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Edge-disjoint double rays in infinite graphs:

a Halin type result

Nathan Bowler∗ Johannes Carmesin† Julian Pott‡

Fachbereich Mathematik
Universität Hamburg
Hamburg, Germany

Abstract

We show that any graph that contains k edge-disjoint double rays for

any k ∈ N contains also infinitely many edge-disjoint double rays. This

was conjectured by Andreae in 1981.

1 Introduction

We say a graph G has arbitrarily many vertex-disjoint H if for every k ∈ N there

is a family of k vertex-disjoint subgraphs of G each of which is isomorphic to H.

Halin’s Theorem says that every graph that has arbitrarily many vertex-disjoint

rays, also has infinitely many vertex-disjoint rays [5]. In 1970 he extended this

result to vertex-disjoint double rays [6]. Jung proved a strengthening of Halin’s

Theorem where the initial vertices of the rays are constrained to a certain vertex

set [7].

We look at the same questions with ‘edge-disjoint’ replacing ‘vertex-disjoint’.

Consider first the statement corresponding to Halin’s Theorem. It suffices to

prove this statement in locally finite graphs, as each graph with arbitrarily many

edge-disjoint rays contains a locally finite union of tails of these rays. But the

statement for locally finite graphs follows from Halin’s original Theorem applied

to the line-graph.

This reduction to locally finite graphs does not work for Jung’s Theorem or

for Halin’s statement about double rays. Andreae proved an analog of Jung’s

Theorem for edge-disjoint rays in 1981, and conjectured that a Halin-type The-

orem would be true for edge-disjoint double rays [1]. Our aim in the current

paper is to prove this conjecture.
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More precisely, we say a graph G has arbitrarily many edge-disjoint H if for

every k ∈ N there is a family of k edge-disjoint subgraphs of G each of which is

isomorphic to H, and our main result is the following.

Theorem 1. Any graph that has arbitrarily many edge-disjoint double rays has

infinitely many edge-disjoint double rays.

Even for locally finite graphs this theorem does not follow from Halin’s anal-

ogous result for vertex-disjoint double rays applied to the line graph. For ex-

ample a double ray in the line graph may correspond, in the original graph, to

a configuration as in Figure 1.

Figure 1: A graph that does not include a double ray but whose line graph does.

A related notion is that of ubiquity. A graph H is ubiquitous with respect to

a graph relation ≤ if nH ≤ G for all n ∈ N implies ℵ0H ≤ G, where nH denotes

the disjoint union of n copies of H. For example, Halin’s Theorem says that rays

are ubiquitous with respect to the subgraph relation. It is known that not every

graph is ubiquitous with respect to the minor relation [2], nor is every locally

finite graph ubiquitous with respect to the subgraph relation [8, 9], or even the

topological minor relation [2, 3]. However, Andreae has conjectured that every

locally finite graph is ubiquitous with respect to the minor relation [2]. For more

details see [3]. In Section 6 (the outlook) we introduce a notion closely related

to ubiquity.

The proof is organised as follows. In Section 3 we explain how to deal

with the cases that the graph has infinitely many ends, or an end with infinite

vertex-degree. In Section 4 we consider the ‘two ended’ case: That in which

there are two ends ω and ω′ both of finite vertex-degree, and arbitrarily many

edge-disjoint double rays from ω to ω′.

The only remaining case is the ‘one ended’ case: That in which there is a

single end ω of finite vertex-degree and arbitrarily many edge-disjoint double

rays from ω to ω. One central idea in the proof of this case is to consider 2-

rays instead of double rays. Here a 2-ray is a pair of vertex-disjoint rays. For

example, from each double ray one obtains a 2-ray by removing a finite path.

The remainder of the proof is subdivided into two parts: In Subsection 5.3 we

show that if there are arbitrarily many edge-disjoint 2-rays into ω, then there are

infinitely many such 2-rays. In Subsection 5.2 we show that if there are infinitely
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many edge-disjoint 2-rays into ω, then there are infinitely many edge-disjoint

double rays from ω to ω.

We finish by discussing the outlook and mentioning some open problems.

2 Preliminaries

All our basic notation for graphs is taken from [4]. In particular, two rays in a

graph are equivalent if no finite set separates them. The equivalence classes of

this relation are called the ends of G. We say that a ray in an end ω converges

to ω. A double ray converges to all the ends of which it includes a ray.

2.1 The structure of a thin end

It follows from Halin’s Theorem that if there are arbitrarily many vertex-disjoint

rays in an end of G, then there are infinitely many such rays. This fact motivated

the central definition of the vertex-degree of an end ω: the maximal cardinality

of a set of vertex-disjoint rays in ω.

An end is thin if its vertex-degree is finite, and otherwise it is thick. A pair

(A,B) of edge-disjoint subgraphs of G is a separation of G if A ∪ B = G. The

number of vertices of A ∩B is called the order of the separation.

