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ARTICLE

Concurrence of form and function in developing
networks and its role in synaptic pruning
Ana P. Millán1, J.J. Torres1, S. Johnson 2 & J Marro 1

A fundamental question in neuroscience is how structure and function of neural systems are

related. We study this interplay by combining a familiar auto-associative neural network with

an evolving mechanism for the birth and death of synapses. A feedback loop then arises

leading to two qualitatively different types of behaviour. In one, the network structure

becomes heterogeneous and dissasortative, and the system displays good memory perfor-

mance; furthermore, the structure is optimised for the particular memory patterns stored

during the process. In the other, the structure remains homogeneous and incapable of pattern

retrieval. These findings provide an inspiring picture of brain structure and dynamics that

is compatible with experimental results on early brain development, and may help to explain

synaptic pruning. Other evolving networks—such as those of protein interactions—might

share the basic ingredients for this feedback loop and other questions, and indeed many of

their structural features are as predicted by our model.
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The fundamental question in neuroscience of how structural
and functional properties of neural networks are related
has recently been considered in terms of large-scale con-

nectomes and functional networks obtained with various imaging
techniques1. But at the lower level of individual neurons and
synapses there is still much to learn. The brain can be regarded as
a complex network in which nodes represent neurons, and edges
stand for synapses. It is then possible to use mathematical models,
which capture the essence of neural and synaptic activity, to study
how a great many of such elements can give rise to collective
behaviour with at least some of the characteristics of cognition2–4.
In this context, the structural properties of the underlying net-
work supporting brain dynamics have been found to affect the
behaviour of the system in various ways5–8. For instance,
experimental setups have confirmed that actual neural networks
exhibit degree heterogeneity that roughly accords with scale-free
distributions, and negative degree–degree correlations (dis-
sasortativity), which strongly influence the dynamics of the
system9,10.

These networks are also not static: new synapses grow and
others disappear in response to neural activity11–14. In many
species, early brain development seems to be dominated by a
remarkable process known as synaptic pruning. The brain starts
out with a relatively high density of synapses, which is gradually
reduced as the individual matures. In humans, for example,
synaptic density at birth is about twice what it will be at puberty,
and certain disorders, such as autism and schizophrenia, have
been related to details of this process15–19. It has been suggested
that such synaptic pruning may represent some kind of optimi-
zation, perhaps minimizing energy consumption and/or the
genetic information needed to build an efficient and robust net-
work, and/or to optimize network structure20,21.

Some progress has been made in understanding how new
synapses are grown. It has been shown that pre-synaptic activity
and glutamate could act as trophic factors to guide new synaptic
spines growth22, and other mechanisms of cooperation among
neurons have also been proposed, such as spike-timing depen-
dence plasticity23,24. Imaging experiments also reveal that brain
architecture is sculpted by spontaneous and sensory-evoked
activity, in a process that goes on into adulthood, as synaptic
circuits continue to stabilize in the mature brain22,25. Even
though synapses are highly dynamic in time, their overall statis-
tics are preserved over time in the adult brain, indicating that
synapse creation and pruning balance each other23.

In this context, models in which networks are gradually
formed, for instance by addition of nodes and edges or by
rewiring of the latter, have long been studied in different contexts.
Typically, the probabilistic addition or deletion of elements is a
function of the existing structure. For example, in the familiar
Barabási–Albert model, a node’s probability of receiving a new
edge is proportional to its degree26. These rules often give rise to
phase transitions (almost invariably of a continuous nature), such
that different kinds of network topology can ensue, depending on
parameters27, and have been used in the past to reproduce some
connectivity data on human brain development28. More recently,
models in which the evolution of network structure is intrinsically
coupled with an activity model that runs on the nodes of the
network—the so-called co-evolving network models—have
gained attention as a way to approximate the evolution of real
systems29–31. Previous studies of co-evolving brain networks have
studied the temporal evolution of mean degree32, particular
microscopic mechanisms20, the development of certain compu-
tational capabilities33, or the effects of specific growth rules34, and
have suggested evidence for the role of bistability and dis-
continuous transitions in the brain, for instance in synaptic
plasticity mechanisms involved in learning35,36.

Here we define a co-evolving model for brain network devel-
opment by combining the Amari-Hopfield neural network2,3 with
a plausible model of network evolution28, by setting the prob-
abilities of synaptic growth and death to depend on neural
activity, as it has been empirically observed22. We find that, for
certain parameter ranges, the phase transition between memory
and randomness becomes discontinuous (i.e., resembling a first
order thermodynamic transition). Depending on initial condi-
tions, the system can either evolve towards heterogeneous net-
works with good memory performance, or homogeneous ones
incapable of memory, as a consequence of the feedback loop
between structure and function. To the best of our knowledge,
this is the first time that this feedback loop, and the ensuing
discontinuous transition, have been identified. Also, in our model
networks are generated, which have optimal memory perfor-
mance for the specific memory patterns they encode, thus
allowing for a greater memory capacity than would be possible in
the absence of such a mechanism. Our results thus suggest a more
complete explanation of synaptic pruning. Finally, we discuss the
possibility that other biological systems—in particular, protein
interaction networks—also owe their topologies to a version of
the feedback loop between form and function that we identify
here.

