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15 Abstract

16 This paper discusses the results of controlled, full-scale laboratory experiments on 0.9 m (36 in.) 

17 internal diameter reinforced concrete pipes (RC pipes) in the presence of simulated erosion 

18 voids. This study introduces a novel, yet practical, experimental method to simulate erosion 

19 voids near buried pipes. Using this method, the paper focuses on capturing the circumferential 

20 moment changes experienced by a 0.9 m (36 in.) internal diameter RC pipe buried at 0.9 m depth 

21 as voids of different sizes (approximate cross-sectional areas of 0.16 m2 and 0.31 m2) develop 

22 beside it, which have not been investigated before in such tests. The tests were also repeated after 

23 the erosion voids were repaired using a low strength grout (~ 2MPa) to characterize it as a 

24 potential rehabilitation solution, and the moment changes were recorded. The presence of erosion 

25 voids resulted in an overall increase in bending moment with the invert moments being affected 

26 the most (e.g., 70% increase in the invert moment between the intact soil result and the small 

27 void result and a 26% increase in the invert moment between the intact soil result and the 
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28 extrapolated large void results). While, grouting the erosion voids resulted in an overall 

29 improvement in the pipe responses, there was still a 50% increase in the invert moment between 

30 the intact soil result and the grouted small void result and a 22% change between the grouted 

31 large void and the intact soil tests). The large void tests showed that soil collapse is the dominant 

32 failure mechanism at high loads. Comparing the modified bedding factor values for pipes with 

33 different void sizes and void condition (pre- and post-grouting), the intact soil always featured 

34 the highest bedding factor, followed by grouted large void (approximately 22% reduction in 

35 bedding factor), grouted small void (approximately 36% reduction), and small void before 

36 grouting (approximately 39% reduction). 

37 Keywords: erosion voids; concrete pipes; rehabilitation; grouting

38 1.0 Introduction 

39 According to McGrath et al., (1999), the longevity of a pipe relies heavily on the pipe-

40 soil interaction. However, over time, reinforced concrete pipes (RC pipes) develop issues such as 

41 cracks, leaking joints, or experience misalignment from rotation and movements (Moore, 2008). 

42 These issues contribute to groundwater infiltration that causes smaller soil particles in the 

43 backfill to be washed away causing erosion voids to develop. 

44 The presence of erosion voids next to pipes removes soil support at that location, which 

45 can result in uneven load spreading in the ground surrounding the pipe (Tan and Moore, 2007; 

46 Balkaya et al., 2013). A rigid pipe, such as an RC pipe, resists surface loads in bending and 

47 shows negative arching, where surface load is attracted to the pipe by virtue of its higher 

48 stiffness compared to the soil it replaced (Young and Trott, 1984). The loss of soil support during 

49 the formation of erosion voids affects the soil-pipe interaction and has the potential to increase 
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50 the bending moments in the pipe, which could lead to failure of the system if the erosion voids 

51 are large enough. Hence, it is necessary to address questions such as how do voids influence soil-

52 pipe interaction, do voids increase the live load bending moments in the pipes, what is the effect 

53 of void size on bending moments, and can grouting of the void restore the ‘intact soil’ strength? 

54 Previous finite element studies have investigated surface load transfer to buried pipes 

55 when there were erosion voids in the backfill. For example, Tan and Moore (2007) calculated an 

56 increase in the bending moments in rigid pipes with erosion voids located beside the pipe 

57 springlines (see also Tan, 2007). For the assumptions associated with their elastic-plastic finite 

58 element modeling and voids with circular boundaries, they show that void location beside the 

59 springline causes earth load bending moment in the pipe to increase, and for voids under the 

60 invert or over the crown to decrease. The deterioration of the soil support can in fact result in the 

61 pipe reaching its performance limits before the end of its design life. In addition, groundwater 

62 infiltration can have other undesirable effects if left unattended including negative hydraulic 

63 impacts, spills, sinkhole formation, and therefore disruption to traffic or loss of life. One 

64 potential method of mitigating these issues is to grout the erosion voids, however no 

65 experimental work has been undertaken to investigate the performance of a rigid pipe with 

66 grouted erosion voids. 

67 Pipe design equations consider intact soil support surrounding a buried pipe, and recently 

68 MacDougall et al. (2016) reported on an experimental study to quantify concrete pipe response 

69 and evaluate the performance of reinforced concrete pipe design for ‘intact ground’ (where no 

70 erosion void has developed). Peter and Moore (2018) report on full-scale experiments to quantify 

71 the effect of an erosion void on the response of a corrugated steel pipe under surface live load, 

72 and no full-scale experiments have examined the effect of erosion voids on rigid pipes. 
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73 One final challenge associated with erosion voids and rehabilitated erosion voids is how 

74 to quantify their impact on the capacity of the pipe. Currently, bedding factors are used in the 

75 Indirect Design method to relate the behaviour of a concrete pipe when buried to the results of a 

76 D-load or three edge bearing test (ASTM C497-16a). Thus, a potential method of accounting for 

77 the presence of erosion voids would be to develop modified bedding factors that would account 

78 for the effects of the reduced soil support.

79 In light of this background, this paper reports the outcomes of a full-scale experimental 

80 study conducted on 0.9 m (36 in.) diameter reinforced concrete pipes with simulated erosion 

81 voids. The objectives of the paper are to (i) measure the difference in pipe bending moments for 

82 pipes with and without erosion voids, (ii) measure the difference in bending moments for pipes 

83 with and without grouted voids, and (iii) use these experimentally measured bending moments to 

84 develop modified surface load bedding factors for pipes with erosion voids and grouted erosion 

85 voids. 

86

87 2.0 Background

88 2.1 Void geometry

89 El-Taher and Moore (2008) looked at the influence of erosion voids on the yielding and 

90 buckling failure of corroded metal culverts using finite element analysis. They found that in the 

91 presence of an erosion void, the moments were more affected than the thrust in the pipe. 

92 Additionally, moment (the controlling factor for rigid pipes), was affected by both changes in the 

93 position of the erosion void with respect to the pipe and the volume of the void. 



