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Abstract In this paper, ultra-wide patch antenna arrays have been presented at 60 GHz band
(57.24-65.88 GHz) with improved gain and beam-width capabilities for remote detection of
respiration and heart beat rate of a person with Doppler radar principle. The antennas measured
and simulation results showed close agreement. The breathing rate (BR) and heart rate (HR) of
a 31-year-old man have been accurately detected from various distances ranging from 5 to
200 cm with both single-antenna and dual-antenna operations. In the case of single-antenna
operation, the signal is transmitted and received with the same antenna, whereas in dual-
antenna operation, two identical antennas are employed, one for signal transmission and the
other for reception. It has been found that in case of the single-antenna operation, the accuracy
of the remote vital sign monitoring (RVSM) is good for short distance; however, in the case of
the dual-antenna operations, the RVSM can be accurately carried out at relatively much longer
distance. On the other hand, it has also been seen that the visual results are more obvious with
higher gain antennas when the radar beam is confined just on the subject’s body area.

Keywords Microstrip antenna - Ultra-wide patch arrays - Remote vital sign monitoring - Doppler
radar - Non-contact vital signs monitoring - 60 GHz antenna arrays
1 Introduction

Non-contact detection of respiration and heart beat rate with Doppler radar is a more
convenient way to check the vitality signs of a person as compared to the conventional
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vital sign monitoring devices, such as electrocardiogram (ECG), pulse oximetry and
capnography, because the conventional devices need direct sensors plantation on the
subject body as well as they consume comparatively much longer implementation time
to start the measurements [1-8]. However, the results accuracy and reliability of RVSM
system need to be dealt appropriately for its real-life applications [2]. RVSM finds a
vast number of applications in regular and special health care, emergency services,
security and defence sectors [1-12].

In the recent couple of decades, a significant amount of research has been conducted
to improve the accuracy of the RVSM by employing various techniques including
distance and frequency optimization [13—18], robust signal processing methods
[19-21], breath holding for HR detection and so on [22-28]. However, most of the
reported practical work is based on Doppler radars working at lower microwave (MW)
frequency bands around 2.4, 5.8 and 10 GHz where the wavelength resolution of the
electromagnetic wave is low and therefore the accuracy of the vital signs detection,
especially the HR, remained challenging [23]. Secondly, the radar antenna systems at
the mentioned low MW frequencies are quite bulky which may abstain to be integrated
with modern real-life compact devices like smart phones and tablets [23]. Ka band
frequencies have also been investigated for RVSM to enhance the RVSM sensors
sensitivity due to comparatively shorter wavelength at Ka frequencies [24-26].

In the recent years, millimetre-wave (MMW) frequencies (30-300 GHz) have
drawn a remarkable research interest for RVSM implications [23, 27-35]. The main
motives of RVSM at MMW frequencies include (i) improvement in the detection
accuracy by employing shorter wavelength of the signal, (ii) smaller form factor for
the device compactness and (iii) possibility of more subject focused signal transmis-
sion and reception to avoid the interference from the unwanted side reflections [22,
33-35]. From MMW band, 60 GHz band (57-66 GHz) has drawn more attraction
because this band is free of licence and is quite mature due to its extensive use for
several other wireless services [27].

Antenna designing for Doppler radar plays a crucial role in the precision of RVSM.
The antenna should be designed in such a way that it only focuses the radiation beam on
the subject [22] and should have an adequate gain to maintain a required signal to noise
ratio [31]. Microstrip patch antennas are thought to better option for compact MMW
sensors due to their embedment with on-chip devices, low profile, low cost and ability
to make array to attain high antenna gain [23, 30-32]. In [30], conventionally designed
microstrip patch antennas are integrated with on-chip micro-radar system for RVSM.
However, the narrow microstrip transmission line (TL) designed for impedance
matching and feeding purpose is fabricated with flip-chip method. In [31], two circu-
larly polarised patch antenna arrays of elements have been presented for vital sign
detection at 55 GHz. The antenna arrays and the associated narrow feed lines were
fabricated by using special technique based on multilayer low-temperature co-fire
ceramic (LTCC) substrate. The antennas gain remained as low as 4.86 dBi in case of
two-element and 9.7 dBi in four-element arrays. Furthermore, for RVSM with these
arrays, the subject has to hold breathing for a while for accurate detection of HR.
Therefore, regarding RVSM at 60 GHz, there are still some gaps in the literature, i.e.
cost-effective microstrip antenna arrays designed for accurate and simultaneous detec-
tion of BR and HR and the study of RVSM with single antenna for a very short distance
and with double antennas for long distances.