Results
Model construction. We define a co-evolving model of synaptic
pruning that couples a traditional associative memory model, the
Hopfield model37, with a preferential attachment model for net-
work evolution28. Memory is measured via the overlap, mμ(t), of
the network with the P memorized patterns of activity, {ξμ},
which are stored by an appropriate definition of the synaptic
weights wij. In a stationary regime, it undergoes a continuous
transition from a phase of memory recovery (mμ→ 1) to one
dominated by noise (mμ ≈ 0) as a function of the noise level or
temperature T.

Network structure dynamics is defined by the probability each
node i has to gain or to lose an edge:

Pg
i ¼ u κð Þπ Iið Þ; Pl

i ¼ d κð Þη Iið Þ; ð1Þ

respectively, where κ is the mean degree of the network and Ii a
physiological variable that measures the incoming current at node
i. A second node j is then randomly chosen to be connected to (or
disconnected from) node i, so that there are two processes that
can lead to an increase (decrease) in node degree, and we shall
define the effective local probabilities ~π and ~η to account for both
of them (see the Methods). We choose these to be power-law
distributed, ~π / Iαi and ~η / Iγi , to allow for a smooth transition
from a sub-linear to a super-linear dependence with a single
parameter. Network structure is characterized by the homo-
geneity parameter g(t), which equals 1 if pðkÞ ¼ δk0;k and tends to
0 for highly heterogeneous (bimodal) networks. Depending on α
and γ, networks are homogeneous (every node having similar
degree, g→1) or heterogeneous (with the appearance of hubs,
g→0). Probabilities u and d are chosen to be consistent with
empirical data on synaptic pruning, as we discuss in subsection
Synaptic pruning. A full and comprehensive description of the
model is detailed in the Methods.

Topological limit. Consider first the topological limit of the
model as defined by Eq. (4), in which network structure is de-
coupled from neural activity. Given the biologically inspired
probabilities of Eq. (2) and (3), three qualitatively different
behaviours, leading in practice to different phases, are possible for
ki≫1 (Fig. 1a). If γ > α, then ~ηðkiÞ>~πðkiÞ, and high-degree
nodes are more likely to lose than to gain edges, so that
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p∞(k)= p(k,t→∞) is homogeneous, g(t→∞)→1, and the prob-
ability of having high-degree nodes vanishes rapidly from a
maximum. On the other hand, if γ<α, then ~ηðkiÞ<~πðkiÞ, and high-
degree nodes are more likely to continue to gain than to lose
edges. Since the stationary number of edges Nκ∞ is fixed, this
leads to a bimodal p∞(k), with g(t→∞)→0. Finally, in the case γ
= α, ~ηðkiÞ ¼ ~πðkiÞ and very connected nodes are as likely to gain
as to lose edges. Excluding low degrees, p∞(k) then decays as a
power-law with exponent μ ≈ 2.5, in accordance with long-range
connections observed in the human brain8 and measures in
protein interaction networks38. We have found that this condi-
tion is mandatory to obtain critical behaviour, despite previous
preliminary studies assuming the contrary28, as shown in Fig. 1b.

Synaptic pruning. The time evolution of κ(t) is controlled in our
model by the global probabilities u(κ) and d(κ), which can be
chosen to model experimental data on synaptic density during
brain development28. In particular, here we analyze and fit two
experimental data sets (Fig. 2): the first one (a) corresponds to
postmorten measures on layers 1 and 2 of the human auditory
cortex, obtained by directly counting synapses in the tissue32;
whereas, the second set (b) corresponds to an electron micro-
scopy imaging study on the mouse somatosensory cortex21. Even
though they correspond to different animals and have been
obtained through different techniques, both data sets show the
same overall behaviour: an extreme initial growth of synapses,
followed by a maximum when pruning begins and connectivity
starts decreasing, until a plateau is reached. Synaptic density
decays roughly exponentially during pruning, and can be fitted
by u(κ) and d(κ) as given by Eq. (2), which describe a situation in
which synapses are less likely to grow, and more likely to atrophy,
when the connectivity is high, and vice-versa, a situation that
could easily arise in the presence of a finite quantity of nutrients.
These lead to κ(t)= (κ0−κ∞)exp(−t/τp)+κ∞, where τp=Nκ∞/
(2n), so that κ(t) decays exponentially from κ0 to κ∞, assuming
that κ0>κ∞ as in the case of interest.

On the other hand, the initial overgrowth of synapses can be
related to the transient existence of some growth factors, and it
can be accounted for in our model by including a nonlinear, time
dependent term, c(t)= a exp(−t/τg), in the growth probability u

(κ). The solution is now κ(t)= κ∞[1+b exp(−t/τg)−a exp(−t/
τp)], with b= aτg/(τg−τp), a= 1−κ0/κ∞+b and τp as before. With
the inclusion of this term, the evolution of κ(t) on both data sets
can be fully reproduced.