Definition 2. Let G be a locally finite graph and ω a thin end of G. A countable

infinite sequence ((Ai, Bi))i∈N of separations of G captures ω if for all i ∈ N

• Ai ∩Bi+1 = ∅,

• Ai+1 ∩Bi is connected,

•
⋃

i∈NAi = G,

• the order of (Ai, Bi) is the vertex-degree of ω, and

• each Bi contains a ray from ω.

Lemma 3. Let G be a locally finite graph with a thin end ω. Then there is a

sequence that captures ω.

Proof. Without loss of generality G is connected, and so is countable. Let

v1, v2, . . . be an enumeration of the vertices of G. Let k be the vertex-degree

of ω. Let R = {R1, . . . , Rk} be a set of vertex-disjoint rays in ω and let S be the

set of their start vertices. We pick a sequence ((Ai, Bi))i∈N of separations and

a sequence (Ti) of connected subgraphs recursively as follows. We pick (Ai, Bi)

such that S is included in Ai, such that there is a ray from ω included in Bi, and

such that Bi does not meet
⋃

j<i Tj or {vj | j ≤ i}: subject to this we minimise

the size of the set Xi of vertices in Ai ∩Bi. Because of this minimization Bi is

connected and Xi is finite. We take Ti to be a finite connected subgraph of Bi

including Xi. Note that any ray that meets all of the Bi must be in ω.
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By Menger’s Theorem [4] we get for each i ∈ N a set Pi of vertex-disjoint

paths from Xi to Xi+1 of size |Xi|. From these, for each i we get a set of |Xi|
vertex-disjoint rays in ω. Thus the size of Xi is at most k. On the other hand

it is at least k as each ray Rj meets each set Xi.

Assume for contradiction that there is a vertex v ∈ Ai ∩ Bi+1. Let R be a

ray from v to ω inside Bi+1. Then R must meet Xi, contradicting the definition

of Bi+1. Thus Ai ∩Bi+1 is empty.

Observe that
⋃
Pi ∪ Ti is a connected subgraph of Ai+1 ∩Bi containing all

vertices of Xi and Xi+1. For any vertex v ∈ Ai+1 ∩ Bi there is a v–Xi+1 path

P in Bi. P meets Bi+1 only in Xi+1. So P is included in Ai+1 ∩ Bi. Thus

Ai+1 ∩Bi is connected. The remaining conditions are clear.

Remark 4. Every infinite subsequence of a sequence capturing ω also captures

ω.

The following is obvious:

Remark 5. Let G be a graph and v, w ∈ V (G) If G contains arbitrarily many

edge-disjoint v–w paths, then it contains infinitely many edge-disjoint v–w paths.

We will need the following special case of the theorem of Andreae mentioned

in the Introduction.

Theorem 6 (Andreae [1]). Let G be a graph and v ∈ V (G). If there are

arbitrarily many edge-disjoint rays all starting at v, then there are infinitely

many edge-disjoint rays all starting at v.

3 Known cases

Many special cases of Theorem 1 are already known or easy to prove. For

example Halin showed the following.

Theorem 7 (Halin). Let G be a graph and ω an end of G. If ω contains

arbitrarily many vertex-disjoint rays, then G has a half-grid as a minor.

Corollary 8. Any graph with an end of infinite vertex-degree has infinitely

many edge-disjoint double rays.

Another simple case is the case where the graph has infinitely many ends.

Lemma 9. A tree with infinitely many ends contains infinitely many edge-

disjoint double rays.

Proof. It suffices to show that every tree T with infinitely many ends contains a

double ray such that removing its edges leaves a component containing infinitely

many ends, since then one can pick those double rays recursively.

There is a vertex v ∈ V (T ) such that T − v has at least 3 components

C1, C2, C3 that each have at least one end, as T contains more than 2 ends. Let
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ei be the edge vwi with wi ∈ Ci for i ∈ {1, 2, 3}. The graph T r {e1, e2, e3} has

precisely 4 components (C1, C2, C3 and the one containing v), one of which, D

say, has infinitely many ends. By symmetry we may assume that D is neither

C1 nor C2. There is a double ray R all whose edges are contained in C1 ∪C2 ∪
{e1, e2}. Removing the edges of R leaves the component D, which has infinitely

many ends.

Corollary 10. Any connected graph with infinitely many ends has infinitely

many edge-disjoint double rays.

4 The ‘two ended’ case

Using the results of Section 3 it is enough to show that any graph with only

finitely many ends, each of which is thin, has infinitely many edge-disjoint double

rays as soon as it has arbitrarily many edge-disjoint double rays. Any double

ray in such a graph has to join a pair of ends (not necessarily distinct), and there

are only finitely many such pairs. So if there are arbitrarily many edge-disjoint

double rays, then there is a pair of ends such that there are arbitrarily many

edge-disjoint double rays joining those two ends. In this section we deal with

the case where these two ends are different, and in Section 5 we deal with the

case that they are the same. We start with two preparatory lemmas.