5

94 The void location on the circumference of the pipe considered in the current study is 

95 based on the work of two previous investigations. Firstly, the numerical study presented by Tan 

96 and Moore (2007) considered erosion voids at the invert of a rigid pipe that resulted in a decrease 

97 in the magnitude of the overall bending moments experienced by the pipe. However, the 

98 presence of an erosion void at the springline was the most critical as it resulted in an increase in 

99 the magnitude of bending moments at all critical locations (i.e. crown, invert, and springlines). 

100 As a result, the void in the present study was simulated at the springlines to capture the critical 

101 changes in bending moments around the pipe circumference. Secondly, the first study by 

102 Spasojevic et al., (2007) found that although a common location for voids is under the invert due 

103 to fluids leaking from drainage and sewer pipes, these voids are unstable since the soil around 

104 the springlines tends to collapse and fill the void at the invert.

105 Obtaining images of erosion voids is challenging and hence replicating their true 

106 geometry is difficult. However, drawing on the geometry considered in Tan and Moore (2007), 

107 El-Taher and Moore (2008), and Balkaya et al. (2012), the erosion void was represented as a 

108 prismatic arc shape running along the length of the pipe on one side, thus making it a 2-D 

109 problem. Furthermore, Balkaya et al., (2012) studied the stresses and deformations in a PVC 

110 water pipe with different void geometries at the invert and haunches located at the joints using 

111 finite element analysis and found that joint rotation was magnified when voids were present at 

112 the joints. This study was validated by Becerril and Moore (2014) using full-scale experiments. 

113 Hence, in order to avoid this complexity and to focus on the impact of erosion voids on pipe 

114 strength, the voids in the present study were represented only along the length of the pipe barrel. 
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115 In addition, Tan and Moore (2007) showed that the contact angle of erosion voids plays a 

116 dominant role in stress changes. Hence, in the present study different sizes of voids were also 

117 considered. 

118 2.2 Soil cover

119 Lay and Brachman (2013) looked at the response of a RC pipe to surface live loads in an 

120 intact soil condition using full-scale experiments. RC pipes showed only 50-60% of cracking 

121 strain at nominal loads. As a result, no cracking developed in the pipe when it was subjected to 

122 CL-625 single-axle truck loading at nominal loads. It was also found that increasing the soil 

123 cover caused a reduction in the crown bending moment due to load spreading and arching. 

124 Hence, a minimum cover depth to diameter ratio of one was selected for the present study. 

125 2.3 Accuracy of bedding factors

126 Indirect design of buried concrete pipes uses a quantity called the Bedding Factor. 

127 Bedding factors were originally defined as the load per unit length along the pipe crown that 

128 induced the limiting crack (width of 0.25 mm) in a D-load test divided by the load that induced 

129 the limiting crack when the pipe was buried. This will subsequently be referred to as the 

130 ‘moment resistance’ Bedding factor, since it relates to load that induces the design limit state in 

131 the pipe. However, until the recent work of MacDougall et al. (2016), there were no experiments 

132 performed where crack width was measured for tests on buried pipes. Therefore, the Bedding 

133 factor has been quantified considering the ratio of moment induced under vertical loads in a three 

134 edge bearing test on the pipe in a laboratory, to the moment that develops in the same pipe under 

135 the same level of vertical load in the field when it is buried. This will be subsequently be referred 
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136 to as the ‘moment demand’ bedding factor, since it is calculated using the moment demands in 

137 the pipe at loads below any design limit state. 

138 The Bedding factor is greater than 1 (and the bending moments in the buried pipe 

139 decrease relative to those in the three edge bearing test) since the soil around the pipe spreads 

140 load across the top and bottom of the pipe, and lateral earth pressures develop that counteract the 

141 moments from the vertical loading. MacDougall et al. (2016) used tests on 0.6 m and 1.2 m 

142 diameter pipes at shallow cover to show that for those structures, the Indirect Design method 

143 gives conservative solutions when designing RC pipes and this could mean that reinforced 

144 concrete pipes already have the necessary reserve capacity to negate the effects of an erosion 

145 void beside a pipe. Since the Indirect Design method represents the most common approach used 

146 in pipe design across North America, the effect of erosion voids on Bedding Factors will be used 

147 to quantify the resulting changes in pipe capacity. 

148 3.0 Methods

149 3.1 Introduction 

150 In order to achieve the objectives of the study, seven full-scale buried experiments using 

151 0.9 m (36 in) internal diameter RC pipes were conducted with and without simulated erosion 

152 voids. This section initially describes the testing arrangement and setup, followed by details of 

153 the individual components, i.e. the pipe, the soil, the erosion voids, and the grout. 

154 3.2 Testing regime

155 Table 1 provides a summary of the specimens tested during the study. The first specimen 

156 was tested in three edge bearing (D-load; ASTM C497-16a). The buried pipe experiments were 

157 conducted in pairs since two pipe specimens could be buried simultaneously in the test facility. 
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158 Since the pipe response to the wheel pair load was used (featuring a small contact area and 

159 limited load spreading along the pipes), and since rubber gaskets were not inserted between the 

160 two pipe specimens, the two pipes responded independently, and hence they have been treated as 

161 individual specimens. This was confirmed using the strain gauge readings on the specimen 

162 adjacent to the one being tested, which showed no significant changes in strains as loads were 

163 applied over the other specimen. As such, specimens 2 and 3 were buried at the same time, as 

164 were specimens 4 and 5, and finally specimens 6 and 7. 

165 Table 1: Test details

Specimen Test description Loading limit

1
D-load (three edge bearing) 

test
Onset of crack at 196 kN 

2
Intact soil (80-85% 

Standard Proctor)
Onset of crack at 274 kN 

3
Grouted small void (80-85% 

Standard Proctor)
Onset of crack at 308 kN 

4
Small void (80-85% 

Standard Proctor)
Onset of crack at 277 kN 

5
Large void (80-85% 

Standard Proctor)
Soil collapse at ~ 250 kN 

6
Intact soil (90-95% 

Standard proctor)
Onset of crack at 525 kN 
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7a
Large void (90-95% 

Standard Proctor)

Tested only up to 50 kN as the void was grouted 

and tested as specimen 7b.

