::::::
which,

::
in

:::::::::
particular,

:::::
does

:::
not

:::::::
exhibit

:::::
limit

:::::::::
shadowing

:::::::::
(LmSP).

::::::
Below

:::
we

::::
shall

:::::
give

:
a
:::::::
sketch

::
of

:::
the

::::::
proof

::::
but

:::
the

:::::::
details

:::
are

::::
left

::
to

::::
the

::::::
reader.

We shall need the following lemma.

Lemma 3.7. Let (X, f) be a dynamical system and let F1 ⊂ F2 ⊂ · · · ⊂ X be an
increasing sequence of closed f-invariant subsets converging to X,

⋃∞
i=1 Fi = X.

Further assume that for each n ∈ N there exists a continuous map πn : X → Fn
which is:

(1) non-expanding, i.e. d(πn(x), πn(y)) ≤ d(x, y),
(2) commuting with f , i.e. πn ◦ f = f ◦ πn,
(3) and is a nearest point projection, i.e. d(x, πn(x)) = min{d(x, y) : y ∈ Fn}

(note that such πn is a retraction of X onto Fn).
If (Fn, f |Fn) has shadowing for each n ∈ N then so does (X, f).

Proof. Let ε > 0. Choose n ∈ N large enough so that Fn and X are ε/2-close when
measured in Hausdorff distance on 2X . As πn is a nearest point projection, this
implies that
(3.1) d(x, πn(x)) ≤ ε/2, for all x ∈ X.
Now let δ = δn(ε/2) > 0 be provided by the shadowing property in (Fn, f |Fn)
associated to ε/2. We claim that this δ suffice.

To this end, let 〈x0, x1, . . . 〉 be a δ-pseudo-orbit in X. The properties of πn ensure
that 〈πn(x0), πn(x1), . . . 〉 is still a δ-pseudo-orbit in Fn. This pseudo-orbit can be
ε/2-shadowed by a point y ∈ Fn. But now using (3.1) one easily checks that y is
ε-shadowing the original pseudo-orbit 〈x0, x1, . . . 〉. This completes the proof. �

This lemma can be seen as a generalisation of Lemma 3.5. Each of the sets Fn =⋃n−1
k=0

{
1/2k

}
×Xk is a disjoint union of n shifts of finite type and therefore has shad-

owing. It is not hard to check that the projections πn : (a, ξ) 7→ (max{a, 1/2n−1}, ξ)
satisfy all the required properties.

Let us now look at another way to represent the system from Theorem 3.3.
Let ak = 1/3k+1 and bk = 1 − 1/3k+1 (any two other sequences converging to
0 and 1 respectively would work equally well). For each k ∈ N0 the system
({1/2k}×Xk, f |{1/2k}×Xk

) is naturally isomorphic to a shift of finite type Xk which
in turn is isomorphic to a shift of finite type where all the occurrences of symbol 0
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are replaced by symbol ak and where all the occurrences of symbol 1 are replaced
by bk. Now the disjoint union Fn =

⋃n−1
k=0

{
1/2k

}
×Xk can be simply represented

as a shift of finite type over symbols {a0, . . . , an−1; b0, . . . , bn−1} where any word
containing ak/bk and al/bl with k 6= l is forbidden and, furthermore, any bk must
be preceded (if possible) and followed by at least (k + 1) aks. The set X is then the
closure of the union

⋃∞
n=1 Fn inside the countable product {a0, . . . ; 0; b0, . . . ; 1}N

where the base set is inheriting the topology from the interval [0, 1]. The map
providing dynamics is the shift map σ.

So far we only gave a different description of the example from Theorem 3.3.
The advantage being that we disposed of the first coordinate and are now able to
represent our system as a shift space albeit over a countable alphabet. The next
step is to make the system transitive. We introduce an extra symbol 2 and for each
n ∈ N we let Fn be a shift of finite type over {2; a0, . . . , an−1; b0, . . . , bn−1} where
as before any bk must be preceded (if possible) and followed by at least (k + 1) aks,
and any two symbols ak and al with k 6= l need to be separated by at least (k+ l) 2s.
Now taking the closure of

⋃∞
n=1 Fn inside {2; a0, . . . ; 0; b0, . . . ; 1}N gives a transitive

example with shadowing where the ICT set coinciding with X∞ is not ω-limit set
of the shift map. We leave the details to the reader.

Related to these results, Good and Meddaugh in [GM18] very recently obtained a
characterisation of systems in which ωf = ICT (f). They show that this is equivalent
to another technical property named orbital limit shadowing, a definition of which
can be found in their paper. Our example thus also shows that a system can exhibit
shadowing without having orbital limit shadowing.