Therefore, our model can approximate the evolution of the
mean density of synapses in the mammal brain during infancy,
and with the inclusion of an initial growth factor it also reproduces
the fast growth and early maximum of the connectivity. Notice
that this framework also goes in line with previous studies that
have highlighted the computational benefits of a pruning process
in which the pruning rate decreases with time, as in our model,
which can optimize both efficiency and robustness when growth
takes place locally throughout the network21. In our model the
decreasing rate is naturally obtained via a simple, physiologically
inspired master equation for p(k,t). Even when an extra growth
factor is included, once pruning begins its rate decreases over time,
in accordance with21. Given that our goal here is to understand
the effect of neuronal physiological activity on network develop-
ment, in the framework of co-evolving growing models, we shall
focus on the simplest version of the model, with linear dependence
on u(κ) and d(κ), to illustrate the effect of coupling structure and
physiology. Nonlinear global probabilities could also be consid-
ered, but would add an extra level of complexity which we will not
explore here.

Phase diagram. In the coupled model, where pruning depends on
Ii (see the Methods section), computer simulations depict a rich
emergent phenomenology depending on stochasticity (T) and
emerging degree heterogeneity (α). The effect of the number of
memorized patterns P is analyzed in subsection Capacity analysis,
and we discuss the effect of γ in Supplementary Fig. 1. Other
parameters, such as κ∞ or a0, were found to have only a quan-
titative effect on the resulting phase diagram, and they are set as
in a previous study28. Preliminary simulations suggested depen-
dence on the heterogeneity of the initial condition (IC), so we
consider two different types of IC, namely, homogeneous, p(k,t=
0)= δ(k−κ0), and heterogeneous, p(k,t=0)∝k−2.5, networks, with
fixed κ0.

Our coupling dynamics lead to a rich phenomenology,
including discontinuous transitions and multistability. Three
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different phases can be identified by monitoring the stationary
values of the order parameters, gðα;TÞ;mðα;TÞ, and the Pearson
correlation coefficient, rðα;TÞ, as illustrated in Fig. 3 (data for
rðα;TÞ is not shown here since it provides similar information as
gðα;TÞ). Analysis of these and similar curves for different
parameter values leads to the phase diagram in Fig. 4. That is,
there is a homogeneous memory phase for low α and T which is
characterized by high m, high g and low (negative, almost zero) r

(Fig. 3a, c for α= 0.5 and low T, and in Fig. 3b, d for T < 1.2 and
low α). The system is then able to reach and maintain memory,
while the topological processes lead to a homogeneous network
configuration. Due to the existence of memory, there is a strong
correlation between the physiological state of the network, as
measured by the currents Ii, and its topology, as reflected by the
degrees ki (Fig. 1c).

80

60

40

20

0
102 103 104

40

80

0
0

10

a b
1

2

3

4

20 30 40

Conceptual age

p
(t

)
L1

P1
P2

Data

L2

# 
of

 s
yn

ap
se

s

Postnatal day

5000 10,000 15,000 20,000 25,000

Fig. 2 Synaptic pruning. Experimental data sets on connectivity during infancy (points) and model fit (solid lines). a Data points correspond to synaptic
density, ρ(t)∝κ(t), in the human infant brain, obtained in autopsies by directly counting synapses in tissues from different layers of the auditory cortex
(here shown layers 1 (L1) and 2 (L2))32. The solid lines present the best fit obtained by the model, with τp,L1= 1600(300) and τp,L2= 3800(100). Other
parameters are extracted from the data: L1: κ0= 59.1, κ∞= 30.7 and t0= 700; and L2: κ0= 75.1, κ∞= 40.8 and t0= 700, where t0 is set at the onset of
pruning (i.e., corresponding to the maximum of κ(t)). Inset on the right shows the fit of the maximum on a log–log scale, labels as in the main plot.
Parameters from the fit are aL1= 33(5), τg,L1= 210(20), τp,L1= 3800(200), aL2= 1.2(2), τg,L2= 2700(100), τp,L2= 290(40). The three lower points for t≈
5000 have been excluded from the fits. b Data points correspond to synaptic density measured via large-scale brain imaging experiments that quantify the
number of connections in the developing mouse somatosensory cortex21. In blue solid lines (P1), fit with the linear model, for parameters τp= 5.72(1), κ0=
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A continuous increase in α leads through a topological phase
transition from homogeneous final networks (with roughly
Poisson degree distributions) to heterogeneous ones (with
bimodal degree distributions). At the critical point α ¼ αtcðTÞ
the emergent networks are scale-free (i.e., with power-law-like
degree distributions). The phase transition is revealed in gðαÞ
(Fig. 3b for T= 0.9, 1.0 and 1.1) as a fast (and continuous) decay
to zero, and it also appears in mðαÞ (Fig. 3d) where, after an initial
growth with α, m then decreases at the transition, and finally
approaches a constant value for α>αtcðTÞ. This is a consequence
of the strong coupling between structure and memory, and it
shows that scale-free networks optimize memory recovery for a
given set of control parameters. We call this the heterogeneous
memory phase, characterized by high m, very low (almost zero) g
and high negative r, indicating a memory state with hetero-
geneous (bimodal) dissasortative structure. Interestingly, this
phase expands up to high-noise levels as a consequence of
network heterogeneity, which increases memory performance9,10.
Moreover, memory recovery in turn favours network hetero-
genization in a feedback manner due to the microscopic
dynamics, enhancing the stability of the state. This is because Ii
becomes proportional to ki in the memory regime, whereas this
correlation is reduced in disordered neural states (see Fig. 1c).