Lemma 11. Let G be a graph with a thin end ω, and let R ⊆ ω be an infinite

set. Then there is an infinite subset of R such that any two of its members

intersect in infinitely many vertices.

Proof. We define an auxilliary graph H with V (H) = R and an edge between

two rays if and only if they intersect in infinitely many vertices. By Ramsey’s

Theorem either H contains an infinite clique or an infinite independent set of

vertices. Let us show that there cannot be an infinite independent set in H. Let

k be the vertex-degree of ω: we shall show that H does not have an independent

set of size k + 1. Suppose for a contradiction that X ⊆ R is a set of k + 1 rays

that is independent in H. Since any two rays in X meet in only finitely many

vertices, each ray in X contains a tail that is disjoint to all the other rays in X.

The set of these k+ 1 vertex-disjoint tails witnesses that ω has vertex-degree at

least k + 1, a contradiction. Thus there is an infinite clique K ⊆ H, which is

the desired infinite subset.

Lemma 12. Let G be a graph consisting of the union of a set R of infinitely

many edge-disjoint rays of which any pair intersect in infinitely many vertices.

Let X ⊆ V (G) be an infinite set of vertices, then there are infinitely many

edge-disjoint rays in G all starting in different vertices of X.

Proof. If there are infinitely many rays in R each of which contains a different

vertex from X, then suitable tails of these rays give the desired rays. Otherwise

there is a ray R ∈ R meeting X infinitely often. In this case, we choose the

desired rays recursively such that each contains a tail from some ray in R−R.
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Having chosen finitely many such rays, we can always pick another: we start at

some point in X on R which is beyond all the (finitely many) edges on R used

so far. We follow R until we reach a vertex of some ray R′ in R−R whose tail

has not been used yet, then we follow R′.

Lemma 13. Let G be a graph with only finitely many ends, all of which are

thin. Let ω1, ω2 be distinct ends of G. If G contains arbitrarily many edge-

disjoint double rays each of which converges to both ω1 and ω2, then G contains

infinitely many edge-disjoint double rays each of which converges to both ω1 and

ω2.

Proof. For each pair of ends, there is a finite set separating them. The finite

union of these finite sets is a finite set S ⊆ V (G) separating any two ends of G.

For i = 1, 2 let Ci be the component of G− S containing ωi.

There are arbitrarily many edge-disjoint double rays from ω1 to ω2 that

have a common last vertex v1 in S before staying in C1 and also a common last

vertex v2 in S before staying in C2. Note that v1 may be equal to v2. There are

arbitrarily many edge-disjoint rays in C1 + v1 all starting in v1. By Theorem 6

there is a countable infinite set R1 = {Ri
1 | i ∈ N} of edge-disjoint rays each

included in C1 + v1 and starting in v1. By replacing R1 with an infinite subset

of itself, if necessary, we may assume by Lemma 11 that any two members of R1

intersect in infinitely many vertices. Similarly, there is a countable infinite set

R2 = {Ri
2 | i ∈ N} of edge-disjoint rays each included in C2 + v2 and starting

in v2 such that any two members of R2 intersect in infinitely many vertices.

Let us subdivide all edges in
⋃
R1 and call the set of subdivision vertices

X1. Similarly, we subdivide all edges in
⋃
R2 and call the set of subdivision

vertices X2. Below we shall find double rays in the subdivided graph, which

immediately give rise to the desired double rays in G.

Suppose for a contradiction that there is a finite set F of edges separating X1

from X2. Then vi has to be on the same side of that separation as Xi as there

are infinitely many vi–Xi edges. So F separates v1 from v2, which contradicts

the fact that there are arbitrarily many edge-disjoint double rays containing

both v1 and v2. By Remark 5 there is a set P of infinitely many edge-disjoint

X1–X2 paths. As all vertices in X1 and X2 have degree 2, and by taking an

infinite subset if necessary, we may assume that each end-vertex of a path in P
lies on no other path in P.

By Lemma 12 there is an infinite set Y1 of start-vertices of paths in P
together with an infinite set R′1 of edge-disjoint rays with distinct start-vertices

whose set of start-vertices is precisely Y1. Moreover, we can ensure that each

ray in R′1 is included in
⋃
R1. Let Y2 be the set of end-vertices in X2 of those

paths in P that start in Y1. Applying Lemma 12 again, we obtain an infinite

set Z2 ⊆ Y2 together with an infinite set R′2 of edge-disjoint rays included in⋃
R2 with distinct start-vertices whose set of start-vertices is precisely Z2.

For each path P in P ending in Z2, there is a double ray in the union of

P and the two rays from R′1 and R′2 that P meets in its end-vertices. By

construction, all these infinitely many double rays are edge-disjoint. Each of
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those double rays converges to both ω1 and ω2, since each ωi is the only end

in Ci.

Remark 14. Instead of subdividing edges we also could have worked in the line

graph of G. Indeed, there are infinitely many vertex-disjoint paths in the line

graph from
⋃
R1 to

⋃
R2.