7b
Grouted large void (90-95% 

Standard Proctor)

Did not crack and instead observed soil collapse 

in the first factored service load cycle (128.3 kN) 

and a misalignment in the actuator.

166

167 Specimen 1 was tested according to ASTM C497-16a until a maximum allowable crack 

168 width of 0.25 mm (0.01 in.) crack width was achieved. The D-load test setup and dimensions can 

169 be seen in Figure 1. Load was applied using a 2000 kN (450 kips) actuator seated directly on top 

170 of an I-beam. After the D-load test, the pipe was cut into two segments and used as the end pipes 

171 in the subsequent burial tests. 

172 Specimen 2 was a pipe section buried in an intact soil condition and specimen 3 was a 

173 pipe section with a grouted small void (see Figures 2 and 3). Installation type 3 using a 

174 compaction of 80-85% Standard Proctor was adopted for both of these tests (AASHTO LRFD, 

175 2012). This installation type was used to represent backfill that had deteriorated over time 

176 (Moore et al., 2012). The void for specimen 3 was simulated using an air bladder that was 

177 inflated and tied to the sides of the pipe, then punctured after burial, and filled with grout as 

178 discussed in sections 3.2.2 and 3.2.3 (the method of simulating an erosion void using an air 

179 bladder was developed during the earlier testing project on corrugated steel pipe culvert reported 

180 by Peter and Moore, 2018).  

181 Specimen 4 was buried with a smaller simulated erosion void at the springline, and 

182 specimen 5 featured a larger erosion void (see Figure 4). The dimensions of these voids are 
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183 defined in a subsequent section. The same level of compaction was used as specimens 2 and 3 to 

184 simulate deteriorated backfill (Moore et al., 2012).

185 Specimen 6 also had intact soil but with installation type 2 with a compaction of 90-95% 

186 Standard Proctor (AASHTO LRFD, 2012); it was used to investigate the performance of 

187 reinforced concrete pipes in well compacted soil. Specimen 7 was the companion for specimen 6 

188 and was tested with a large void, under installation type 2, for service loads up to 50 kN. The 

189 large void (specimen 7a) was later grouted (and denoted specimen 7b) and tested under service 

190 loads (up to 50 kN) and up to a maximum possible test load (either cracking in the pipe or soil 

191 failure). Here, ‘soil failure’ is intended to mean collapse associated with a mechanism (i.e. what 

192 is referred to as ‘general shear failure’ by Lambe and Whitman (1979), rather than just shear 

193 failure at a point).

194 Each buried pipe specimen was initially loaded using a simulated wheel pair up to a load 

195 of 50 kN or 113.4 kN (for specimens with and without erosion voids, respectively), before being 

196 loaded up to the maximum possible load as discussed in section 3.6.

197 3.3 Sample description

198 3.3.1 Reinforced concrete pipes 

199 The tests were conducted using seven Class III (65-D) reinforced concrete pipes with 0.9 

200 m internal diameter, 2.4 m length, and 121 mm wall thickness (denoted by the Wall C 

201 configuration defined in ASTM C497-16a). The outer diameter at the bell measured 1.3 m. 

202 These pipes are normally used in culvert, storm sewer and sanitary sewer applications. The 

203 concrete and steel material properties were not supplied by the manufacturer, however, since the 
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204 response of the pipes was in the uncracked linear elastic region for most of the testing, the 

205 flexural stiffness of the pipes can be determined using the method outlined in section 4.1.

206 3.3.2 Erosion voids 

207 The erosion voids were simulated using air bladders attached to the pipes. The small air 

208 bladder had a length of 1.9 m, width of 0.74 m, thickness of 0.22 m, and a cross-sectional area of 

209 0.16 m2 (Figure 5). The width of the air bladder wrapped around the circumference of the pipe, 

210 so that it was in contact with the exterior barrel of the pipe over an angle of approximately 40 

211 degrees. The larger air bladder had a length of 1.9 m, width of 1.4 m, thickness of 0.22 m with a 

212 cross sectional area of 0.31 m2 (Figure 5), contacting the pipe exterior over an angle of about 70 

213 degrees). The bladder position and its shape were maintained and protected with an overlay of 

214 geotextile (see Figure 3).

215 As discussed in section 2, the most critical location for erosion voids to form is around 

216 the springlines of the pipe. Hence, the small air bladder spanned from the haunch to just above 

217 the springline, while the larger air bladder spanned from the haunch to the crown of the outside 

218 circumference of the pipe (Figure 5). The void geometry chosen was a prismatic arc that ran 

219 along the length of the pipe; therefore, the experiments undertaken in this study could be 

220 considered as involving approximately a plane strain pipe response, with longitudinal effects 

221 being negligible. While this representative geometry is not necessarily similar to the one that 

222 would occur if erosion resulted from joint leakage, it is considered a useful approximation for 

223 this first study on void effects. 

224 The degree of soil compaction and soil suction may have offered the necessary resistance 

225 to retain the void shapes and prevent initial collapse of the erosion voids before testing under 
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226 surface load. This was reconfirmed in Peter and Moore (2018) based on the excavated geometry 

227 of the grouted specimen. 

228

229 3.4 Backfill

230 As seen in Figure 3, the specimens were placed on a well-compacted bedding. Small pits 

231 were excavated prior to placing the pipe on the bedding to accommodate the protrusion of the 

232 bell on each pipe. A flexible retaining wall assembled from steel mesh and geosynthetic was 

233 used as the south end wall next to the concrete retaining blocks as seen in the elevation drawings 

234 in Figures 2 and 4. The steel mesh extended 1000 mm into the soil at each lift to prevent collapse 

235 (this system has been used at Queen’s University in many prior buried pipe experiments, e.g. 

236 Becerril García and Moore, 2013 and 2014 a and b). 

237 The backfill material used in the tests was a well graded, granular A sand, with fine to 

238 coarse grade materials (GW-SW soil according to the Unified Soil Classification System or as an 

239 AASHTO (2009) A-1 material) with a unit weight of 22kN/m3 (Brachman et al., 2010). The 

240 backfill was placed in nine 300 mm lifts to ensure the burial was consistent with depth and 

241 compacted using a vibrating plate tamper. Once the lifts were compacted, the dry density, water 

242 content, and percentage Standard Proctor were recorded using a CPN MC-1DR-P Portaprobe 

243 nuclear densometer (according to ASTM D6938-10). A minimum specified cover height of one 

244 diameter (i.e. 0.9 m) was used. 