As T is further increased, dynamics is finally governed by noise,
and the stationary network is then homogeneous, resulting in the
homogeneous noisy phase, characterized by low (almost zero) m,
high g and low (almost zero) r (Fig. 3a, c for α= 0.5 and 1.0 and
high T, and Fig. 3b, d for T > 0.9 and low α).

A particularly interesting aspect of this phenomenology is that
the nature of the phase transition with T depends on α. For low α
(α<αtcðTÞ) there is a continuous (second order) transition with
increasing T from a homogeneous memory phase to a
homogeneous noisy one through α ¼ αmc ðTÞ (Fig. 3a, c for α=
0.5). On the other hand, at higher α (α>αtcðTÞ) the transition
from the heterogeneous memory phase to the homogeneous noisy
one is discontinuous (first order), and includes a bistability region
(striped area in Fig. 4) in which simulations starting from
heterogeneous IC reach the heterogeneous memory state, whereas

those starting from homogeneous ones fall into the homogeneous
noisy one (Fig. 3b, d for T= 1.2, and Fig. 3a, c for α= 1.5).

The existence of multistability illustrates how memory
promotes itself in a heterogeneous network, which is a direct
consequence of the coupled dynamics in our model, and it is lost
in the topological limit (see Supplementary Fig. 1). This is because
heterogeneous networks present higher memory recovery than
homogeneous ones for high-noise levels, particularly for T > 19,10.
At the same time, given that in our model the growth and death
of links depend on the activity of the nodes, the evolution of the
structure of the network is driven by its activity state. In this way,
an ordered state of the activity of the system—that is, a memory
state—is needed in order to allow for the formation of
heterogeneous (ordered) structures. Hence, if the network is in
a noisy state, edge birth and death are random processes, and thus
lead to a homogeneous network configuration, whereas in a
memory state there is a direct correlation between Ii and ki
(Fig. 1b) that allows for the emergence of structure—as given by
the local probabilities. Correspondingly, the physiological state
directly depends on the network structure through the currents Ii,
thus closing a memory-heterogeneity feedback loop. As a
consequence, homogeneous and heterogeneous IC evolve differ-
ently, which translates into a multistability region for high α and
T, and the presence of memory for T > 1.

Therefore, a main observation here is that the model shows an
intriguing relationship between memory and topology, which
induces complex transitions that might be relevant for under-
standing actual systems. In particular, the inclusion of a
topological process allows for memory recovery when T > 1;
whereas, the presence of thermal noise shifts the topological
transition, which in the topological limit occurs at α= 1, to α > 1.
These findings can also have implications for network design—
for instance, to help memory recovery optimization in noisy
environments. It is worth noting also that one does not need to
know the specific patterns that induce the synaptic weights in
order to have a memory state, so that the definition of memories
is not essential—only an ordered state of neural activity.
Therefore, our results could be extended to other models of
microscopic activity, not necessarily based on a Hebbian learning,
or to other systems such as protein interaction networks (see
subsection Protein interaction networks), as long as they present
a transition between an ordered and a disordered activity state.

Capacity analysis. We have so far considered P= 1 for the sake
of simplicity. However, for neural networks—whether natural or
artificial—to be useful, they must generally store many different
memory patterns. Something analogous seems also to be true for
other complex systems, such as gene regulatory networks, which
switch between different configurations. We therefore go on to
study the capacity of the network—that is, how its memory
capability depends on the number of memorized patterns P. For
random uncorrelated memory patterns (a0= 0.5) the perfor-
mance (as measured by the overlap m of the recovered pattern)
drops fast with P39 (see Fig. 5a). However, there is experimental
evidence that the configurations of neural activity related to
particular memories in the animal brain involve many more silent
neurons, ξμi= 0, than active ones, ξμi= 140 (notice that in this
case there will be a positive correlation between different pat-
terns); we therefore consider this kind of activity patterns in
Fig. 5b, and find that good memory performance can be main-
tained at higher P depending on α. These curves are combined
with analogous ones for gðP; αÞ to define the phase diagram of
panel c. This shows that for α < 1 memory is preserved only for
small P and the structural noise (or quenched disorder) intro-
duced by the patterns has a similar effect to that of the thermal
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with solid or dashed lines regarding whether they correspond to continuous
or discontinuous transitions. The horizontal and vertical dotted lines
correspond to the cases illustrated in Fig. 3. Parameters as in Fig. 3. Data
points are averaged over 10 realizations