5 The ‘one ended’ case

We are now going to look at graphs G that contain a thin end ω such that there

are arbitrarily many edge-disjoint double rays converging only to the end ω. The

aim of this section is to prove the following lemma, and to deduce Theorem 1.

Lemma 15. Let G be a countable graph and let ω be a thin end of G. Assume

there are arbitrarily many edge-disjoint double rays all of whose rays converge

to ω. Then G has infinitely many edge-disjoint double rays.

We promise that the assumption of countability will not cause problems

later.

5.1 Reduction to the locally finite case

A key notion for this section is that of a 2-ray. A 2-ray is a pair of vertex-disjoint

rays. For example, from each double ray one obtains a 2-ray by removing a finite

path.

In order to deduce that G has infinitely many edge-disjoint double rays,

we will only need that G has arbitrarily many edge-disjoint 2-rays. In this

subsection, we illustrate one advantage of 2-rays, namely that we may reduce

to the case where G is locally finite.

Lemma 16. Let G be a countable graph with a thin end ω. Assume there is a

countable infinite set R of rays all of which converge to ω.

Then there is a locally finite subgraph H of G with a single end which is thin

such that the graph H includes a tail of any R ∈ R.

Proof. Let (Ri | i ∈ N) be an enumeration of R. Let (vi | i ∈ N) be an enumer-

ation of the vertices of G. Let Ui be the unique component of Gr {v1, . . . , vi}
including a tail of each ray in ω.

For i ∈ N, we pick a tail R′i of Ri in Ui. Let H1 =
⋃

i∈NR
′
i. Making use

of H1, we shall construct the desired subgraph H. Before that, we shall collect

some properties of H1.

As every vertex of G lies in only finitely many of the Ui, the graph H1 is

locally finite. Each ray in H1 converges to ω in G since H1 r Ui is finite for

every i ∈ N. Let Ψ be the set of ends of H1. Since ω is thin, Ψ has to be finite:

Ψ = {ω1, . . . , ωn}. For each i ≤ n, we pick a ray Si ⊆ H1 converging to ωi.

Now we are in a position to construct H. For any i > 1, the rays S1 and Si

are joined by an infinite set Pi of vertex-disjoint paths in G. We obtain H from
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H1 by adding all paths in the sets Pi. Since H1 is locally finite, H is locally

finite.

It remains to show that every ray R in H is equivalent to S1. If R contains

infinitely many edges from the Pi, then there is a single Pi which R meets

infinitely, and thus R is equivalent to S1. Thus we may assume that a tail of R

is a ray in H1. So it converges to some ωi ∈ Ψ. Since Si and S1 are equivalent,

R and S1 are equivalent, which completes the proof.

Corollary 17. Let G be a countable graph with a thin end ω and arbitrarily

many edge-disjoint 2-rays of which all the constituent rays converge to ω. Then

there is a locally finite subgraph H of G with a single end, which is thin, such

that H has arbitrarily many edge-disjoint 2-rays.

Proof. By Lemma 16 there is a locally finite graph H ⊆ G with a single end

such that a tail of each of the constituent rays of the arbitrarily many 2-rays is

included in H.

5.2 Double rays versus 2-rays

A connected subgraph of a graph G including a vertex set S ⊆ V (G) is a

connector of S in G.

Lemma 18. Let G be a connected graph and S a finite set of vertices of G. Let

H be a set of edge-disjoint subgraphs H of G such that each connected component

of H meets S. Then there is a finite connector T of S, such that at most 2|S|−2

graphs from H contain edges of T .

Proof. By replacing H with the set of connected components of graphs in H, if

necessary, we may assume that each member of H is connected. We construct

graphs Ti recursively for 0 ≤ i < |S| such that each Ti is finite and has at most

|S| − i components, at most 2i graphs from H contain edges of Ti, and each

component of Ti meets S. Let T0 = (S, ∅) be the graph with vertex set S and

no edges. Assume that Ti has been defined.

If Ti is connected let Ti+1 = Ti. For a component C of Ti, let C ′ be the

graph obtained from C by adding all graphs from H that meet C.

As G is connected, there is a path P (possibly trivial) in G joining two of

these subgraphs C ′1 and C ′2 say. And by taking the length of P minimal, we

may assume that P does not contain any edge from any H ∈ H. Then we can

extend P to a C1–C2 path Q by adding edges from at most two subgraphs from

H— one included in C ′1 and the other in C ′2. We obtain Ti+1 from Ti by adding

Q.

T = T|S|−1 has at most one component and thus is connected. And at most

2|S| − 2 many graphs from H contain edges of T . Thus T is as desired.

Let d, d′ be 2-rays. d is a tail of d′ if each ray of d is a tail of a ray of d′.

A set D′ is a tailor of a set D of 2-rays if each element of D′ is a tail of some

element of D but no 2-ray in D includes more than one 2-ray in D′.

8



Lemma 19. Let G be a locally finite graph with a single end ω, which is thin.