@ Springer



550 J Infrared Milli Terahz Waves (2017) 38:548-566

In the present paper, three microstrip antenna arrays of ultra-wide elements have been
designed for accurate detection of human BR and HR at 60 GHz band frequencies. The use of
array antenna is made to minimise the interferences of the reflected signals from the side

Fig. 1 Structures of the designed a
antenna arrays with (a) 2 x 1, (b)
3 x2 and (c) 6 x 2 patch elements
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a b

s

Fig. 2 Fabricated antenna arrays with (a)-(b) 2 % 1, (¢)-(d) 3 x 2 and (e)-(f) 6 % 2 patch elements

objects because the array antennas have narrower radiation beamwidths than the single patch
antenna [36]. Suitability of 60 GHz band for RVSM has been studied under the Doppler radar
principle. Both BR and HR have been simultaneously measured of the subject sitting in front
of the antennas and having normal breathing. The detection process has been studied in two
ways: (i) with a single antenna used for both transmission and reception and (ii) with dual
antennas, one for transmission and the other for reception. The ultra-wide patch elements
provided a good trade-off between the arrays gain and size. The low side-lob levels, high
gains, and narrow beam widths of the arrays confined the EM wave on the subject chest and
ultimately improved the accuracy of RVSM. Moreover, all of the array dimensions were wide
enough for conventional cost-effective fabrication with the ordinary PCB etching technology.

2 Antenna Design

Three microstrip patch antenna arrays have been designed at 60 GHz band on low loss Duroid
substrate with thickness # =254pum and dielectric constant €, = 2.2. The structure diagrams of
the arrays are presented in Fig. 1 where the arrays in Fig. 1a—c are comprised of 2% 1, 3 x 2
and 6 x 2 patch elements, respectively.

The patch width (W) and length (L) are calculated as [37]:

2M + 1
wo MM D +1) (1)
2,/
2
Ay (2)
2 Ereff

Where M and N are non-negative integers (in the current case M= 1 and N=0) and A, and
Ag are free space and guided wavelengths, respectively. ¢, and ¢, are relative and effective

Table 1 Dimensions (mm) of the fabricated arrays

L W L L Wry Wr2 N
Ant. 2(a) 1.34 5.1 1.88 2.42 0.86 0.86 0
Ant. 2(¢c) 1.45 5.47 1.73 2.37 0.9 0.7 1.58
Ant. 2(e) 145 5.47 2.13 2.39 0.93 0.75 2
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dielectric constants, respectively. AL is the patch length extension due to the fringing field

effect [38].

The specified patch width extension (i.e. M= lin Eq. (1)) is adopted to improve the arrays
gain by round 3 dB as compared to the gain of an array with conventional patch width (i.e.
M =0) [37]. Secondly, by employing the ultra-wide patches, the antenna’s input impedance is

Fig. 3 Measured and simulation
S, of antenna arrays shown (a) in
Fig. 2(a)-(b), (b) in Fig. 2(c)-(d)
and (c¢) in Fig. 2(e)-(f)
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Fig. 4 Simulation 3-D FFPs of
antenna arrays shown (a) in
Fig. 2(a)-(b), (b) in Fig. 2(c)-(d)
and (c¢) in Fig. 2(e)-(f)
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reduced which ultimately helps to widen the feeding TL and hence to improve the fabrication
tolerance should the conventional low cost PCB etching method be employed [37].