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04537-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2236 | DOI: 10.1038/s41467-018-04537-6 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


noise in Fig. 4, and a continuous (second order) transition from
homogeneous memory to homogeneous noisy networks is
observed. On the other hand, for α > 1 the competition between
different patterns boosts network heterogeneity, and the capacity
of the network increases greatly. There is a transition from a pure
memory state to a spin-glass-like state (SG), in which several

patterns are partially retrieved at the same time. However, due to
the presence of hubs and the correlation among patterns, this
corresponds to high overlap (mμ � 1 for the recovered patterns),
instead of a moderate value as one would expect in a typical spin-
glass phase37.

Finally, Fig. 5d shows the same diagram but for the topological
limit of the model, where now the memory phases are much more
narrow and SG states correspond to moderate overlap values
(mμ � 0:6), thus indicating a pure SG state. Therefore, the
capacity analysis reveals another significant difference between
the topological and coupled versions of the model, since the
coupled one allows for good memory retrieval even at much
larger numbers of patterns (P > 50) for α≃ 1—that is, for the
limiting case in which the emerging networks are approximately
scale-free. It follows that the emerging network topologies in the
coupled version do not owe their good memory performance
solely to their power-law degree distributions. Rather, the
network is tuned for good memory performance on the specific
patterns encoded in the edge weights.

Protein interaction networks. Many complex systems can be
described as networks which evolve under the influence of node
activity, and it is likely that the described structure-function
feedback loop plays a role in these settings too. In particular, it
could be compatible with experimental and theoretical studies
concerning protein interaction networks, which gather different
types of metabolic interactions amongst proteins. These can be
either inhibitory or excitatory and also have different strengths, as
the edges in our model. Moreover, network structure changes on
an evolutionary timescale, during the evolution of the species, and
these changes combine a random origin, typically due to muta-
tions, with a “force” driven by natural selection, which is likely to
be activity dependent38. The similarities between this picture and
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our model suggest a parallelism concerning the resulting network
topologies as well.

Measurements on protein interaction networks show power-
law distributions of some important topological magnitudes:
degree distribution p(k)∝k−μ, with μ ≈ 2.538; clustering coefficient
C(k)∝k−θ, with θ ≈ 1 (metabolic networks) or 2 (protein
interaction networks)38,41; and neighbours mean degree
knn(k)∝k−v, with v ≈ 0.642. We find that these magnitudes are
also power-law distributed for networks in our model near the
transition αtcðTÞ (Fig. 6), with exponents μM= 2.55 ± 0.01, θM=
0.98 ± 0.01 and vM= 0.95 ± 0.02, so there is a good agreement
with μ and θ. Moreover, knn(k) decays in our model as a power-
law for almost every value of the parameters, which is related to
the intrinsic topological dynamics of the model, that creates an
asymmetry between the nodes that gain and loose edges42. We
find vM ≈ 0.5 for homogeneous networks and vM ≈ 1.5 for
bimodal ones, whereas scale-free networks lie in between, with
vM ≈ 1.0. It is likely that this parameter could be better
reproduced with further adjustments in the local probabilities,
so as to reflect degree–degree correlations among different
proteins.

In conclusion, there are definite indications that some of the
main topological properties of protein interaction networks could
be qualitatively reproduced with simple adjustments or exten-
sions of our model. This suggests a general mechanism under-
lying the dynamics of different biological systems, which is likely
to extend as well to other contexts. Moreover, several studies have
recently shown that there are specific patterns in protein
interaction networks that can be determined experimentally50,51,
and which could allow us to identify important biological
substructures in the network52,53. This information could be
used, together with the model proposed here, to determine the
relevance of such patterns and of the complex interplay between
the underlying structure of the network and its functional role, as
in the present study.

Discussion
It is well known that the brain stores information in synaptic
conductances, which mediate neural activity and that this in turn
affects the birth and death of synapses. To explore what this
feedback might entail, we have coupled an auto—associative or
attractor neural network model with a model for the evolution of
the underlying network topology, which has been used to describe
synaptic pruning. Neural network models have long provided a
means of relating cognitive processes, such as memory, with
biophysical dynamics at the cellular level. This coupled model
includes the further ingredient of a changing underlying network
structure, in such a way that it can be used as a more general and
complete study of synaptic pruning. The intention behind our
theoretical framework is to identify a minimal set of ingredients
which can give rise to observed phenomena. Specific details of a
given system could be added to the model, such as more realistic
neuron and synaptic dynamics.