Assume that G contains an infinite set D = {d1, d2, . . . } of edge-disjoint 2-rays.

Then G contains an infinite tailor D′ of D and a sequence ((Ai, Bi))i∈N
capturing ω (see Definition 2) such that there is a family of vertex-disjoint con-

nectors Ti of Ai∩Bi contained in Ai+1∩Bi, each of which is edge-disjoint from

each member of D′.

Proof. Let k be the vertex-degree of ω. By Lemma 3 there is a sequence

((A′i, B
′
i))i∈N capturing ω. By replacing each 2-ray in D with a tail of itself

if necessary, we may assume that for all (r, s) ∈ D and i ∈ N either both r and

s meet A′i or none meets A′i. By Lemma 18 there is a finite connector T ′i of

A′i ∩B′i in the connected graph B′i which meets in an edge at most 2k− 2 of the

2-rays of D that have a vertex in A′i.

Thus, there are at most 2k − 2 2-rays in D that meet all but finitely many

of the T ′i in an edge. By throwing away these finitely many 2-rays in D we

may assume that each 2-ray in D is edge-disjoint from infinitely many of the

T ′i . So we can recursively build a sequence N1, N2, . . . of infinite sets of natural

numbers such that Ni ⊇ Ni+1, the first i elements of Ni are all contained in

Ni+1, and di only meets finitely many of the T ′j with j ∈ Ni in an edge. Then

N =
⋂

i∈NNi is infinite and has the property that each di only meets finitely

many of the T ′j with j ∈ N in an edge. Thus there is an infinite tailor D′ of D

such that no 2-ray from D′ meets any T ′j for j ∈ N in an edge.

We recursively define a sequence n1, n2, . . . of natural numbers by taking

ni ∈ N sufficiently large that B′ni
does not meet T ′nj

for any j < i . Taking

(Ai, Bi) = (A′ni
, B′ni

) and Ti = T ′ni
gives the desired sequences.

Lemma 20. If a locally finite graph G with a single end ω which is thin con-

tains infinitely many edge-disjoint 2-rays, then G contains infinitely many edge-

disjoint double rays.

Proof. Applying Lemma 19 we get an infinite set D of edge-disjoint 2-rays, a

sequence ((Ai, Bi))i∈N capturing ω, and connectors Ti of Ai ∩Bi for each i ∈ N
such that the Ti are vertex-disjoint from each other and edge-disjoint from all

members of D.

We shall construct the desired set of infinitely many edge-disjoint double

rays as a nested union of sets Di. We construct the Di recursively. Assume

that a set Di of i edge-disjoint double rays has been defined such that each of

its members is included in the union of a single 2-ray from D and one connector

Tj . Let di+1 ∈ D be a 2-ray distinct from the finitely many 2-rays used so far.

Let Ci+1 be one of the infinitely many connectors that is different from all the

finitely many connectors used so far and that meets both rays of di+1. Clearly,

di+1 ∪ Ci+1 includes a double ray Ri+1. Let Di+1 = Di ∪ {Ri+1}. The union⋃
i∈NDi is an infinite set of edge-disjoint double rays as desired.
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5.3 Shapes and allowed shapes

Let G be a graph and (A,B) a separation of G. A shape for (A,B) is a word

v1x1v2x2 . . . xn−1vn with vi ∈ A∩B and xi ∈ {l, r} such that no vertex appears

twice. We call the vi the vertices of the shape. Every ray R induces a shape

σ = σR(A,B) on every separation (A,B) of finite order in the following way:

Let <R be the natural order on V (R) induced by the ray, where v <R w if

w lies in the unique infinite component of R − v. The vertices of σ are those

vertices of R that lie in A ∩B and they appear in σ in the order given by <R.

For vi, vi+1 the path viRvi+1 has edges only in A or only in B but not in both.

In the first case we put l between vi and vi+1 and in the second case we put r

between vi and vi+1.

Let (A1, B1), (A2, B2) be separations with A1 ∩ B2 = ∅ and thus also A1 ⊆
A2 and B2 ⊆ B1. Let σi be a nonempty shape for (Ai, Bi). The word τ =

v1x1v2 . . . xn−1vn is an allowed shape linking σ1 to σ2 with vertices v1 . . . vn if

the following holds.

• v is a vertex of τ if and only if it is a vertex of σ1 or σ2,

• if v appears before w in σi, then v appears before w in τ ,

• v1 is the initial vertex of σ1 and vn is the terminal vertex of σ2,

• xi ∈ {l,m, r},

• the subword vlw appears in τ if and only if it appears in σ1,

• the subword vrw appears in τ if and only if it appears in σ2,

• vi 6= vj for i 6= j.

Each ray R defines a word τ = τR[(A1, B1), (A2, B2)] = v1x1v2 . . . xn−1vn
with vertices vi and xi ∈ {l,m, r} as follows. The vertices of τ are those vertices

of R that lie in A1 ∩B1 or A2 ∩B2 and they appear in τ in the order given by

<R. For vi, vi+1 the path viRvi+1 has edges either only in A1, only in A2 ∩B1,

or only in B2. In the first case we set xi = l and τ contains the subword vilvi+1.