245 3.5 Grouting

246 A low strength foam grout (density 703 kg/m3) was used to fill the voids in a single lift. 

247 The grout had a 7-day unconfined compressive strength of approximately 2.0 MPa. The mix was 
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248 prepared by volume and included Type III Portland cement, water, and a foaming agent (Aerix 

249 light by Euclid Chemical, Canada). Between the pipe and the air bladder, a vertical pipe was 

250 placed to allow the grout to enter into the simulated void. The end of the vertical pipe was placed 

251 close to the bottom of the void to ensure the void was completely filled. A narrow pipe (overflow 

252 pipe) was placed parallel to the pipe axis at the top of the void to monitor the grout level in the 

253 void. After backfilling, the air bladder was ruptured by drilling into it from the inside of the pipe. 

254 The air was allowed to escape through the holes for a period of several hours and the strains in 

255 the pipe were monitored during this period. After testing of the unrepaired structure was 

256 completed, the grout was carefully poured into the void using the vertical standpipe. Due to the 

257 porous nature of the grout and its low viscosity, the void filled readily. Grouting was stopped 

258 once the grout was observed to come out of the overflow pipe and it had filled the bottom half of 

259 the vertical grouting pipe. 

260 3.6 Instrumentation 

261 To measure the circumferential strains around the specimens, 16 strain gauges (of 51 mm 

262 (2 in.) length) (Figure 6) manufactured by Vishay Micro-Measurements Co. were used. The size 

263 of the strain gauges was chosen to be at least three times the size of the largest aggregate in the 

264 concrete to record average strains. The gauges were placed at critical locations around the pipes 

265 inner and outer circumference or extreme fibre surface locations (i.e. crown, invert, springlines, 

266 shoulder, and haunches). The axial positions of this and other instrumentations relative to the 

267 applied surface loads are defined in section 3.7. 

268 In addition to using strain gauges, fibre optic strain sensors (FOS) were used to capture 

269 the complete circumferential strain profile around the specimen (Figure 6). Nylon coated fibre 

270 optic cables were glued to the inside and outside surfaces of the concrete pipes in two loops as 
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271 per the installation procedure outlined in Simpson et al., (2015). The gauge length within the 

272 fibre was specified as 5 cm (similar to the conventional strain gauges) and spaced at 5 cm along 

273 the length of the cable. 

274 Reliable estimates of curvature and bending moments prior to cracking were calculated 

275 using strain readings from strain gauges or fibre optics. Strain gauges and optical fibres were 

276 placed directly on the surface of the RC pipes. This type of application has been successfully 

277 used at Queen’s University in many rigid pipe experiments, e.g. MacDougall et al., (2016), and 

278 Moore et al., (2012). 

279 Diameter changes under surface loading were also measured using Linear Potentiometers 

280 (LP’s) (Figure 6). Two LP’s were placed inside the pipe directly under the centre of the wheel 

281 pad to measure the vertical and horizontal changes in the diameter as the ground above the pipes 

282 was loaded. 

283 Two digital single lens reflex (DSLR) cameras were also set up to record the 

284 development of cracks at the crown and at the invert inside the pipes during loading using 

285 Particle Image Velocimetry (PIV) patches (Figure 6), but to manage the length of this article, the 

286 analysis procedures and crack-width data will be presented elsewhere.

287 The movement of the surface of the soil was also monitored using a servo-controlled 

288 Leica total station. Reflective prisms were used to capture the surface movement potentially 

289 occurring during loading (Figure 7). The prisms were located on a grid pattern of 450 mm 

290 spacing to cover an estimated zone of influence. No significant changes were observed in the 

291 target locations during testing and hence the results are not discussed in this paper. 

292 3.7 Loading regime
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293 For specimen 1 (D-load test, Figure 1), the load was increased using stroke control at 3 

294 mm/min. In the buried pipe tests, the loads were applied using the same 2000 kN hydraulic 

295 actuator acting onto a loading pad. Service load tests used a steel pad dimensioned to the size of 

296 a standard AASHTO wheel pair of a design truck (254 mm x 508 mm – Figure 7). The 

297 maximum load test used larger wooden loading pad that measured 370 mm x 950 mm (Figure 7) 

298 to avoid premature soil collapse of the unpaved surface. 

299 The fibre optics and strain gauges were positioned on the pipe surface directly under the 

300 corresponding location of surface load application, around three rings. One ring of fibre optics in 

301 the RC pipe was positioned at the approximate centreline of the load pad. At 254 mm on either 

302 side of the centreline (i.e. the edges of the load pad), a ring of strain gauges or a second ring of 

303 fibre optics was attached. 

304 Three cycles of loading and unloading were conducted as part of the service load test 

305 (using the smaller loading pad) and one cycle of loading was conducted for the maximum load 

306 state test for each buried condition (using the larger wheel pad). The load was increased in steps 

307 and was held constant when the fibre optic strains were being recorded. In the service load tests, 

308 the loads were increased to 113.4 kN for tests 2, 3, 6, and 7b, but only to 50 kN for specimens 4, 

309 5, and 7a (the small and large void) so as to prevent void collapse. In the maximum load tests, 

310 once the full design service load step was achieved, the load was increased in 10 kN increments 

311 until either a crack width in the RC pipe of 0.25 mm (a service limit defined for reinforecd 

312 concrete pipes by AASHTO, 2016) was observed at the inside crown or invert, or soil collapse of 

313 the surface occurred (observed visually). 

314
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315 4.0 Results and Discussion

316 4.1 Introduction

317 The following section presents the results of the experimental campaign. To understand the 

318 impact of burial (section 4.2), erosion voids (section 4.3), grouted voids (section 4.4), pipe 

319 cracking responses and linearity (section 4.5), and modified bedding factors (section 4.6) on the 

320 behaviour of reinforced concrete pipes, the fibre optic strain measurements were used to 

321 calculate curvatures, κ, using equation 1. 