The TL length ‘L7, is deployed as impedance transformer which is given as Ly = (2P +
1) x M4, where P is non-negative integer (in the current case P=1). The inter-separations
between the series and parallel patch elements are set to be L,, = Ay /2 + 2 AL and S=\./2,
respectively (see Fig. 1), to match the current phase on the patch elements.

The TL width (Wz;) is computed based on the total input impedance (Z,) of the array with n
number of symmetrical patch elements [37]. A general expression for Z, is

59.81)

V4
“ nW

(3)

Z, is matched with the standard 502 impedance through TL ‘L7;,” with the characteristic
impedance Z; = /50 x Z,,.

The TL width (Wz,) is computed based on the total input impedance (Z,) of the series
patch elements in a line on one side of the array. The characteristic impedance of the line
width ‘Wy,’ is given as Z, =59.81\¢/(mW), where m is number of patch elements in
series. The following is the general expression used to calculate the TL width W for the
characteristic impedance Z [39]:

~1.25¢ (4)

7475k
=

Far-Field Pattern

Fig. 5 Measured and simulation a
FFP of antenna arrays shown a in
Fig. 2(a) and b in Fig. 2(b)
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where x = Z /e, + 1.41/87 and ¢ is copper cladding (see Fig. 1a).The final dimensions of
the arrays are optimised with CST microwave studio for the best antenna performance.

3 Antenna Arrays Results

Figure 2 demonstrates the fabricated antenna arrays where (a)-(b), (c)-(d) and (e)-(f) are two
copies of the array with 2 x 1, 3 x2 and 6 x 2 number of patch elements, respectively.

Table 1 shows the dimensions of the fabricated arrays where it can be seen that all of the
arrays dimensions are well above the PCB etching limit of 152-pum line width/gap.

Figure 3a—c illustrate the simulation and measured return loss responses of the arrays shown
in Fig. 2(a)-(b), (¢)-(d) and (e)-(f). As it can be seen from Fig. 3, the resonances of antennas
2(a)-(b) are centred at around 63.4 GHz and that of antennas 2(c)-(f) are centred in the range of
64.5 to 65 GHz but are better than —15 dB at 64.8 GHz. Therefore, 63.4 and 64.8 GHz
frequency tones have been respectively selected for the RVSM when antennas 2(a)-(b) and
2(c)-(f) are employed.

Figure 4a—c present the simulated far-field patterns (FFP) in 3-D of the antennas shown in
Fig. 2(a)-(b), (c)-(d) and (e)-(f), respectively, whereas Figs. 5, 6 and 7 respectively show their
simulation and measured far-field patterns (FFP) in H and E planes at their selected frequencies
as mentioned in the last paragraph. All of the antennas measured S; and FFP results are within
the PCB fabrication limit of 5% [31]. Some distortions in the antennas FFP in Figs. 6 and 7 can
be observed which are due to the reflections from the surroundings and test fixtures [40]. It can

Fig. 6 Measured and simulation a s Far-Field Pattern
FFP of antenna arrays shown a in
Fig. 2(c) and b in Fig. 2(d) 0
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Far-Field Pattern

Fig. 7 Measured and simulation a;
FFP of antenna arrays shown a in
Fig. 2(e) and b in Fig. 2(f)
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be noticed from Figs. 4, 5, 6 and 7 that the antennas’ main lobs in the radiation patterns are
directed almost towards 0° in both E and H planes for all the cases. The antennas’ measured
—10 dB return loss bandwidths (BW) and gains are summarised in Table 2 where it is obvious
that gain of the arrays has significantly improved when more patch elements have used but the
BW has reduced. However, the BW is not crucial for our current application of RVSM because
only a single tone frequency will be used for the detection process.