In the second case we set xi = m and τ contains the subword vimvi+1. In the

third case we set xi = r and τ contains the subword virvi+1.

For a ray R to induce an allowed shape τR[(A1, B1), (A2, B2)] we need at

least that R starts in A2. However, each ray in ω has a tail such that whenever

it meets an Ai it also starts in that Ai. Let us call such rays lefty. A 2-ray is

lefty if both its rays are.

Remark 21. Let (A1, B1), and (A2, B2) be two separations of finite order

with A1 ⊆ A2, and B2 ⊆ B1. For every lefty ray R meeting A1, the word

τR[(A1, B1), (A2, B2)] is an allowed shape linking σR(A1, B1) and σR(A2, B2).
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From now on let us fix a locally finite graph G with a thin end ω of vertex-

degree k. And let ((Ai, Bi))i∈N be a sequence capturing ω such that each mem-

ber has order k.

A 2-shape for a separation (A,B) is a pair of shapes for (A,B). Every 2-

ray induces a 2-shape coordinatewise in the obvious way. Similarly, an allowed

2-shape is a pair of allowed shapes.

Clearly, there is a global constant c1 ∈ N depending only on k such that

there are at most c1 distinct 2-shapes for each separation (Ai, Bi). Similarly,

there is a global constant c2 ∈ N depending only on k such that for all i, j ∈ N
there are at most c2 distinct allowed 2-shapes linking a 2-shape for (Ai, Bi) with

a 2-shape for (Aj , Bj).

For most of the remainder of this subsection we assume that for every i ∈ N
there is a set Di consisting of at least c1 · c2 · i edge-disjoint 2-rays in G. Our

aim will be to show that in these circumstances there must be infinitely many

edge-disjoint 2-rays.

By taking a tailor if necessary, we may assume that every 2-ray in each Di

is lefty.

Lemma 22. There is an infinite set J ⊆ N and, for each i ∈ N, a tailor D′i of

Di of cardinality c2 · i such that for all i ∈ N and j ∈ J all 2-rays in D′i induce

the same 2-shape σ[i, j] on (Aj , Bj).

Proof. We recursively build infinite sets Ji ⊆ N and tailors D′i of Di such that

for all k ≤ i and j ∈ Ji all 2-rays in D′k induce the same 2-shape on (Aj , Bj).

For all i ≥ 1, we shall ensure that Ji is an infinite subset of Ji−1 and that the

i− 1 smallest members of Ji and Ji−1 are the same. We shall take J to be the

intersection of all the Ji.

Let J0 = N and let D′0 be the empty set. Now, for some i ≥ 1, assume that

sets Jk and D′k have been defined for all k < i. By replacing 2-rays in Di by

their tails, if necessary, we may assume that each 2-ray in Di avoids A`, where

` is the (i − 1)st smallest value of Ji−1. As Di contains c1 · c2 · i many 2-rays,

for each j ∈ Ji−1 there is a set Sj ⊆ Di of size at least c2 · i such that each

2-ray in Sj induces the same 2-shape on (Aj , Bj). As there are only finitely

many possible choices for Sj , there is an infinite subset Ji of Ji−1 on which Sj

is constant. For D′i we pick this value of Sj . Since each d ∈ D′i induces the

empty 2-shape on each (Ak, Bk) with k ≤ ` we may assume that the first i− 1

elements of Ji−1 are also included in Ji.

It is immediate that the set J =
⋂

i∈N Ji and the D′i have the desired prop-

erty.

Lemma 23. There are two strictly increasing sequences (ni)i∈N and (ji)i∈N
with ni ∈ N and ji ∈ J for all i ∈ N such that σ[ni, ji] = σ[ni+1, ji] and σ[ni, ji]

is not empty.

Proof. Let H be the graph on N with an edge vw ∈ E(H) if and only if there

are infinitely many elements j ∈ J such that σ[v, j] = σ[w, j].

11



As there are at most c1 distinct 2-shapes for any separator (Ai, Bi), there

is no independent set of size c1 + 1 in H and thus no infinite one. Thus, by

Ramsey’s theorem, there is an infinite clique in H. We may assume without

loss of generality that H itself is a clique by moving to a subsequence of the D′i
if necessary. With this assumption we simply pick ni = i.

Now we pick the ji recursively. Assume that ji has been chosen. As i and

i + 1 are adjacent in H, there are infinitely many indicies ` ∈ N such that

σ[i, `] = σ[i+ 1, `]. In particular, there is such an ` > ji such that σ[i+ 1, `] is

not empty. We pick ji+1 to be one of those `.

Clearly, (ji)i∈N is an increasing sequence and σ[i, ji] = σ[i+ 1, ji] as well as

σ[i, ji] is non-empty for all i ∈ N, which completes the proof.

