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Novel Filtering 180◦ Hybrid Coupler and Its
Application to 2 × 4 Filtering Butler Matrix

Qiang Shao, Fu-Chang Chen , Member, IEEE, Qing-Xin Chu , Senior Member, IEEE,
and Michael J. Lancaster, Senior Member, IEEE

Abstract— In this paper, a novel filtering 180° hybrid coupler
is proposed and used to design a 2 × 4 filtering Butler matrix.
The filtering 180° hybrid coupler can provide power division
and phase shift together with a second-order bandpass trans-
fer function, and is based only on coupled resonators. The
2 × 4 filtering Butler matrix is easily realized by utilizing several
hybrid couplers. The analytical synthesis procedures for the
hybrid coupler and Butler matrix are presented in this paper.
Finally, broadside and end-fire arrays are realized by using the
Butler matrix. To illustrate the concept experimentally, a filtering
180° microstrip hybrid coupler and a 2 × 4 filtering microstrip
Butler matrix are designed, fabricated, and measured. Simulation
and measured results are found to be in good agreement with
each other.

Index Terms— Bandpass filter, Butler matrix, hybrid coupler,
microstrip, switched-beam antenna.

I. INTRODUCTION

IN RECENT years, with the rapid growth in the use of
mobile phones, higher requirements have been put forward

for wireless communication systems. In order to achieve
higher spectral efficiency and promote the capacity of wireless
communication system, problems such as multipath fading
and interference become more important. Therefore, smart
antennas have been proposed to overcome these problems.
In general, there are two different types of smart antenna, one
is the adaptive antenna array and the other is the switched-
beam antenna array [1]. The former uses digital signal process-
ing to control its pattern, which can enhance the received
signal. However, this is difficult to implement into integrated
systems because of the high complexity and cost. Compared
with adaptive antenna arrays, switched-beam antenna arrays
are easier to integrate into systems, and thus, reduce the com-
plexity and cost [1]. The typical switched-beam antenna array
is composed of switches, a beam-forming network (BFN),
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Fig. 1. (a) Basic schematic of a switched-beam antenna with bandpass filter
cascaded. (b) Schematic of the Butler matrix based on coupled resonators
(large black dots) with filtering transfer functions.

and an antenna array [2]. The switches are used to choose
which port is used as the input port, and the BFN splits the
input signal and provides phase distribution. The output signals
of the BFN feed the antenna array. One BFN is a Butler
matrix and it is this network that is enhanced in this paper.
Several Butler matrices have been presented for switched-
beam antenna arrays in [3]–[5]. In practical use, in order
to suppress the spurious frequencies or the intermodulation
products generated by amplifiers, separate bandpass filter has
to be cascaded before the switches, as shown in Fig. 1(a). The
novelty here is to integrate a filter with Butler matrix in order
to reduce the size and volume of the system. To do this, Butler
matrix is constructed solely of microstrip resonators coupled
together to form the filter.

The BFN and bandpass filter are replaced by the new Butler
matrix with an inherent bandpass filter function, as shown
in Fig. 1(b). Conventionally, the Butler matrix is comprised of
hybrid power dividers and phase shifters. Systematic design
procedures have been proposed in [6]–[9]. The most common
building block to realize Butler matrix is the 90° hybrid
coupler, which is a 2×2 hybrid network with equal split of the
input power, providing a quadrature phase response across the
two outputs [10]. In place of 90° hybrid couplers, a different
design procedure using the 180° hybrid couplers have been
proposed in [11]. As these hybrid couplers are the main blocks
of Butler matrix, introducing filtering functions into them is a
way to realize Butler matrix with an inherent bandpass filter.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 2. Layout of the 180° hybrid coupler. (L1 = 13.8 mm, L2 = 24.6 mm,
L3 = 10 mm, L4 = 7 mm, L5 = 11.8 mm, L6 = 15 mm, L7 = 14 mm,
W1 = 0.4 mm, and W2 = 1 mm.)

Work has been done on introducing filtering functions into the
hybrid coupler previously in [12]–[17]. Also, in [18], multiport
power dividers with inherent bandpass filter functions were
presented by using a hybrid network based on coupled res-
onators. Other work, which use coupled resonator structures
to combine power division with a bandpass filter function, has
been presented in [19]–[22]. Crestvolant et al. [23] presented
a novel class of Butler matrix with inherent bandpass filter
transfer functions, which can be applied in multiport power
amplifiers.