Taken separately, each of the two models involved exhibit
continuous phase transitions: between a phase of memory and
one of noise in the neural network, and between homogeneous
and heterogeneous network topologies in the pruning model. Our
coupled model continues to display both of these transitions for
certain parameter regimes, but a new discontinuous transition
emerges, giving rise to a region of coexistence of phases (also
known as hysteresis). In other words, situations with the same
parameters but slightly different initial conditions can lead to
markedly different outcomes. In this case, whether the attractor
neural network is initially capable of memory retrieval influences
the emerging network structure, which feeds back into memory

performance. There is therefore a crucial feedback loop between
structure and function, which determines the capabilities of the
eventual system which the process yields. Our picture thus
addresses how neural activity can impact on early brain devel-
opment, and relates specific dynamic processes in the brain to
well-defined mathematical properties, such as bistability and
critical-like regions, or the emergence of a feedback loop.

The models we have coupled in this work are the simplest ones
able to reproduce the behaviour of interest—namely, associative
memory and network topologies with realistic features. However,
there are no indications to believe that this feedback will dis-
appear when using more complex models, including the con-
sideration of asymmetric networks, or more realistic choices of
the synaptic weights. Hebbian synapses have been considered
here as a standard way to define memory attractors, and therefore
a useful tool to understand the effect of heterogeneity, and its
coupling with memory, on network dynamics. More realistic
scenarios could include time dependent synapses, considering for
instance learning43 or fast noise44, which would indubitably add
more complexity to the model. Similarly, particular definitions of
the memories could boost the capacity of the network, and even
create topologically induced oscillations.

On the other hand, neural systems may not be the only ones to
display the properties we found to be sufficient for the existence
of this feedback loop between structure and function. Networks of
proteins, metabolites or genes also adopt specific configurations
(often associated to attractors of some dynamics), and the exis-
tence of interactions between nodes might depend on their
activity. One may expect that the interplay between form and
function we have described in this work could play a role in many
natural, complex systems. We have shown some evidence that
protein networks seem to have topological features which emerge
naturally from the coupled models we have considered here.

Finally, an unresolved question in neuroscience is why brain
development proceeds via a severe synaptic pruning—that is, with
an initial overgrowth of sypapses, followed by the subsequent
atrophy of approximately half of them throughout infancy. Fewer
synapses require less metabolic energy, but why not begin with
the optimal synaptic density? Navlakha et al. have shown that
network properties such as efficiency and robustness can be
optimised by a pruning rule which favours short paths21. How-
ever, in order for synapses to “know” whether they belong to
short paths, some kind of back-propagating signal must be pos-
tulated. Our coupled model provides a simple demonstration of
how network structure can be optimised by pruning, as in Nav-
lakha’s model, with a rule that only depends on local information
at each synapse—namely, the intensity of electrical current.
Moreover, this rule is consistent with empirical results on
synaptic growth and death11–14. In this view, a neural network
would begin life as a more or less random structure with a suf-
ficiently high synaptic density that it is capable of memory per-
formance. This is in keeping with the description given by
neuroscientists such as Kolb and Gibb, who say of the initial 1014

synapses in the human brain: “This enormous number could not
possibly be determined by a genetic program, but rather only the
general outlines of neural connections in the brain will be
genetically predetermined”54. Throughout infancy, certain
memory patterns are stored, and pruning gradually eliminates
synapses experiencing less electrical activity. Eventually, a net-
work architecture emerges which has lower mean synaptic den-
sity but is still capable, by virtue of a more optimal structure, of
retrieving memories. Moreover, the network structure will be
optimised for the specific patterns it stored and, when the
emerging networks are scale free, it becomes possible to store
orders of magnitude more memory patterns via this mechanism
as compared to the networks generated with the uncoupled
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(topological) version of the model. This seems consistent with the
fact that young children can acquire memory patterns (such as
languages or artistic skills) which remain with them indefinitely,
yet as adults they struggle to learn new ones54,55.

Methods
The neural network model. Consider an undirected network with N nodes, and
edges which can change in discrete time. At time t, the adjacency matrix is {eij(t)},
for i,j= 1,…,N, with elements 1 or 0 according to whether there exists or not an
edge between the pair of nodes (i,j), respectively. The degree of node i at time t is
kiðtÞ ¼

PN
j eijðtÞ, and the mean degree of the network is κðtÞ ¼ N�1 PN

i kiðtÞ.
Each node represents a neuron, and each edge a synapse. We shall follow the

Amari-Hopfield model, according to which each neuron has two possible states at each
time t, either firing or silent, given by si(t)= {0,1}37. Each edge (i,j) is characterized by its
synaptic weight wij, and the local field at neuron i ishiðtÞ ¼

PN
j¼1 wijeijðtÞsjðtÞ: The

states of all neurons are updated in parallel at every time step according to the transition
probability P siðt þ 1Þ ¼ 1f g ¼ 1