By moving to a subsequence of (D′i) and ((Aj , Bj)), if necessary, we may

assume by Lemma 22 and Lemma 23 that for all i, j ∈ N all d ∈ D′i induce the

same 2-shape σ[i, j] on (Aj , Bj), and that σ[i, i] = σ[i+ 1, i], and that σ[i, i] is

non-empty.

Lemma 24. For all i ∈ N there is D′′i ⊆ D′i such that |D′′i | = i, and all d ∈ D′′i
induce the same allowed 2-shape τ [i] that links σ[i, i] and σ[i, i+ 1].

Proof. Note that it is in this proof that we need all the 2-rays in D′′i to be lefty

as they need to induce an allowed 2-shape that links σ[i, i] and σ[i, i+1] as soon

as they contain a vertex from Ai. As |D′i| ≥ i · c2 and as there are at most c2
many distinct allowed 2-shapes that link σ[i, i] and σ[i, i+ 1] there is D′′i ⊆ D′i
with |D′′i | = i such that all d ∈ D′′i induce the same allowed 2-shape.

We enumerate the elements of D′′j as follows: dj1, d
j
2, . . . , d

j
j . Let (sji , t

j
i ) be a

representation of dji . Let Sj
i = sji ∩Aj+1 ∩Bj , and let Si =

⋃
j≥i S

j
i . Similarly,

let T j
i = tji ∩Aj+1 ∩Bj , and let Ti =

⋃
j≥i T

j
i .

Clearly, Si and Ti are vertex-disjoint and any two graphs in
⋃

i∈N{Si, Ti} are

edge-disjoint. We shall find a ray Ri in each of the Si and a ray R′i in each of

the Ti. The infinitely many pairs (Ri, R
′
i) will then be edge-disjoint 2-rays, as

desired.

Lemma 25. Each vertex v of Si has degree at most 2. If v has degree 1 it is

contained in Ai ∩Bi.

Proof. Clearly, each vertex v of Si that does not lie in any separator Aj ∩ Bj

has degree 2, as it is contained in precisely one Sj
i , and all the leaves of Sj

i lie

in Aj ∩Bj and Aj+1 ∩Bj+1 as dji is lefty. Indeed, in Sj
i it is an inner vertex of

a path and thus has degree 2 in there. If v lies in Ai ∩Bi it has degree at most

2, as it is only a vertex of Sj
i for one value of j, namely j = i.

Hence, we may assume that v ∈ Aj∩Bj for some j > i. Thus, σ[j, j] contains

v and l : σ[j, j] : r contains precisely one of the four following subwords:

lvl, lvr, rvl, rvr
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(Here we use the notation p : q to denote the concatenation of the word p with

the word q.) In the first case τ [j − 1] contains mvm as a subword and τ [j] has

no m adjacent to v. Then Sj−1
i contains precisely 2 edges adjacent to v and Sj

i

has no such edge. The fourth case is the first one with l and r and j and j − 1

interchanged.

In the second and third cases, each of τ [j − 1] and τ [j] has precisely one m

adjacent to v. So both Sj−1
i and Sj

i contain precisely 1 edge adjacent to v.

As v appears only as a vertex of S`
i for ` = j or ` = j − 1, the degree of v in

Si is 2.

Lemma 26. There are an odd number of vertices in Si of degree 1.

Proof. By Lemma 25 we have that each vertex of degree 1 lies in Ai ∩Bi. Let v

be a vertex in Ai∩Bi. Then, σ[i, i] contains v and l : σ[i, i] : r contains precisely

one of the four following subwords:

lvl, lvr, rvl, rvr

In the first and fourth case v has even degree. It has degree 1 otherwise. As

l : σ[i, i] : r starts with l and ends with r, the word lvr appear precisely once

more than the word rvl. Indeed, between two occurrences of lvr there must

be one of rvl and vice versa. Thus, there are an odd number of vertices with

degree 1 in Si.

Lemma 27. Si includes a ray.

Proof. By Lemma 25 every vertex of Si has degree at most 2 and thus every

component of Si has at most two vertices of degree 1. By Lemma 26 Si has a

component C that contains an odd number of vertices with degree 1. Thus C

has precisely one vertex of degree 1 and all its other vertices have degree 2, thus

C is a ray.

Corollary 28. G contains infinitely many edge-disjoint 2-rays.

Proof. By symmetry, Lemma 27 is also true with Ti in place of Si. Thus Si ∪Ti
includes a 2-ray Xi. The Xi are edge-disjoint by construction.

Recall that Lemma 15 states that a countable graph with a thin end ω and

arbitrarily many edge-disjoint double rays all whose subrays converge to ω, also

has infinitely many edge-disjoint double rays. We are now in a position to prove

this lemma.