322 (1)
h

outsideinside  


323 Equation 2 was then used to calculate approximate values of the circumferential bending 

324 moments, M. 

325 (2)NmEIM 310 

326 where  = the circumferential strain measured on the inside face of the pipeinside

327 = the circumferential strain measure on the outside face of the pipeoutside

328 = pipe wall thickness = 121 mmh

329 The material properties of the pipe were not supplied by the manufacturer. However, the flexural 

330 stiffness, EI, can be calculated using the experimental data by rearranging equation (2) to solve 

331 for EI and inputting the solution for the D-load moments proposed by Heger (1962) and the 

332 measured curvature. However, it is worth noting that the moment distribution for the D-load test 

333 (Figure 8) did not match the expected moment distribution (Heger, 1962). This is likely due to 

334 the D-load test setup used as seen in Figure 1. In this case, the top loading condition involves a 
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335 single point load being applied to the specimen through a steel beam, which is less stiff than the 

336 pipe itself resulting in a concentration of load in the pipe near the actuator. The bottom support 

337 condition involves a beam placed on top of compacted soil, which is stiffer than the pipe and 

338 results in load spreading along the length of the pipe. As such, the strains measured at the crown 

339 are not representative of the full pipe behaviour and so to calculate EI, the moment and 

340 curvatures at the invert were used. The equation for moment at the invert in an uncracked pipe is 

341 given in equation (3)(Heger, 1962).

342 (3)Pr28.0M

343 where P is the point load applied at the top of the pipe (100 kN for the D-load test) and r is the 

344 pipe radius (0.510 m). Using this moment and the curvature measured at the invert at an applied 

345 load of 100 kN, the flexural stiffness, EI, can be calculated as 7.73 × 1012 Nmm2. This value can 

346 be used to convert the curvatures calculated from the strains into moments. These equations are 

347 used under the assumption that the strain is linear through the wall thickness prior to cracking.

348 4.2 Impact of burial

349 Figure 8 compares the results from the D-load sample (specimen 1) to the intact soil test 

350 with the type 2 installation (specimen 6) to investigate the impact of burial in soil on pipe 

351 behaviour. To compare these two results, the strains and then circumferential bending moments 

352 in different pipes at the same equivalent load per unit length along the pipe axis had to be 

353 evaluated. For specimen 1, this load was determined by taking the total applied load and dividing 

354 by the length of the pipe to get an equivalent line load (in N/m). For specimen 6, the concept of 

355 the load spreading prism from the AASHTO LRFD (2012) design procedure were used to turn 

356 the load applied at the surface into an equivalent line load along the length of the pipe (to the 
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357 crown). For a burial depth of H to the pipe crown and loading pad of width W0 and length L0, 

358 load per unit length along the buried pipe  is given by Wang and Moore (2015) as:𝐹𝐻

359 (4)
HLLDFL

wPF L
H 


0

360

361 (3)

362 where  = the surface force on the loading pad𝑃𝐿

363 LLDF = the AASHTO LRFD, 2012, live load distribution factor (and equal to 1.15 for the coarse 

364 grained soils used in this study) 

365 w = the proportion of the load acting across the pipe barrel of outside diameter OD, where ‘w’ is 

366 given by:

367 (5)















1

min
0 HLLDFW

OD

w

368 Strains or moments can be compared directly if obtained at the same value of load (FH) 

369 applied using the steel or wooden load pads. The strains in the D-load test were compared to the 

370 strains in the buried pipe test when the forces per unit length (FH) on the two pipes were similar. 

371 The response of the RC pipes is assumed to be linear and elastic up to the point of first cracking. 

372 As a result, the D-load strains compared in Figure 8 were scaled from the closest FH to compare 

373 to the equivalent force per unit length (FH) in the buried pipe. Figure 8 is the first of a series of 

374 radial plots that are used to quantify how soil support influences live load bending moments. 
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375 Strains measured on the tension side of the concrete wall were positive and strains measured on 

376 the compression side were negative. 

377 Figure 8 shows the moment for the D-load test plotted using results extrapolated from 

378 100 kN to 110.16 kN, so they correspond to the same FH as the intact soil test. The moments 

379 increased linearly with load from 20 kN to 120 kN (further discussed in section 4.5); hence, the 

380 extrapolated results are considered reliable. From Figure 8, it can be seen that the moments in the 

381 D-load test are approximately 9 times higher at the crown, 3.3 times higher at the invert, and 4 

382 times higher at the springline locations compared to the intact soil responses (specimen 6). This 

383 reduction in moment magnitude when the pipe is buried is due to the effect of the soil and 

384 illustrates the basis for the Bedding Factor (Bf) that will be discussed in detail in section 4.6. 

385 Subsequent circumferential bending moment plots are calculated using the strains readings 

386 measured from the larger load pad tests.

387 4.3 Impact of voids

388 Figure 9 shows a plot of bending moment around the circumference for the intact pipe 

389 with type 2 installation (specimen 6) versus the pipe with the small void and type 3 installation 

390 (specimen 4) at 113 kN (25.5 kips) of surface load. Although an intact pipe with type 3 

391 installation was tested (specimen 2), the strain sensors on that pipe malfunctioned meaning that 

392 moment values could not be calculated. However, since the bedding factors are intended for a 

393 pipe with type 2 installation, it is also informative to compare the response of the deteriorated 

394 specimen to an intact specimen with proper soil support (specimen 6).

395 From Figure 9, it can be seen that the moments in specimen 4 are greater than the 

396 moments in specimen 6. The most significant increase in moments is seen at the invert where the 
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397 moments have increased by approximately 70%. This result is to be expected for two reasons: 

398 the difference in soil compaction and the presence of the small erosion void. Both of these 

399 factors result in the soil surrounding pipe specimen 4 providing much lower lateral earth 

400 pressures on the pipe, so that bending moments increase substantially. This may have significant 

401 implications for the assessment of pipes with erosion voids next to them as they can potentially 

402 have less than half their expected capacity. Figure 9 also shows the maximum bending moment 

403 at the invert of specimen 4 with erosion void has shifted from the invert towards the location of 

404 the small void. This result is logical since the lack of soil on this side of the pipe likely produced 

405 greater transfer of vertical forces to that side of the pipe above and below the void, coupled with 

406 the reductions in lateral earth pressures. Results from the larger void test (specimen 5) are not 

407 presented in this paper as the fibre optics failed during the tests. 