In this paper, prototypes of a filtering 180° hybrid coupler
and a 2 × 4 filtering Butler matrix based on resonators
are presented. The analytical synthesis procedures for the
hybrid coupler and Butler matrix are given in this paper,
and an example filtering 180° microstrip hybrid coupler
and a 2 × 4 filtering microstrip Butler matrix are designed,
fabricated, and measured. Good agreement has been found
between the simulation and measured results, confirming the
correctness of the analytical synthesis method.

The remainder of this paper is organized as follows. The
detailed design procedure of the 2 × 2 filtering hybrid coupler
is given in Section II. In Section III, a 2 × 4 filtering Butler
matrix utilizing the hybrid couplers is designed, fabricated,
and measured. Good agreement has been obtained between the
simulation and measured results. Last, Section IV concludes
this paper.

II. DESIGN OF FILTERING 180° HYBRID COUPLERS

Fig. 2 shows the microstrip layout of the proposed filter-
ing 180° hybrid coupler based on coupled resonators. All
the four resonators are half-wavelength uniform impedance
resonators, which resonate at the central frequency of the
bandpass filter ( f0). Fig. 3 shows the coupling scheme of
the proposed 180° hybrid coupler. The input ports 1 and 2
are coupled to the resonators 1 and 4, respectively. The
output ports 3 and 4 are coupled to the resonators 2 and 3,
respectively. Furthermore, all the coupling strengths between
adjacent resonators are equal numerically. However, the cou-
plings between resonators 1 and 2, 1 and 3, and 3 and 4 are

Fig. 3. Coupling scheme of the filtering 180° hybrid coupler.

Fig. 4. Equivalent circuit of the 180° hybrid coupler.

dominated by electric couplings, while the coupling between
resonators 2 and 4 is dominated by magnetic coupling [23].

A. Analysis

Different types of coupling between resonators can cause
different phase shifts [24], which are shown as follows:

� = +90° (in this case dominated by electric coupling)

(1)

� = −90° (in this case dominated by magnetic coupling).

(2)

With these considerations, the equivalent circuit of the
proposed filtering 180° hybrid coupler can be generated and
is shown in Fig. 4. The admittance inverters J01 and J23 are
used to model the input and output coupling. Considering the
coupling strength between adjacent resonators and its phase
shift, the +90° and −90° admittance inverters J12 are used
to represent the coupling dominated by electric fields and
magnetic fields in Fig. 2. In addition, the four resonators are
represented by the same parallel LC resonators.

When the signal is input from port 1, there are two paths to
reach port 2; these are path ABD and path ACD. On path
ABD, since there is a +90° admittance inverter J12 and
a −90° admittance inverter J12, the total phase shift of this
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Fig. 5. Equivalent circuit of the 180° hybrid coupler. (a) Input at port 1.
(b) Input at port 2.

path is 0°. However, on path ACD there is a total phase shift
of 180°. In addition, the coupling strength of these two paths
is identical. Thus, the signals travelling on the two paths will
cancel out on node D, so in the ideal case there will be no
signal output from port 2. Therefore, high isolation between
ports 1 and 2 is achieved.

As the signals on the two paths cancel out each other on
node D, node D can be equivalent to an open circuit. A new
equivalent circuit is shown in Fig. 5(a), where the signal is
input to port 1. In the same way, when the signal is input to
port 2, a new equivalent circuit can be formed and is shown
in Fig. 5(b). From node A in Fig. 5(a), input admittance YinA
is calculated as

YinA = J 2
12

YinB
+ J 2

12

YinC
(3)

where YinB and YinC are the input admittance from
nodes B and C, which are calculated as

YinB = YinC = J 2
23

Y0
+ jωC + 1

jωL
. (4)

Therefore, the input admittance YinA can be calculated as

YinA = J 2
12

YinB
+ J 2

12

YinC
= 2

J 2
12

YinB
= (

√
2J12)

2

YinB
. (5)

Based on (5), the equivalent circuit shown in Fig. 5(a) can be
further simplified into a two-port network shown in Fig. 6. This
is a second-order bandpass filter using admittance inverters.
In the same way, the equivalent circuit shown in Fig. 5(b)
can also be simplified into the second-order bandpass filter
in Fig. 6. In summary, when the signal is input from port 1,

Fig. 6. Equivalent circuit of the coupled resonator bandpass filter.

it is equally split into the output ports 3 and 4 with equal
phase shift. When the signal is input from port 2, it is equally
split into the output ports 3 and 4 with a 180° phase shift.
In addition, each path from the input port to output port
is equivalent to a second-order bandpass filter. Therefore,
the whole circuit is a filtering 180° hybrid coupler.