4. Shadowing on maximal ω-limit sets

In Theorem 2.7 we saw that for tent maps shadowing implies shadowing on the
core. Recall that

:::
For

::::::::::
s ∈ (

√
2, 2] the core of a tent map

::
fs is its maximal ω-limit set.

::
It

::
is

::
an

:::::::
ω-limit

:::
set

:::
as

::
it

::
is

::::::
clearly

:::
an

:::::::::
invariant

:::
set

::::
and

:::
the

:::::
map

::
fs::

is
:::::::::
transitive

:::
on

::
its

::::
core

:::::
(e.g.

:::
see

:::::::::::::::::::::::
[BB04, Remark 3.4.17]),

:::::
hence

:::::
there

::::::
exists

:
a
:::::
point

::::::
whose

:::::
orbit

::
is

:::::
dense

::
in

::::
the

::::
core.

:::::
The

::::
core

::
is

::
a

::::::::
maximal

::::::
ω-limit

::::
set

::
as

::::
the

:::::::::
trajectory

::
of

::::
any

:::::
point

:::::
whose

:::::::
ω-limit

:::
set

::::::::
contains

::::
the

::::
core

::::::
would

::::::::::
eventually

::::
have

:::
to

:::::
enter

:::
the

::::::::
interior

::
of

:::
the

:::::
core,

::::
and

::::::::
therefore

:::
its

:::::::
ω-limit

:::
set

::::::
would

:::::
after

:::
all

::::
have

:::
to

:::
be

:::::::::
contained

::
in

::::
the

::::
core.

The results we prove below can thus be seen as generalisations of that result
::::::::::
generalising

:::
the

::::::::::
implication

:::::::::::
(2) =⇒ (5)

:::
of

::::::::
Theorem

:::
2.7.

Theorem 4.1. Let f : [0, 1] → [0, 1] be an interval map with shadowing property
and further assume that there are only finitely many maximal ω-limit sets for f .
Then the restriction of f to any of these maximal ω-limit sets also has shadowing.

Proof. Let A1, . . . , Ak be the collection of all maximal ω-limit sets for f . By a
result of Meddaugh and Raines [MR13, Corollary 6] we know that for a map with
shadowing ω-limit sets and internally chain transitive (ICT) sets coincide. It is clear
that any two maximal ICT sets must be disjoint, as otherwise their union would
again be an ICT set contradicting their maximality. One can also see this directly
as follows.

Assume that Ai ∩ Aj 6= ∅ for some i 6= j. Then there exists an asymptotic
pseudo-orbit 〈zi〉∞i=1 such that set of its accumulation points contains Ai ∪Aj . But
then, constructing appropriate periodic pseudo-orbits it is not hard to see that for
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every n there is a point yn such that B(ω(yn, f), 1/n) ⊃ Ai ∪Aj . Since the space
of all ω-limit sets of an interval map is closed due to a result by Blokh, Bruckner,
Humke, and Smítal [BBHS96] and since the hyperspace 2X is compact, this would
imply that there exists an ω-limit set A ⊃ Ai ∪Aj which is a contradiction. Indeed
Ai ∩Aj = ∅ for i 6= j.

Denote η = mini6=j dist(Ai, Aj)/2 > 0, fix any ε > 0 and let δ = δ(ε̂) be provided
by the shadowing property of f to ε̂ = min{ε/2, η}. Fix any Ai and any finite
δ-pseudo-orbit 〈x0, . . . , xn〉 ⊂ Ai. Since Ai is an ω-limit set, it is internally chain
transitive and therefore there are xn+1, . . . , xm−1 ∈ Ai such that the sequence
〈x0, . . . , xm−1, x0〉 is a (periodic) δ-pseudo-orbit. Set yi = x(i mod m) for all i ≥ 0
and let z be a point that is ε/2-tracing δ-pseudo-orbit 〈yi〉∞i=0. The set ω(z, f) must
be contained in some maximal ω-limit set, and from our choice of η it is not hard
to see that this must be Ai.