408 Assuming a liner elastic response prior to cracking (discussed in section 4.6), the larger 

409 void test (specimen 7a) results, from the smaller load pad test, were scaled from 50 kN (FH = 

410 28.42 kN/m) to 80.76 kN (FH = 45.9 kN/m) and are presented in Figure 10. 

411 From Figure 10, it can be seen that the moments in specimen 7a are greater than the 

412 moments in specimen 6. The most significant increase in moments is seen at the invert where the 

413 moments have increased by approximately 26%. It must be noted that the moments plotted in 

414 Figure 10 are extrapolated from the moment values measured at 50 kN load under the small load 

415 pad. 

416

417 4.4 Impact of grouting

418 Figure 11 shows a comparison of grouted small void (specimen 3) results and intact soil 

419 (specimen 6) results for 113 kN (25.5 kips) applied to the larger loading pad. Again in this case, 
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420 since the bedding factors are intended for a pipe with type 2 installation, the response of the 

421 rehabilitated specimen has been compared to an intact specimen with proper soil support 

422 (specimen 6).

423 From Figure 11, it can be seen that once the small void was filled with grout, the results 

424 show a decrease in the bending moments (especially on the side of the grouted void and 

425 compared to the voided condition). For example, there was a 25% decrease in moments at the 

426 haunch (grouted void side) and an approximate 10% decrease at the invert between the repaired 

427 (grouted void) and the unrepaired (voided condition). 

428 To investigate the implications of grouting the voids further, circumferential bending 

429 moments were compared between the grouted large void (specimen 7b) at FH = 45.9 kN/m and 

430 the intact soil (specimen 6) in Figure 12.

431 Figure 12 shows the extrapolated moment distributions in specimen 7b (grouted large 

432 void) and specimen 6 (intact soil) for FH = 45.9 kN/m. Further reduction in the overall bending 

433 moment can be seen compared to the grouted small void condition. Soil collapse was observed at 

434 surface loads greater than 100 kN (22.5 kips) for specimen 7b resulting in a change in the cover 

435 depth and the test was terminated. The probable cause of this ground failure was because the 

436 grout did not completely fill the large void, and so the soil directly under the wheel pad moved 

437 into some of the remaining void. 

438 Based on the results of the two grouted void tests, it can be speculated that grouting an 

439 erosion void will result in the overall improvement of the system capacity versus not filling the 

440 erosion void. However, it should be noted that level of compaction of the surrounding soil also 

441 plays a major role in the distribution of surface loads to the soil-pipe system. For example, the 
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442 grouted large void (90-95% Standard Proctor compaction level) showed comparable responses to 

443 the intact soil test (90-95% Standard Proctor compaction level), while the grouted small void 

444 (80-85% Standard Proctor compaction level) showed an improvement in the overall response of 

445 the system but did not restore the original moment distribution in the pipe. The role of 

446 compaction is explored further in the next section.

447

448

449 4.5  Pipe cracking responses and linearity

450 The maximum load limits were either cracking in the pipes on the tension side of the pipe 

451 walls or soil collapse (especially in the large void tests).

452 The maximum load test results from the buried pipe tests are provided in Table 1. From Table 1, 

453 it can be seen that specimen 6 (90-95% Standard Proctor compaction level) cracked at the 

454 highest load, followed by the grouted small void test (specimen 3), the small void test (specimen 

455 4), and the intact soil test with 80-85% Standard Proctor compaction level (specimen 2). Table 1 

456 also shows that soil collapse was observed in the grouted large void and large void tests at low 

457 surface loads. However, it was observed that the grouted large void (specimen 7b) was not 

458 completely filled with grout when the pipe was excavated; hence, the presence of voids could 

459 have led to a premature failure in this case. It should be noted that the soil surfaces in these tests 

460 were unpaved and soil failure might be observed at higher loads if the surface was paved.

461 Figure 13 shows the vertical and horizontal change in diameter with increasing surface 

462 loads as measured using the linear potentiometers (LP’s). 

463 From this figure, it can be seen that the overall changes in diameter are very small, 

464 although after cracking, the changes in diameter begin to increase in a non-linear fashion. These 
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465 results demonstrate how buried rigid pipes have initial stiffness (i.e. deformation under load) that 

466 is dominated by the flexural rigidity of the pipe (see Moore, 2001), with almost identical 

467 deformations for different kinds of soil support. However, the bending moments that develop and 

468 which control the cracking loads depend heavily on the soil conditions. Figure 14 presents the 

469 bending moment in the pipes at (a) the crown and (b) the invert as a function of applied load at 

470 the surface for all the pipes for which strain data was available (excluding the D-load test).

471 Figure 14 shows an approximately linear increase in crown and invert bending moments 

472 as a function of applied loads, prior to cracking. Hence, the extrapolated moment values for 

473 specimen 7b are considered to be acceptable. 

474 4.6 Modified bedding factors

475 As noted in section 2.3, the Bedding factor (Bf) can be defined as a measure of the 

476 performance of a buried pipe relative to the same pipe tested in a D-load test (unburied). It can 

477 be calculated using two approaches. Firstly, bedding factor is normally defined as the ratio 

478 between loads per unit length that produce the same amount of bending moment for the buried 

479 and D-load conditions, McGrath and Hoopes (1998) (Equation 6).

480 (6)
load-Dfor length unit per Load

pipeburiedfor length unit per Load
fB

481 Alternatively, for a buried pipe system that is responding linearly, bedding factor can be 

482 expressed as the ratio of moments for the same vertical load per unit length (Equation 7). 