Proof of Lemma 15. By Lemma 20 it suffices to show that G contains a sub-

graph H with a single end which is thin such that H has infinitely many edge-

disjoint 2-rays. By Corollary 17, G has a subgraph H with a single end which

is thin such that H has arbitrarily many edge-disjoint 2-rays. But then by the

argument above H contains infinitely many edge-disjoint 2-rays, as required.
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With these tools at hand, the remaining proof of Theorem 1 is easy. Let us

collect the results proved so far to show that each graph with arbitrarily many

edge-disjoint double rays also has infinitely many edge-disjoint double rays.

Proof of Theorem 1. Let G be a graph that has a set Di of i edge-disjoint double

rays for each i ∈ N. Clearly, G has infinitely many edge-disjoint double rays if

its subgraph
⋃

i∈NDi does, and thus we may assume without loss of generality

that G =
⋃

i∈NDi. In particular, G is countable.

By Corollary 10 we may assume that each connected component of G in-

cludes only finitely many ends. As each component includes a double ray we

may assume that G has only finitely many components. Thus, there is one

component containing arbitrarily many edge-disjoint double rays, and thus we

may assume that G is connected.

By Corollary 8 we may assume that all ends of G are thin. Thus, as men-

tioned at the start of Section 4, there is a pair of ends (ω, ω′) of G (not neces-

sarily distinct) such that G contains arbitrarily many edge-disjoint double rays

each of which converges precisely to ω and ω′. This completes the proof as,

by Lemma 13 G has infinitely many edge-disjoint double rays if ω and ω′ are

distinct and by Lemma 15 G has infinitely many edge-disjoint double rays if

ω = ω′.

6 Outlook and open problems

We will say that a graph H is edge-ubiquitous if every graph having arbitrarily

many edge-disjoint H also has infinitely many edge-disjoint H.

Thus Theorem 1 can be stated as follows: the double ray is edge-ubiquitous.

Andreae’s Theorem implies that the ray is edge-ubiquitous. And clearly, every

finite graph is edge-ubiquitous.

We could ask which other graphs are edge-ubiquitous. It follows from our

result that the 2-ray is edge-ubiquitous. Let G be a graph in which there are

arbitrarily many edge-disjoint 2-rays. Let v ∗G be the graph obtained from G

by adding a vertex v adjacent to all vertices of G. Then v ∗ G has arbitrarily

many edge-disjoint double rays, and thus infinitely many edge-disjoint double

rays. Each of these double rays uses v at most once and thus includes a 2-ray

of G.

The vertex-disjoint union of k rays is called a k-ray. The k-ray is edge-

ubiquitous. This can be proved with an argument similar to that for Theorem 1:

LetG be a graph with arbitrarily many edge-disjoint k-rays. The same argument

as in Corollaries 10 and 8 shows that we may assume that G has only finitely

many ends, each of which is thin. By removing a finite set of vertices if necessary

we may assume that each component of G has at most one end, which is thin.

Now we can find numbers kC indexed by the components C of G and summing

to k such that each component C has arbitrarily many edge-disjoint kC-rays.

Hence, we may assume that G has only a single end, which is thin. By Lemma 16

we may assume that G is locally finite.
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In this case, we use an argument as in Subsection 5.3. It is necessary to use

k-shapes instead of 2-shapes but other than that we can use the same combina-

torial principle. If C1 and C2 are finite sets, a (C1, C2)-shaping is a pair (c1, c2)

where c1 is a partial colouring of N with colours from C1 which is defined at all

but finitely many numbers and c2 is a colouring of N(2) with colours from C2

(in our argument above, C1 would be the set of all k-shapes and C2 would be

the set of all allowed k-shapes for all pairs of k-shapes).

Lemma 29. Let D1, D2, . . . be a sequence of sets of (C1, C2)-shapings where Di

has size i. Then there are strictly increasing sequences i1, i2, . . . and j1, j2, . . .

and subsets Sn ⊆ Din with |Sn| ≥ n such that

• for any n ∈ N all the values of c1(jn) for the shapings (c1, c2) ∈ Sn−1∪Sn

are equal (in particular, they are all defined).

• for any n ∈ N , all the values of c2(jn, jn+1) for the shapings (c1, c2) ∈ Sn

are equal.

Lemma 29 can be proved by the same method with which we constructed

the sets D′′i from the sets Di. The advantage of Lemma 29 is that it can not

only be applied to 2-rays but also to more complicated graphs like k-rays.

A talon is a tree with a single vertex of degree 3 where all the other vertices

have degree 2. An argument as in Subsection 5.2 can be used to deduce that

talons are edge-ubiquitous from the fact that 3-rays are. However, we do not

know whether the graph in Figure 2 is edge-ubiquitous.

Figure 2: A graph obtained from 2 disjoint double rays, joined by a single edge.

Is this graph edge-ubiquitous?

We finish with the following open problem.

Problem 30. Is the directed analogue of Theorem 1 true? More precisely: Is

it true that if a directed graph has arbitrarily many edge-disjoint directed double

rays, then it has infinitely many edge-disjoint directed double rays?

It should be noted that if true the directed analogue would be a common

generalization of Theorem 1 and the fact that double rays are ubiquitous with

respect to the subgraph relation.
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