Now let q ∈ ω(z, f) ⊂ Ai be any limit point of the sequence 〈fnm(z)〉∞n=0. It is
readily checked that q is ε-tracing the pseudo-orbit 〈yi〉∞i=0 and in particular the
first portion of it 〈x0, . . . , xn〉. This shows that any finite δ-pseudo-orbit consisting
of points in Ai can be ε-traced by a point form Ai. This shows that f |Ai has the
shadowing property which completes the proof. �

In [Blo95, Theorem 5.4] Blokh proved that for interval maps the set ω(f) =⋃
x∈X ω(x, f) has a spectral decomposition into a family of maximal ω-limit sets:

ω(f) = Xf ∪
(⋃

α

S(α)
ω

)
∪
(⋃

i

Bi

)
where Xf is a collection of periodic orbits that are also maximal ω-limit set (sets
of genus 0 in Blokh’s notation); each of S(α)

ω s is a solenoidal limit set and none of
them contains a periodic orbit (genus 1); finally each Bi is a so-called basic set,
an infinite maximal limit set containing a periodic orbit (genus 2). It turns out
[Blo95, Theorem PM6] (also [Blo86]) that for piecewise linear maps with a constant
slope s > 1 there are no sets of genus 1 in this decomposition and that the number
of maximal ω-limit sets of genus 0 and 2 is finite. Combining this with the previous
theorem we obtain the following result.

Corollary 4.2. Let f : [0, 1]→ [0, 1] be a piecewise linear map with a constant slope
s > 1 and the shadowing property. Then the restriction of f to any of its maximal
ω-limit sets has shadowing.

Remark 4.3. The assumption of maximality here is crucial as the ICT set W =⋃∞
i=0{

1
2i }∪{0} is an ω-limit set of the full tent map f2. Note that f2 has shadowing

but its restriction f2|W does not.

Theorem 4.4. Let f : [0, 1]→ [0, 1] be a piecewise monotone map with shadowing
:::::::
property. Then the restriction of f to any of its ω-limit sets with non-empty interior
has s-limit shadowing

:::::::
property.

Proof. We first observe that any such limit set ω(x) must in fact be a cycle of
disjoint closed intervals (see e.g. [BC92, IV. Lemma 5]). Namely ω(x) =

⋃p−1
i=0 Ji

where p ∈ N, sets Ji are p pairwise disjoint segments contained in [0, 1], and
f(Ji) = J(i+1 mod p). Furthermore, the map fp|J0 : J0 → J0 is transitive (as it has
a dense orbit) and it is also piecewise monotone. The result will now follow from
Corollary 2.4 if we could only show that fp|J0 has shadowing. We remind the reader
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that both properties: shadowing and s-limit shadowing hold for a power fp of the
map f if and only if they hold for the map itself.

Let ε > 0 and without loss of generality we assume that ε < diam(J0)/2. Let
δ = δ(ε) > 0 be provided by the shadowing property of fp over the whole interval
[0, 1]. We claim that this δ will suffice. To this end, take a finite δ-pseudo-orbit
〈x0, . . . , xn〉 contained in J0. As fp is transitive on J0 we can extend this pseudo-
orbit to a longer δ-pseudo-orbit 〈x−m, x−m+1, . . . , x0, . . . , xn〉 where x−m ∈ J0
denotes the midpoint of the segment J0. Let z ∈ I be a point that is ε-tracing this
pseudo-orbit. But since d(z, x−m) < ε it must be that z ∈ J0. Therefore the fp-orbit
of z is actually contained in J0 and the point fmp(z) is ε-tracing 〈x0, . . . , xn〉 under
the action of fp. This completes the proof. �

Remark 4.5. The converse to Theorem 4.4 does not hold as the double tent map
shows. The double tent map f2,2 : [−1, 1] → [−1, 1] is defined as a symmetric
extension of the standard tent map f2:

f2,2(x) =
{
f2(x) if x ∈ [0, 1],
−f2(−x) if x ∈ [−1, 0).

This map is piecewise monotone with a constant slope s = 2 and does not have
shadowing as the set of critical points {−1,−1/2, 1/2, 1} is not linked (1 is mapped
to a fixed point 0). The restrictions f2,2|[0,1] and f2,2|[−1,0] to its two maximal ω-limit
sets both have linking (as 0 is now also a critical point) and thus by Theorem 2.2
s-limit shadowing.

5. Inverse limit space

Theorem 5.1. Let X be a compact metric space and f : X → X a continuous onto
map. Let σ be the shift map on the inverse limit space lim←− (X, f). Then:

(1) σ has shadowing if and only if f has shadowing,
(2) σ has limit shadowing if and only if f has limit shadowing,
(3) σ has s-limit shadowing if and only if f has s-limit shadowing.

Proof. The first equivalence was proven by Chen and Li [CL92, Theorem 1.3], the
second by Gu and Sheng [GS06, Theorem 3.2], and we shall now see that the third
one also holds. While the idea is clear, one needs to be careful with indexing
everything properly.