483 (7)
pipeburiedfor lenth unit per forcesurfaceper Moment 

load-Dfor length unit per forceper Moment 
fB
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484 Therefore, bedding factors obtained from equation 7 will be used in this section as a 

485 convenient method to quantify the support provided by the backfill to the pipes. Table 2 shows 

486 bedding factor calculated based on equations 6 and 7 for 50 kN (11.2 kips) surface load and at 

487 cracking loads respectively using the moments at the invert. When calculating the load spreading 

488 in the vertical direction to the pipe crown (i.e. the cover height), live load distribution factors 

489 (LLDF) of 1.15. According to AASHTO LRFD (2012), the LLFD value is 1.15 based on the 

490 backfill (i.e. select-granular soils). A comparison is also made between the results when the loads 

491 were applied using the small loading pad (service load pad) and large loading pad (maximum 

492 load test pad). The minimum live load bedding factor specified by AASHTO LRFD (2016) 

493 (Table 12.10.4.3.2c-1) for a 0.9 m diameter pipe with 0.9 m of cover is 2.2. However, the buried 

494 pipes did not reach the critical crack width of 0.25 mm before failure of the ground surface 

495 occurred.

496 Table 2: Modified bedding factor (Bf) using measured moments and cracking loads

Average Bf (Equation 6)

Small pad at 

50 kN

Large pad at 

50 kN

Bf at first crack

(Equation 7)Specimen Test description

LLDF = 1.15 LLDF = 1.15 LLDF = 1.15

2 Intact soil (80-85%) A A 1.4

3 Grouted small void 

(80-85%)
1.6 2.0 1.6

4 Small void 

(80-85%)
1.6 1.8 1.4
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5 Large void 

(80-85%)
A A B

6 Intact soil 

(90-95%)
2.9 3.2 2.6

7a Large void service load 

(90-95%)
1.4 C C

7b Grouted large void 

(90-95%)
2.4 2.4 B

AASHTO LRFD (2016) minimum requirement 2.2

497 Notes: A. Optical fibre broke on this sample so moment values are not available

498 B. Soil collapse was observed  

499 C. Test was not conducted to failure (critical cracking of pipe or soil collapse)

500 All the specimens with voids have bedding factors that are lower than the minimum 

501 requirement as does the specimen with the grouted small void. The intact soil specimen has the 

502 highest bedding factors and it is well above the required value of 2.2, which makes sense since 

503 the bedding factor is meant to lead to conservative designs. Table 2 also clearly shows that as the 

504 backfill support decreases, the lower the cracking load and therefore the lower the bedding factor 

505 value. Figure 15 shows how bedding factors change with load steps from 25 kN to 113 kN in the 

506 maximum load test tests with LLDF = 1.15.

507 It can be seen in Figure 15 that the bedding factors calculated using crown moments and 

508 load spreading to the crown of buried pipes result in much higher values. This was because the 

509 crown moment from the D-load test was higher than those at other critical locations as it 
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510 approached the cracking limit state on the tension side first as noted earlier. Bedding factors 

511 calculated using invert moments and load spreading to the invert of buried pipes result in values 

512 where only the intact soil and the grouted large void are greater than the minimum AASHTO 

513 specified design value of 2.2 (Figure 16). However, in both cases the general trend seen is that 

514 the intact soil (specimen 6) has the highest bedding factor, followed by the grouted large void 

515 (specimen 7b), grouted small void (specimen 3), and finally the small void (specimen 4). At a 

516 few load levels (loads greater than the maximum AASHTO design service load (105 kN)), the 

517 grouted small void results are greater than the AASHTO design value. This suggests that the 

518 experimental determination of the bedding factor is load dependent. It is also suggests that the 

519 bedding factor may be very conservative for the design of non-deteriorated pipes. 

520 5.0 Conclusions

521 Slow deterioration of pipes can contribute to the formation of erosion voids in the backfill 

522 due to fluid leaking both into and out of the pipe. The presence of these voids corresponds to a 

523 lack of soil support that results in uneven load spreading in the ground. No previous full-scale 

524 experiments have explored the effects of voids beside rigid pipes. The tests presented in this 

525 paper represent the first full-scale, controlled laboratory tests investigating the effect of erosion 

526 voids adjacent to buried concrete pipes, and the results provide a unique insight into the effects 

527 of these voids on rigid pipe behaviour and the potential impact of low strength grout as a 

528 remedial measure. The tests involved investigating and quantifying the effect of live loads on the 

529 performance of 0.9 m (36 in.) diameter, Class III, concrete pipes buried with a 0.9 m (36 in.) 

530 cover depth, with erosion voids simulated on one side of the pipe.  

531 A summary of the pipe responses to surface live loads are given below:  
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532 a. Cracking was observed in most of the tests, although burial in soil with high compaction 

533 and high lateral soil support (i.e. intact soil test with compaction to 90-95% of maximum 

534 density from a Standard Proctor test) ensures cracking at very high loads. When erosion 

535 voids are present beside the pipe, there is a reduction in the soil support and the pipe 

536 takes on more loads (arching). Hence, the pipes crack at substantially lower surface loads. 

537 This is clear from the results, where the test on pipe in intact soil with density 

538 corresponding to 90-95% Standard Proctor compaction) cracked at the highest load 525 

539 kN, followed by grouted small void at 308 kN, followed by small void test at 277 kN, and 

540 intact soil (80-85% Standard Proctor compaction) at 273 kN.

541 b. The presence of erosion voids resulted in an overall increase in bending moment with the 

542 invert moments being affected the most (e.g., 70% change in the invert moment between 

543 the intact soil result and the small void result and a 26% change in the invert between the 

544 intact soil result and the extrapolated large void results). This validates the computer 

545 analyses of Tan and Moore (2007), where an overall increase in bending moments was 

546 also observed for erosion voids located at the pipe springline.

547 c. The test featuring larger voids also showed soil collapse as the dominant failure 

548 mechanism. It was observed that increasing the contact angle of the erosion voids to the 

549 pipe eventually lead to a change in failure mode, so that surface soil collapse became 

550 dominant (under unpaved roads). This shows that erosion voids can be highly 

551 undesirable, given that they can create unstable conditions that jeopardize the roadway 

552 overhead.

553 d. On exhumation of the grouted large void, it was observed that the grout did not fully fill 

554 the void, and it appears that the soil directly under the loading pad collapsed into the 
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555 remaining void. This was the case even though a comparison of the strains and bending 

556 moment readings demonstrated that the pipe responses were very similar to those for the 

557 intact soil condition. 