2 1þ tanh β hiðtÞ � θiðtÞ½ �ð Þ½ �;
where θiðtÞ ¼ 1

2

PN
j¼1 wijeijðtÞ is a neuron’s threshold for firing, and β= T−1 is a

noise parameter controlling stochasticity (analogous to the inverse temperature in
statistical physics)45. The synaptic weights can be used to encode information in
the form of a set of P patterns ξμi ; μ ¼ 1; ¼ ; P

� �
, with mean a0 ¼ ξμh i, specific

configurations of neural states which can be regarded as memories via the Hebbian
learning rule, wij ¼ κ1a0ð1� a0Þ½ ��1PP

μ¼1ðξμi � a0Þðξμj � a0Þ; where κ∞= κ
(t→∞). The order parameter of the model is the overlap of the state of the neurons
with each of the memorized patterns of activity,
mμ ¼ Na0ð1� a0Þð Þ�1PN

j¼1ðξμi � a0ÞsiðtÞ . The canonical Amari-Hopfield model,
which is here a reference, is defined on a fully connected network (eij= 1, ∀i= j),
and it exhibits a continuous phase transition at the critical value T= 137.

Notice that, even though synapses are generally asymmetric, we have defined an
undirected, symmetric network, in the spirit of previous studies on synaptic
pruning21. Earlier studies suggest that the inclusion of asymmetry could lead to the
induction of chaos, affecting learning, for instance causing the system to oscillate
among different states46. Here we have decided to simplify the picture and consider
symmetric networks, and we expect that, given a reasonable definition of
asymmetry, the main results of our work would hold.

The pruning model. Edge dynamics is modelled as follows. At each time t, each
node has a probability P g

i ðtÞ of being assigned a new edge to another node, ran-
domly chosen. Likewise, each node has a probability Pl

iðtÞ of losing one of its edges.
These probabilities are given by P g

i ¼ u κð Þπ Iið Þ and Pl
i ¼ d κð Þη Iið Þ; where we have

dropped the time dependence of all variables for clarity, and Ii is a physiological
variable that characterizes the local dependence of the probabilities: Ii= |hi−θi|.
The first terms on the right-hand side of each equation represent a global
dependence to account for the fact that such processes rely in some way on dif-
fusion of different molecules through large areas of tissue, and we take the mean
degree κ at each time as a proxy. In order to describe synaptic pruning, we choose
these probabilities to be consistent with empirical data describing synaptic density
in mammals during infancy. The simplest choice is28,32

u κð Þ ¼ n
N

1� κ

2κ1

� �

; d κð Þ ¼ n
N

κ

2κ1
; ð2Þ

where n is the number of edges to be added or removed at each step, which sets the
speed of the process, and κ∞= κ(t→∞) is the stationary mean degree. It should also
be noticed that experimental studies32 have revealed a fast initial overgrowth of
synapses associated with the transient existence of different growth factors. This
and other particular mechanisms could be accounted for by adding extra factors in
eq. (2). For example, initial overgrowth has been reproduced by adding the term
aexp(−t/τg) in the growth probability28.

The second terms of the right hand of Eq. (1) were previously considered28 to
be functions of ki. This was meant as a proxy for the empirical observations that
synaptic growth and death are determined by neural activity11–14. We now make
this dependence explicit, and couple the evolving network with the neural
dynamics by considering a dependence on the local current at each neuron,
Ii= |hi−θi|, as stated before.

Monte Carlo simulations. The initial conditions for the neural states are random.
For the network topology we can draw an initial degree sequence from some
distribution p(k,t= 0), and then place edges between nodes i and j with a prob-
ability proportional to ki(0)kj(0), as in the configuration model. Time evolution is
then accomplished in practice via computer simulations as follows. First, the
number of links to be created and destroyed is chosen according to two Poisson
distributions with means Nu(κ) and Nd(κ), respectively. Then, as many times as
needed according to this draw, we choose a node i with probability π(Ii) to be
assigned a new edge, to another node randomly chosen; and similarly we choose a
new node j according to η(Ij) to lose an edge from one of its neighbours, randomly
chosen. This procedure uses the BKL algorithm to assure proper evolution towards
stationarity45. This way, each node can then gain (or lose) an edge via two paths:
either through the process with probability π(Ii) for a gain (or η(Ii) for a loss), or

when it is randomly connected to (or disconnected from) an already chosen node.
Therefore, the effective values of the second factors in Eq. 1 are ~π ¼
1=2 π Iið Þ þ 1=Nð Þ and ~η ¼ 1=2 η Iið Þ þ ki=ðκNÞð Þ, where the 1/2 factor is included
to assure normalization.