Since the equivalent circuit in Fig. 6 is a second-order
bandpass filter using admittance inverters, it can be syn-
thesized by using a conventional technique [25]. Once the
design requirements, such as center frequency ( f0), fractional
bandwidth (FBW), and ripple level are given, the element
values for low-pass prototype filter can be obtained. Having
obtained the low-pass prototype parameters, the bandpass
design parameters can be calculated as follows [25]:

Qe1 = g0g1

FBW
Qe2 = g2g3

FBW
(6)

M12 = ±
√

2FBW

2
√

g1g2
(7)

where Qe1 and Qe2 are the external quality factors of the
resonators at the input and output, and M12 is the coupling
coefficient between the adjacent resonators. (“+” is taken
when the coupling is dominated by electric coupling, and
“−” is taken when the coupling is dominated by magnetic
coupling.)

B. Synthesis

In order to verify the analysis above, a microstrip filtering
180° hybrid coupler is designed, fabricated, and measured.
The circuits are fabricated on a substrate with dielectric
constant εr = 2.55, loss tangent δ = 0.0029, and thickness
h = 0.8 mm. The center frequency of the filter is taken to be
2.4 GHz with a FBW of 2.5%. The ripple level is designed to
be 0.04321 corresponding to a 20-dB return loss. Therefore,
the element values for low-pass prototype filter can be obtained
as g1 = 0.6648, g2 = 0.5445, and g3 = 1.2210. Based
on (6) and (7), the external quality factors can be easily
calculated as Qe1 = Qe2 = 26.6, and the coupling coefficient
between adjacent resonators is calculated as M12 = ±0.029.

Fig. 7 shows the extracted input and output external quality
factors with respect to the gap from the ports to the input and
output resonators (S1 and S5). These are obtained by following
the technique described in [25]. From the graph, the initial
values of the gaps between the resonators and feeding lines
can be easily obtained as S1 = S5 = 0.33 mm. Similarly,
the extracted coupling coefficients with respect to the gaps
S2, S3, and S4 are shown in Fig. 8. The initial values of the
gaps between adjacent resonators can now be easily obtained
as S2 = 0.9, S3 = 1.24, and S4 = 1.94 mm. In order
to improve the overall response, the final dimensions of the



SHAO et al.: NOVEL FILTERING 180◦ HYBRID COUPLER AND ITS APPLICATION TO 2 × 4 FILTERING BUTLER MATRIX 3291

Fig. 7. Extracted external quality factor with respect to the corresponding
physical parameters.

Fig. 8. (a) Circuit layout for extracting coupling coefficients |M12 |.
(b) Extracted coupling coefficients with respect to the corresponding physical
parameters.

gaps in Fig. 2 are optimized in IE3D software as S1 = 0.35,
S2 = 0.9, S3 = 1.25, S4 = 2, and S5 = 0.35 mm. The small
differences between the initial and optimized values show the
high accuracy of the technique.

C. Measurement Results

Fig. 9 shows a photograph of the fabricated filtering 180°
hybrid coupler. Fig. 10(a) and (b) shows the simulated and
measured S-parameters of the filtering 180° hybrid coupler
when the signal is input to ports 1 and 2, respectively.
It can be clearly observed that the measured results are in

Fig. 9. Photograph of the fabricated filtering 180° hybrid coupler.

Fig. 10. Simulated and measured S-parameters of the fabricated filter-
ing 180° hybrid coupler. (Solid lines: simulation results and dashed-dotted
lines: measured results). (a) S11, S31, S41, and S21. (b) S22, S32, S42, and S12.

good agreement with the simulation results. The measured
minimum insertion loss for the bandpass filter is 4.2 dB,
which includes the 3-dB power splitting ratio and 1.2-dB
filter loss. The return losses are lower than 14.7 dB, which
are line with the tolerances of the manufacturing technique.
The measured isolation between ports 1 and 2 is larger
than 34 dB. The measured output phases of the coupler are
shown in Fig. 11, showing, as expected, � S31, � S41, and
� S32 in phase and � S42 out of phase. Within the 3-dBFBW
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Fig. 11. Measured output phase of the fabricated filtering 180° hybrid
coupler.

Fig. 12. Measured output amplitude error of the fabricated filtering
180° hybrid coupler.

(2.34–2.46 GHz) of the filter, the measured phase imbalances
are within±6°. The measured amplitude imbalances of the
coupler are shown in Fig. 12, and here the difference of
output amplitude responses S31 − S41(S32 − S42) is shown.
The measured amplitude imbalances are lower than ±0.8 dB
within the 3-dB bandwidth of the bandpass filter.