First we will show that if σ has s-limit shadowing then f has s-limit shadowing.
Without loss of generality we may assume that diam(X) = 1. Fix any ε > 0
and let δ > 0 be provided to ε/2 by s-limit shadowing of σ. Let N be such that∑∞
i=N 2−i < δ/2 and let γ ∈ (0, ε

4N ) be such that if x, y ∈ X satisfy d(x, y) < γ

then d(f i(x), f i(y)) < min{ δ4 ,
ε

4N } for i = 0, . . . , N . We claim that this γ suffices.
Fix any asymptotic γ-pseudo orbit 〈xn〉∞n=0 for f . There exists a strictly increas-

ing sequence of positive integers 〈uk〉∞k=1 such that for all n ≥ uk − N we have
d(f i+1(xn), f i(xn+1)) < γ/(k + 1)2 for i = 0, . . . , k +N − 1. For technical reasons
we put u0 = 0. Define a sequence 〈zn〉∞n=0 ⊂ X by taking any y ∈ f−N (x0), putting
x−i = fN−i(y) for 0 ≤ i ≤ N and next:

zn =
{
xn−N if n ≤ u1,

fk(xn−k−N ) if uk + k ≤ n ≤ uk+1 + k.
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We define a sequence of points
〈
y(i)〉∞

i=0 ⊂ lim←− (X, f) by the following rule. For
n ≤ N and i ≥ 0 we put y(i)

n = fN−n(zi). For n > N we have two cases when
defining y(i). If i ∈ [uk + k, uk+1 + k] for some k ≥ 0 and if n ≤ N + k then we put
y

(i)
n = fk−n+N (xi−k−N ) and in the other case we take any y(i)

n ∈ f−1(y(i)
n−1) which

is possible, since f is onto. Note that if n ≤ N + k then we have already defined
y

(i)
N = zi = fk(xi−k−N ) and we also put y(i)

N+1 = fk−1(xi−k−N ) and therefore
f(y(i)

n+1) = y
(i)
n for every n ≥ 0, so with this definition indeed y(i) ∈ lim←− (X, f). We

claim that the sequence y(i) constructed by the above procedure is an asymptotic
δ-pseudo orbit for σ.

Firstly, we claim that 〈zn〉∞n=0 ⊂ X is an asymptotic γ-pseudo orbit. Fix any
n ∈ N and assume that both n and n + 1 belong to [uk + k, uk+1 + k]. Then
d(f(zn), zn+1) = d(fk+1(xn−k−N ), fk(xn−k−N+1)) < γ/(k + 1)2. In the second
case n = uk+1 + k we have d(f(zn), zn+1) = d(fk+1(xn−k−N ), fk+1(xn−k−N )) = 0.
Indeed, the claim holds.

By the choice of γ for n ≤ N we have

d(f(y(i)
n ), y(i+1)

n ) = d(fN−n(f(zi)), fN−n(zi+1)) < δ/4

and so

d(σ(y(i)), y(i+1)) =
∞∑
n=0

2−nd(f(y(i)
n ), y(i+1)

n ) ≤
N∑
n=0

2−n−2δ +
∞∑

n=N+1
2−n

< δ/2 + δ/2

showing that y(i) is indeed a δ-pseudo orbit for σ. To show that it is an asymptotic
pseudo-orbit it suffices to show that

〈
y

(i)
n

〉∞
i=0 is an asymptotic pseudo-orbit for any

sufficiently large n. To this end, fix any n > N . Then if k is such that k ≥ n−N ,
then for all i ∈ [uk + k, uk+1 + k) we have i− k −N ≥ uk −N and so:

d(f(y(i)
n ), y(i+1)

n ) = d(fk−n+N (f(xi−k−N )), fk−n+N (xi−k−N+1)) < γ

(k + 1)2 ,

while if i = uk+1 + k then:

d(f(y(i)
n ), y(i+1)

n ) = d(fk−n+N (f(xi−k−N )), fk−n+N+1(xi−k−N )) = 0.

This immediately implies that
〈
y(i)〉∞

i=0 is an asymptotic pseudo orbit for σ.
Now, let p ∈ lim←− (X, f) be a point asymptotically ε/2-tracing pseudo-orbit〈

y(i)〉∞
i=0 ⊂ lim←− (X, f). Then by the definition of metric in lim←− (X, f) the coordinate

p0 ∈ X of p is asymptotically ε/2-tracing the sequence
〈
y

(i)
0
〉∞
i=0 ⊂ X. We then

have by the definition of γ that:

d(f i(p0), zi+N ) ≤ d(f i(p0), fN (zi)) +
N−1∑
j=0

d(fN−j(zi+j), fN−j−1(zi+j+1))

≤ d(f i(p0), y(i)
0 ) +N

ε

4N < 3ε/4.
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The same calculation yields also that limi→∞ d(f i(p0), zi+N ) = 0. Furthermore, if
i ∈ [uk + k −N, uk+1 + k −N ] then zi+N = fk(xi−k) and so

d(xi, zi+N ) = d(xi, fN (zi)) = d(xi, fk(xi−k))

≤
k−1∑
j=0

d(f j(xi−j), f j+1(xi−j−1))

≤ k γ

(k + 1)2 ≤
γ

k + 1 < ε/4.