4 Applicability of 60 GHz Doppler Radar for RVSM

Figure 8 shows the block diagram of various stages of RVSM process when Doppler radar
principle is used for the vital signs detection. A single frequency tone of continuous electro-
magnetic wave (CW) is transmitted through a transmitter (T,) antenna. The wave is reflected
back from the subject chest located at a certain distance ‘d’ and is received by a receiver (Ry)
antenna. The quasi-periodic vibration of chest due to respiration and heat beat is phase

Table 2 Performance of antenna arrays shown in Fig. 2(a)-(f)

Ant. @ (b) © (d © ®
BW (GHz) 4.62 5.52 1.68 2.57 1.9 1.73
Gain (dBi) 134 135 16 16.15 18.2 18.55
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Fig. 8 Block diagram of RVSM process

modulated on the received signal. This phase-modulated signal at the Ry is correlated with
transmitted signal and the outcome data is recorder for a certain period of time. Subsequently,
the recorded raw data which is in time domain is processed through various signal processing
techniques, i.e. digital filtering and Fourier Transformation, to extract the respiration and heart
beat rate of the subject.

According to the Doppler radar theory, for a transmitted signal S(¢) = cos(27fi + (%)), where
fand ¢(¢) are the frequency and phase noise of the transmitted wave, respectively, the received
base band signal R(f) may be approximated as [41]:

4mxp(t) 4w, (2)

R(t) = cos |0(t) + SRS (5)

where 6(7) is the total phase shift due to the signal path (d), reflections from the subject and
surroundings and residual phase noise. A, x,(¢) and x,(?) are the operating wavelength, chest
vibration displacement due to respiration and heartbeat, respectively. Due to the periodic
nature of the x,(¢) and x,(¢), they may be approximated as x,(¢) = my, sin(27f»t) and x;,(¢) = my,
sin27f,,t), where m,, and m,, are the displacement amplitudes of the chest motion due to
respiration and heartbeat, respectively. f;, and f;, are the frequencies of BR and HR, respectively.
This way, the expansion of Eq. (4) in Fourier series leads to [24]:

Z Z [47Tmb:| {477;%}00%1 2rfyt 41 2nft 4 0) (6)
i=—00 j==0

Where J,(X) is Bessel function of first kind with argument X. Taking the first positive
harmonics of both f;, and f;, into account, the above equation can be written as

4 4
WTmb Jo[ th}cos(wabt—i—@)

4 4
+Jo[ W;\nb} Ji { W;nh]cos(wahtJr@)

R([):Jl ()
7

where J [*2] J [*22] and Jo [*Z] J [*524] are the amplitudes of the phase variations in

Fig. 9 a Plots of Bessel functions Jy(X), J;(X) and their product Jo(X) x J;(X) for argument X. Magnitude of the p»
phase amplitude of R(?) in Eq. (6) due to b both BR and HR in combined, ¢ just BR signal and d just HR signal,
for various combinations of m;, and my,
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i -
Rx antenna

Fig. 10 Experiment setup to %Q
measure the RVSM at 60 GHz
band

R(?) due to respiration and heartbeat, respectively. Equation (6) contains the essential infor-
mation related to the applicability of 60 GHz band frequencies for RVSM. Based on Eq. (6),
we are going to analyse and visualise the key factors involved in RVSM at 60 GHz band.
Figure 9a shows the plots of Jy(X), J;(X) and their product for the argument X up to 30
where it can be noticed that Jy(X) and J;(X) are the periodic functions with some phase shift
and the maximum amplitude of their product is much smaller than their individual maximum
amplitudes and it passes through null values twice as compared to individual J,(X) and J;(X)
curves. Furthermore, the amplitude of Jy(X) x J1(X) diminishes for higher values of argument
X. Now bearing Eq. (6) in mind, the amplitude of the received BR and HR signal is comprised
of the product of Jy(X) and J;(X) and the argument X is controlled by m,, m;, and A. For our
current case of VSM at 60 GHz band, A is around 4.65 mm, m; = (8 — 12)mm and m,.= (0.2 —
0.5)mm for a person at rest with normal breathing [42]. Figure 9b—d shows the phase
amplitude variations of R(7) signal for various combination of m; and m, with BR and HR
in combined, only BR and HR, respectively. From Fig. 9b, it can be seen that the maximum
R(#) amplitude goes to around 40° which is high enough for RVSM detection; however, there
is a null detection line at chest amplitude of around 9.9 mm. Figure 9c indicates a similar null

