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THE MODALITY OF A BOREL SUBGROUP IN A SIMPLE

ALGEBRAIC GROUP OF TYPE E8

SIMON M. GOODWIN, PETER MOSCH, AND GERHARD RÖHRLE

Abstract. Let G be a simple algebraic group over an algebraically closed field k, where
chark is either 0 or a good prime for G. We consider the modality mod(B : u) of the action
of a Borel subgroup B of G on the Lie algebra u of the unipotent radical of B, and report
on computer calculations used to show that mod(B : u) = 20, when G is of type E8. This
completes the determination of the values for mod(B : u) for G of exceptional type.

Let G be a simple algebraic group over an algebraically closed field k, where char k is either
0 or a good prime for G. Let B be a Borel subgroup of G with unipotent radical U , and let
u = LieU . The modality of the adjoint action of the Borel subgroup B on u is defined by
mod(B : u) := maxi∈Z≥0

(dim(u(B, i))− i), where u(B, i) := {x ∈ u | dimB · x = i}, and is
intuitively the maximal number of parameters on which a family of B-orbits in u depends.
As mod(B : u) is an important invariant of the action of B on u it is of interest to determine
its value. As a general reference for the modality of the action of an algebraic group on an
algebraic variety, we refer to [Vi].

In [JR] the values of mod(B : u) are determined for G up to rank 7 excluding type B7

and E7; they are found by combining lower bounds from [Rö1, Prop. 3.3] with upper bounds
obtained by computer calculation, and are presented in [JR, Tables II and III]. We refer
to the introduction of [JR] and the references therein for prior history of finding values of
mod(B : u), and for motivation. The known values of mod(B : u) were extended to G up
to rank 8 excluding type E8 in [GMR2, §5]; this required computer calculations, which are
explained below. We note also that, as is explained in [GG, §6], results in [PS] can be used
to determine mod(B : u) for G of type Al for l ≤ 15.

Our main theorem gives mod(B : u) in the case G is of type E8.

Theorem. Let G be a simple algebraic group of type E8 over the algebraically closed field k,

where char k = 0 or char k > 5. Let B be a Borel subgroup of G with unipotent radical U .

Then mod(B : u) = 20.

Our theorem completes the list of values for mod(B : u) for G of exceptional type as
presented in the table below.

Type of G G2 F4 E6 E7 E8

mod(B : u) 1 4 5 10 20

Modality of the action of B on u
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We move on to review the computer programme from [GMR2] and explain how it was
adapted to show that 20 is an upper bound for mod(B : u) for G of type E8. Thanks to
[Rö1, Prop. 3.3] it is known that 20 is a lower bound for mod(B : u), so combining these
bounds proves our theorem. In the discussion below we refer to mod(U : u) and mod(U : u∗),
which are defined analogously to mod(B : u).

It is shown in [Go, Prop. 5.4] that each U -orbit in u admits a so called minimal represen-

tative. As explained in [GR1, §2], the minimal representatives are partitioned into certain
locally closed subsets Xc of u for c running over some index set C. This gives a parametriza-
tion of the U -orbits in u, so we can deduce that mod(U : u) = maxc∈C dimXc, and thus by
[GMR2, Thm. 5.1] that mod(B : u) = maxc∈C dimXc − rankG. An algorithm for determin-
ing all the varieties Xc for c ∈ C is given in [GR1, §3]. This algorithm was programmed in
GAP, [GAP], and subsequent developments were made in [GMR1] including calls to SIN-
GULAR, [SIN]. The resulting programme was used to obtain the parametrization of the
U -orbits in u when G is of rank up to 7 except for type E7; so this can also be used to
determine mod(B : u) in these cases.

The results in [GMR2, §3] show that a similar algorithm is valid for the coadjoint action
of U on u

∗. In particular, there is a parametrization of minimal representatives of U -orbits
in u

∗ by certain locally closed subsets Xc of u∗ for c running over an index set C. This
algorithm was programmed and used to obtain a complete description of the varieties Xc,
when G has rank up to 8, with the exception of type E8. Since mod(U : u) = mod(U : u∗),
see [Rö2, Thm 1.4], we have mod(B : u) = maxc∈C dimXc − rankG. Thus this allowed us to
determine mod(B : u) when G has rank up to 8, with the exception of type E8.

The algorithm for determining the varieties Xc for c in C involves a certain polynomial-
resolving subroutine, as explained in [GMR1, §3]. This is the most complicated and computa-
tionally expensive part of the programme. We adapted our algorithm, so that in cases where
the programme is not able to resolve all the polynomial conditions in a specified amount
of time it simply disregards these unresolved conditions. Thus the modified computation
determines a variety Yc ⊇ Xc, which we can view as an “upper bound” for a parametrization
of the minimal representatives in Xc, so that dimYc ≥ dimXc, for each c ∈ C. Consequently,
mod(U : u) ≤ maxc∈C dimYc.

We ran the programme for the case G of type E8 and determined a variety Yc for every c

in C. From the output of the computation we obtain that mod(B : u) ≤ 20 as required to
verify our theorem.

We move on to mention consequences of our calculations for the finite groups of rational
points, when G is defined over a finite field. Suppose that G is defined and split over the field
Fp where p is a good prime p for G. Let q be a power of p and denote by G(q) the group of
Fq-rational points of G. Also assume that B is defined over Fq, so U is defined over Fq and
U(q) is a Sylow p-subgroup of G(q). We write k(U(q)) for the number of conjugacy classes
of U(q) (which is also the number of complex irreducible characters of U(q)). As explained
in [GMR2, §4], the parametrization of the coadjoint U -orbits in u

∗ by the varieties Xc for c
in C, gives a method to calculate k(U(q)). In fact in the cases considered in [GMR2], there
is a polynomial g(t) ∈ Z[t] such that k(U(q)) = g(q); and, moreover, g(t) does not depend
on p. Our adapted programme calculates a polynomial h(t) ∈ Z[t] such that k(U(q)) ≤ h(q)
and h(t) does not depend on p. Moreover, an upper bound for mod(U : u) can be easily read
off as the degree of h(t); we refer to [GMR2, §5] for further details. Note that we do not
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claim here that k(U(q)) is necessarily a polynomial in q for G of type E8, and remark that
[PS, Thm. 1.4] suggests that this might not be the case for general G.

We end by noting that our calculation of mod(B : u) can be used to determine the dimen-
sion of the commuting varieties of u and b as are studied in [GR2] and [GG], respectively.
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