558 e. A small difference in the degree of compaction, for example type 2 installation for intact 

559 soil (specimen 6) and type 3 installation of intact soil (specimen 2) lead to significant 

560 changes in the bedding factor results as seen in the calculated cracking bedding factor 

561 values 2.6 and 1.4 respectively (46% reduction). 

562 f. Comparisons between the large plate bedding factor values for the pipes show that the 

563 intact backfill soil provided the highest bedding factor, followed by grouted large void 

564 (approximately 22% reduction), grouted small void (approximately 36% reduction), and 

565 ultimately small void (approximately 39% reduction). 
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682 Figure 11: Circumferential bending moment (kNm/m) in the intact soil and grouted small void 

683 test pipes (specimens 6 and 3 respectively)

684 Figure 12: Circumferential bending moment (kNm/m) in the intact soil and grouted large void 

685 test pipes (specimens 6 and 7b respectively)

686 Figure 13: Vertical and horizontal linear potentiometer (LP) movement vs load step

687 Figure 14: Bending moment as a function of applied load using large load pad: (a) crown, (b) 

688 invert

689 Figure 15: ‘Moment demand’ bedding factors calculated considering load spreading to the crown 

690 using an LLDF = 1.15 and a larger loading pad

691 Figure 16: ‘Moment demand’ bedding factors calculated considering load spreading to the invert 

692 using an LLDF = 1.15 and a larger loading pad





Load applied by actuator

Upper steel I-beam (rigid base)

Upper bearing wood block

Reinforced concrete pipe

Lower bearing wood block

Lower steel I-beam (rigid base)

360

360

900

30

50



Grouted void pipe

South extension pipe

Overhead frame carrying the actuator

2000kN hydraulic actuator

Retaining blocks

Intact soil pipe

0.9 m (3 ft.) soil cover

North extension pipe

Single wheel pad loading

N

Drop pipe

Overflow pipe

7.45

0.6

8.0

0.9 2.44 2.44 0.65

0.9

0.9

0.9



 

Drop pipe for grout 

Air bladder under geotextile Fibre optic sensors 

Strain gauge 



0.9 m (3 ft.) soil cover

N

7.45

8.0

2.44 2.44 0.65

0.9

0.9

0.9

Small void

Large void



0.9

0.9

65°

723

Air bladder

(width 0.74 m)

121°

Air bladder

(width 1.4 m)

1390

Reinforced

concrete pipe

Reinforced

concrete pipe



 

Linear potentiometer 

Strain gauge 

Fibre optic sensor 

PIV patch 







-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

-15-10-5051015

-15

-10

-5

0

5

10

15

D-load (specimen 1) moment for F
H 

= 45.9 kN/m

Intact soil (specimen 6) moment at 90-95% Standard Proctor for F
H
 = 45.9 kN/m

Moment (kNm/m)

Crown

Invert



-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

-4-3-2-101234

-4

-3

-2

-1

0

1

2

3

4

Small void (specimen 4) moment at 80-85% Standard Proctor for F
H
 = 45.9 kN/m

Intact soil (specimen 6) moment at 90-95% Standard Proctor for F
H
 = 45.9 kN/m

Moment (kNm/m)

Location of Small Void

Invert

Crown



-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

-4-3-2-101234

-4

-3

-2

-1

0

1

2

3

4

Large void (specimen 7a) moment at 90-95% Standard Proctor for F
H
 = 45.9 kN/m

Intact soil (specimen 6) moment at 90-95% Standard Proctor for F
H
 = 45.9 kN/m

Moment (kNm/m)

Location of Large Void

Crown

Invert



-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

-4-3-2-101234

-4

-3

-2

-1

0

1

2

3

4

Grouted small void (specimen 3) moment for 80-85% Standard Proctor for F
H
 = 45.9 kN/m

Intact soil (specimen 6) moment for 90-95% Standard Moment for F
H
 = 45.9 kN/m

Moment (kNm/m)

Location of Grouted Small Void

Crown

Invert



-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

-4-3-2-101234

-4

-3

-2

-1

0

1

2

3

4

Grouted large void (specimen 7b) moment at 90-95% Standard Proctor for F
H
 = 45.9 kN/m

Intact soil (specimen 6) moment at 90-95% Standard Proctor for F
H
 = 45.9 kN/m

Moment (kNm/m)

Location of Grouted Large Void

Crown

Invert



Load (kN)

0 100 200 300 400

L
P

 m
o
v
e
m

e
n
t 

(m
m

)

-0.4

-0.2

0.0

0.2

0.4

Intact soil (specimen 2) - Vertical LP

Intact soil (specimen 2) - Horizontal LP

Small void (specimen 4) - Vertical LP

Small void (specimen 4) - Horizontal LP

Large void (specimen 7a) - Vertical LP

Large void (specimen 7a) - Horizontal LP

Grouted small void (specimen 3) - Vertical LP

Grouted small void (specimen 3) - Horizontal LP

Intact soil (specimen 6) - Vertical LP



Surface load (kN)

20 40 60 80 100 120

M
o
m

e
n
t 

(k
N

m
/m

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Specimen 6 - Crown ULS

Specimen 3 - Crown ULS

Specimen 4 - Crown ULS

Specimen 7b - Crown ULS



Surface load (kN)

0 20 40 60 80 100 120 140

M
o
m

e
n
t 

(k
N

m
/m

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Specimen 6 - Invert ULS

Specimen 3 - Invert ULS

Specimen 7b - Invert ULS

specimen 4 - Invert ULS



Surface load (kN)

20 40 60 80 100 120 140

B
e
d
d
in

g
 f

a
c
to

r 
(B

f)

1

2

3

4

5

6

7

8

9

Intact soil (specimen 6)

Grouted large void (specimen 7b)

Grouted small void (specimen 3)

Small void (specimen 4)

AASHTO minimum requirement = 2.2



Surface load (kN)

20 40 60 80 100 120 140

B
e
d
d
in

g
 f

a
c
to

r 
(B

f)

0

1

2

3

4

Intact soil (specimen 6)

Grouted large void (specimen 7b)

Grouted small void (specimen 3)

Small void (specimen 4)

AASHTO minimum design value = 2.2