Fig. 11 RVSM measurement with
antenna shown in Fig. 2(a). a
Recorded raw data in time
domain.b Detected BR and HR
peaks

S11 phase (deg.) o- S11 phalse (deg.) m

Frequency (1/Min)
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Fig. 12 RVSM measurement with Q
antenna shown in Fig. 2(c). a 215
Recorded raw data in time domain. % 10
b Detected BR and HR peaks ﬁ 5
[=%
5 O
b

S11 phase (deg.)
o
(&)

Frequency (1/Min)

line position for just BR signal. On the other hand, Fig. 9d shows that in case of the received
HR signal, there are two null detection lines at chest displacements of 8.8 and 11 mm and the
maximum phase amplitude of heartbeat is about one third of that of respiration. However, the
probability of these undesired m,, and m,, combinations and hence the null detection points is
very low and a small variation in A can be made to avoid these points (see Eq. (6)) [24]. As a
conclusion so far, both BR and HR signals have high probability of detection with RVSM at
60 GHz band but the received BR signal may be clearer than HR signal.

5 RVSM Results and Discussions

Figure 10 shows the experiment setup to measure the RVSM at 60 GHz band. The 67 GHz
Rohde and Schwarz VNA is used as transmitter and receiver. The three antenna designs as
presented in section I1I (see Fig. 2) have been employed one by one for signal transmission and
reception. As mentioned in section I, for each antenna design, the RVSM data has been
acquired with two ways; (i) with a single antenna employed for both transmission and
reception and (ii) with double antennas (two similar antennas), one for transmission and the
other for reception. A normally breathing person sits in front of the antennas iteratively at
different distances (d) and the RVSM data is recorded for 60 s for each iteration. The recorded
data is then processed in Matlab programme through various digital signal processing tech-
niques and the targeted BR and HR have been extracted. The major parts of digital signal

Fig. 13 RVSM measurement with a
antenna shown in Fig. 2(e). a
Recorded raw data in time domain.
b Detected BR and HR peaks

S11 phase (deg.)

T
|
05F----p4----- : 77777 4H-—-=-== |
/M S |
! ‘ LN
0 1 i 1

Frequency (1/Min)
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Table 3 Measured BR and HR

with single antenna in Fig. 2 Antenna 2(a) 2(0) 2(e)
BR 19 20 20
HR 71 75 74

processing include digital filtering of the recorded raw data in time domain and Discrete Fast
Fourier Transformation (DFFT) of the filtered data [43—46].

5.1 RVSM with Single Antenna

As mentioned earlier, in the single-antenna operation, only one of each designed antenna
arrays is employed for both signal transmission and reception and the vital signs can only be
accurately detected for very short distance [6]. The antenna is placed at about 5 cm away from
the subject chest and the phase of the reflection coefficients (S;;), which contain the HR and
BR information, has been recorded for 60 s. Figs. 11, 12 and 13 illustrate the measured RVSM
data with the individual-antenna arrays shown in 2(a), (c) and (e), respectively. Figs. 11a, 12a
and 13a represent the recorded raw data of S11 phase and Figs. 11b, 12b and 13b depict the
DFFT of the processed data in frequency (1/min) domain. As seen from Figs. 11b, 12b and
13b, in each case, the first and the second highest peaks represent the detected BR and HR,
respectively. All of the detected BR and HR are listed in Table 3 where it is obvious that both
BR and HR are consistent within their respective ranges for the ordinary subject (31-year-old
man) [47]. The measured BR and HR results are also matched with the results obtained with
manual counting by using a stopwatch.