For the sake of simplicity, we shall consider ~π and ~η to be power-law
distributed28, which allows one to move smoothly from a sub-linear to a super-
linear dependence with a single parameter, ~π ¼ Iαi =ð Iαh iNÞ and ~η ¼ Iγi =ð Iγh iNÞ.
This leads to:

π Iið Þ ¼ 2
Iαi
Iαh iN � 1

N
; η Ii; kið Þ ¼ 2

Iγi
Iγh iN � ki

κN
; ð3Þ

where normalization of π, η, ~π and ~η has been imposed. Notice that by construction
the death probability not only depends on Ii, but also on the degree ki. Given that,
in the memory regime of the Hopfield model, Ii∝ki, as shown in Results section,
here we consider the approximation η→η(Ii). Notice also that with this definition
the local probabilities could become negative, so we define π(Ii)→max(π(Ii),0) and
η(Ii)→max(η(Ii),0). These definitions are most important, as they characterize the
coupling between neural activity and structure. However, the particular functions
are an arbitrary choice and other ones could be considered. In our scenario, the
parameters α and γ characterize the dependence of the local probabilities on the
local currents and account for the different proteins and factors that control
synaptic growth. These could be obtained experimentally, although to the best of
our knowledge this has not yet been done.

The timescale for structure changes is set by the parameter n in Eq. 2, whereas
the time unit for activity changes, hs, is the number of Monte Carlo Steps (MCS)
that the states of all neurons are updated according to the Hopfield dynamics
between each structural network update. Our studies show a low dependence on
these parameters in the cases of interest, so we only report results here for hs= 10
MCS and n= 10.

The macroscopic state. The macroscopic state is characterized by the overlap, as
defined before, and by the mean neural activity, MðtÞ ¼ N�1

PN
i¼1 siðtÞ. Results in

the main section are for P= 1, so we simplify the notation and use m=m1. A
discussion on the effect of learning more patterns is included in subsection
Capacity analysis. Also of interest is the degree distribution at each time, p(k,t),
whose homogeneity may be measured via g(t)= exp(−σ2(t)/κ2(t)), where σ2(t) is
the variance of the distribution and κ its mean, as defined before. g(t)= 1 for highly
homogeneous networks, p(k)= δ(k−κ), and tends to zero for highly heterogeneous
ones. Network structure is also characterized by the clustering coefficient for each
node, Ci, is defined as Ci=(2ti)/(ki(ki−1)), where ti is the number of triangles
incident to node i, that is, ti ¼ 1=2

P
j;h aijaihajh . We also monitored the Pearson

correlation coefficient applied to the edges, r ¼ ½klkl′ � � ½kl �2
� �

= ½k2l � � ½kl �2
� �

,
where ½�� ¼ 1

<k>N

P
lð�Þ stands for the average over edges47, and the time depen-

dence has been dropped for clarity. In this context it can be estimated as r ¼
kh i k2knn kð Þ � k2h i2
D E

= kh i k3h i � k2h i2
� 	

; where knn(k) is the neighbours mean

degree function: knn;i ¼ k�1
i

P
j aijkj

28. This characterizes the degree–degree cor-
relations, which have important implications for network connectedness and
robustness. That is, whereas most social networks are assortative (r > 0), almost all
other networks, whether biological, technological or information-related, seem to
be generically dissasortative (r < 0), meaning that high-degree nodes tend to have
low-degree neighbours, and vice-versa. Previous studies showed that heterogeneous
networks favour the emergence of dissasortative correlations47–49. Measures of the
global variables on the stationary state are obtained by averaging during a long
window of time: f ¼ Δt�1

Pt0þΔt
t¼t0

f ðtÞ.

Topological limit. In the topological limit of the model the topology of the net-
work is independent from its neural state, and one substitutes Ii→ki, so that ~ηi ¼
~η kið Þ and ~πi ¼ ~π kið Þ. In this way we can construct a master equation for the
evolution of the degree distribution by considering network evolution as a one step
process with transition rates uðκÞ~πðkÞ for degree increment and dðκÞ~σðkÞ for the
decrement. Approximating the temporal derivative for the expected value of the
difference in a given p(k,t) at each time step we get:

dpðk;tÞ
dt ¼ u κð Þ~π k� 1ð Þp k� 1; tð Þ

þ d κð Þ~η kþ 1ð Þp kþ 1; tð Þ

� u κð Þ~π kð Þ þ d κð Þ~η kð Þ½ �p k; tð Þ;

ð4Þ

which is exact in the limit of no degree–degree correlations between nodes.
Finally, results of the manuscript are for γ= 1 since, in this topological limit, it

corresponds to choosing links at random for removal, given that the probability of

choosing an edge (i,j) is then pij ¼ 1
ki
~η kið Þ þ 1

kj
~η kj
� 	

¼ 1
kh iN. This can be seen as a

first order approximation to the pruning dynamics, and it also induces powerful
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simplifications during computations. Furthermore, the relevant parameter
determining the behaviour of the system is the ratio between α and γ, whereas their
absolute values only affect quantitatively (see Supplementary Fig. 1).

Statistics and general methods. In this work, we used systems sizes N= 800,
1600 and 3200, as indicated in each section. Results for N < 800 presented strong
finite size effects, so they were discarded (data not shown). The sample size for each
result was chosen by convergence of the mean value.

Code availability. Generated codes are available from the corresponding author
upon reasonable request.

Data availability. All data that support this study are available from the corre-
sponding author upon reasonable request.
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