The same calculation, in particular the bound γ
k+1 , yields limi→∞ d(xi, zi+N ) = 0.

Putting together these two calculations shows that p0 is asymptotically ε-tracing
the pseudo-orbit 〈xn〉∞n=0 ⊂ X and so the proof of the first implication is completed.

Next we prove that if f has s-limit shadowing then σ has s-limit shadowing.
Fix any ε > 0 and let N be such that

∑∞
i=N 2−i < ε/2. There is δ > 0 such that

if d(x, y) < δ then d(f i(x), f i(y)) < ε
2N for i = 0, . . . , N . There is γ > 0 such

that if 〈xn〉∞n=0 is an asymptotic γ-pseudo-orbit then it is δ-traced. Let
〈
y(i)〉∞

i=0 ⊂
lim←− (X, f) be an asymptotic 2−Nγ-pseudo orbit. Then the sequence

〈
y

(i)
N

〉∞
i=0 is an

asymptotic γ-pseudo orbit, so let z ∈ X be a point which asymptotically δ-traces it.
Define q ∈ lim←− (X, f) by putting qi = fN−i(z) for 0 ≤ i ≤ N , and for i > N let qi
be any point in f−1(qi−1). We claim that q is asymptotically ε-tracing

〈
y(i)〉∞

i=0.
Note that ε-tracing is almost obvious, because for n ≤ N we have

d(y(i)
n , f i(qn)) = d(fN−n(y(i)

N ), fN−n(f i(qN ))) < ε

2N
and therefore d(y(i), σi(q)) ≤ ε

2 +
∑N
n=0 d(y(i)

n , f i(qn)) < ε. By the same argument
limi→∞ d(y(i)

n , f i(qn)) = 0 for every n ≤ N . But if we fix any n > N then for
i ≥ n−N we have

d
(
y(i)
n , f i(qn)

)
= d
(
y(i)
n , f i−(n−N)(qN )

)
≤
n−N∑
j=1

d
(
y

(i−(j−1))
n−(j−1) , y

(i−j)
n−j

)
+ d
(
y

(i−(n−N))
N , f i−(n−N)(qN )

)
=
n−N∑
j=1

d
(
y

(i−j+1)
n−j+1 , f(y(i−j)

n−j+1)
)

+ d
(
y

(i−(n−N))
N , f i−(n−N)(qN )

)
and so also in this case limi→∞ d(y(i)

n , f i(qn)) = 0, where we use the fact that z = qN
is asymptotically tracing

〈
y

(i)
N

〉∞
i=0 and that

〈
y

(i)
k

〉∞
i=0 is an asymptotic pseudo-orbit

for each k ≥ 0. Indeed, q is asymptotically tracing
〈
y(i)〉∞

i=0 which completes the
proof. �
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[Sin72] Ja. G. Sinăı, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166),
21–64. MR0399421

[Wal78] Peter Walters, On the pseudo-orbit tracing property and its relationship to stability,
The structure of attractors in dynamical systems (Proc. Conf., North Dakota State
Univ., Fargo, N.D., 1977), 1978, pp. 231–244. MR518563 (80d:58055)

(C. Good) School of Mathematics, University of Birmingham, Birmingham, B15 2TT,
UK

E-mail address, C. Good: c.good@bham.ac.uk

(P. Oprocha) AGH University of Science and Technology, Faculty of Applied Mathe-
matics, al. Mickiewicza 30, 30-059 Kraków, Poland – and – National Supercomputing
Centre IT4Innovations, Division of the University of Ostrava, Institute for Research
and Applications of Fuzzy Modeling, 30. dubna 22, 70103 Ostrava, Czech Republic

E-mail address: oprocha@agh.edu.pl

(M. Puljiz) Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, 10000 Zagreb, Croatia

E-mail address, M. Puljiz: puljizmate@gmail.com, mpuljiz@fer.hr


	1. Preliminaries
	2. Shadowing condition
	3. How do limit shadowing, s-limit shadowing, and classical shadowing relate to each other
	3.1. A system in SP \LmSP

	4. Shadowing on maximal w-limit sets
	5. Inverse limit space
	Acknowledgements
	References