5.2 RVSM with Double Antennas

In RVSM with double antenna operation, two similar antennas are deployed for vital sign
detection, one for transmitting the EM wave and the other for receiving the reflected wave.
Both antennas are fixed at an equal distance from the subject chest with their main beams
directed to the chest. The inter-separation between the antennas is set to be about 20 cm. The
phase of S21 is recorded for 60 s for RVSM with each antenna design shown in Fig. 2(a)-(f).
The accuracy of the RVSM has been studied for various distances (d) between the subject and
antennas ranging from 25 to 200 cm. Figures 14, 15 and 16 demonstrate the RVSM data with
antenna design 2(a)-(b) from distance 0.25, 1 and 2 m, respectively. Similarly, Figs. 17 and 18

Fig. 14 RVSM measurement with Q

antenna shown in Fig. 2(a)-(b) 2 20 ‘ ‘ ‘ ‘ ‘

from 0.25 m. a Recorded raw data % ! ! ! !

in time domain. b Detected BR 3 0 a ‘ ¥
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Fig. 15 RVSM measurement with
antenna shown in Fig. 2(a)-(b)
from 1 m. a Recorded raw data in
time domain. b Detected BR and
HR peaks

Fig. 16 RVSM measurement with
antenna shown in Fig. 2(a)-(b)
from 2 m. a Recorded raw data in
time domain. b Detected BR and
HR peaks
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and Figs. 19 and 20 demonstrate the RVSM data with each antenna design 2(c)-(d) and 2(e)-(f)
from distance 0.25 and 1 m, respectively. The sub-figs. (a) and (b) in Figs. 14, 15, 16, 17, 18,
19 and 20 represent the recorded raw data in time domain and the processed data in frequency
(1/min) domain, respectively. The first and the second peak in the processed data in Figs. 14,
15, 16, 17, 18, 19 and 20 represent the measured BR and HR, respectively, where it can be
seen that both BR and HR peaks are very obvious across the frequency spectrum. The
measured BR and HR results of RVSM with dual antennas up to 1 m distances are shown

Fig. 17 RVSM measurement with
antenna shown in Fig. 2(c)-(d)
from 0.25 m. a Recorded raw data
in time domain. b Detected BR
and HR peaks
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Fig. 18 RVSM measurement with
antenna shown in Fig. 2(¢)-(d)
from 1 m. a Recorded raw data in
time domain. b Detected BR and
HR peaks

Fig. 19 RVSM measurement with
antenna shown in Figs. 2(e)-(f)
from 0.25 m. a Recorded raw data
in time domain. b Detected BR
and HR peaks
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in Table 4. The detected BR and HR with antenna design 2(a)-(b) in case of 2 m distance are
19/min and 79/min, respectively. In all the cases, both BR and HR results are consistent within
their expected ranges and are matched with the results obtained by manual counting as

mentioned earlier.

Fig. 20 RVSM measurement with
antenna shown in Fig. 2(e)-(f) from
1 m. a Recorded raw data in time
domain. b Detected BR and HR
peaks =
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Table 4 Measured BR and HR

with dual antennas Antenna 2(a)-(b) Antenna 2(c)-(d) Antenna 2(e)-(f)
d BR-HR BR-HR BR-HR
0.25m 19-75 19-78 18-76
1m 18-78 21-76 18-72

6 Conclusion

Three microstrip antenna arrays have been designed based on ultra-wide patch elements
with improved gain and radiation characteristics for accurate RVSM at 60 GHz band
frequencies. The antenna simulation and measured results agreed well in all cases. The
feasibility of 60 GHz channel has been studied for RVSM application under the Doppler
radar principle. The RVSM measurements have been conducted with each designed
array in (i) single-antenna operation, where the same antenna working as Ty and Ry is
placed at 5 cm from the subject chest, as well as (ii) in double antennas operation where
two identical antennas, one for Ty and the other for R,, have been deployed at various
distances from the subject to see the consistency in the results accuracy. Both BR and
HR have been detected for the subject with normal breathing throughout the data
recording time and no breath holding was required for accurate HR detection. In all
of the cases, the measured results showed very accurate, clear and robust detection of
RVSM with simple digital signal processing techniques. For future work, the proposed
antenna arrays could be used for outdoor RVSM detection from even longer distance.
Furthermore, the potential error sources like the signal reflections from the side objects
through the antennas’ side lobes, accuracy of the vital signs of the diversity of patient
types can be investigated in details.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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