III. DESIGN OF THE 2 × 4 FILTERING BUTLER MATRIX

Since the 180° hybrid coupler is the fundamental building
block of Butler matrix, it can be utilized to design a filtering
Butler matrix. The filtering 180° hybrid coupler [Fig. 13(a)]
can be used to design a 2 × 4 Butler matrix [Fig. 13(b)].
The microstrip layout and the coupling diagram can be seen
in Fig. 14. When port 1 is used as the input port, it can be
easily observed that the output ports (ports 3–6) have equal
amplitude and phase shift. When port 2 is used as the input
port, the output port phases can be calculated as

� S42−� S32 = ( � SC2+� SDC+� S4D)−( � SA2+� SBA+� S3B)

= ( � SC2 − � SA2) − ( � SDC − � SBA) (8)
� S52−� S42 = ( � SA2+� SBA+� S5B)−( � SC2+� SDC+� S4D)

= ( � SA2 − � SC2) − ( � SBA − � SDC) (9)
� S62−� S52 = ( � SC2+� SDC+� S6D)−( � SA2 +� SBA+� S5B)

= ( � SC2 − � SA2) − ( � SDC − � SBA) (10)

Fig. 13. (a) Schematic of the 2×2 fundamental unit. (b) Conventional block
diagram of a 2 × 4 Butler matrix by utilizing the 180° hybrid coupler.

where � SBA represents the phase response between either a
port or one of the nodes A, B, C, D defined in Fig. 13(b),
as the connecting network. Based on the properties of the 180°
hybrid coupler, the phase response across the output ports of
the first coupler is

� SC2 − � SA2 = 180◦ (11)
� S3B = � S5B � S4D = � S6D (12)

The 2 × 4 filtering matrix is realized by connecting the
couplers together via AB and CD and in order to realize
the bandpass response. These connections are simply made
by coupling together the resonators in the adjoining couplers,
as shown in Fig. 14(b). These are made by the electric cou-
plings so that the phase response of the connecting network is

� SDC = � SBA = 90° (13)

In general, considering (8)–(13), when port 2 is used as the
input port, the output port phases can be calculated as

� S52 = � S32 � S42 = � S62 (14)
� S42 − � S32 = � S52 − � S42 = � S62 − � S52 = 180°. (15)

Based on a similar analysis to that in Section II, each path
from an input port to an output port can be equivalent to a
fourth-order bandpass filter, as shown in Fig. 15. The bandpass
design parameters can thus be calculated as follows [25]:

Qe1 = g0g1

FBW
Qe2 = g4g5

FBW
(16)

M12 = ±
√

2FBW

2
√

g1g2
M23 = FBW√

g2g3
M34 =

√
2FBW

2
√

g3g4
(17)

where Qe1 and Qe2 are the external quality factors of the
resonators at the input and output, and M12, M23, and M34
are the coupling coefficients between the adjacent resonators.
(“+” is taken when the coupling is dominated by electric
coupling, and “−” is taken when the coupling is dominated
by magnetic coupling.)



SHAO et al.: NOVEL FILTERING 180◦ HYBRID COUPLER AND ITS APPLICATION TO 2 × 4 FILTERING BUTLER MATRIX 3293

Fig. 14. (a) Layout of the 2 × 4 filtering Butler matrix. (L1 = 13.8 mm,
L2 = 24.6 mm, L3 = 10 mm,L4 = 7 mm, L5 = 11.8 mm, L6 = 15 mm,
L7 = 14 mm, W1 = 0.4 mm, and W2 = 1 mm). (b) Coupling scheme of the
2 × 4 filtering Butler matrix.

Fig. 15. Equivalent circuit of the coupled resonator bandpass filter.

In order to illustrate the discussion above, a 2 × 4 filtering
Butler matrix is designed, fabricated, and measured. The center
frequency of the filter is taken to be 2.4 GHz with a FBW
of 3.5%. The ripple level is designed to be 0.04321. The
element values can be obtained as g1 = 0.9314, g2 = 1.2920,
g3 = 1.5775, g4 = 0.7628, and g5 = 1.2210. Based
on (16) and (17), the external quality factors can be easily
calculated as Qe1 = Qe2 = 26.6, and the coupling coefficients
between adjacent resonators are calculated as M12 = ±0.023,
M23 = 0.025, and M34 = 0.023.

According to Fig. 7, the initial values of the gaps between
the feeding lines and resonators can be easily obtained as
S1 = S5 = 0.33 mm in order to meet the required external
quality factor. Similarly, the initial values of the gaps between
the adjacent resonators can also be obtained as S2 = 1.05,
S3 = 1.50, S4 = 2.25, and S6 = 1.4 mm according to Fig. 8.
The final dimensions of the gaps in Fig. 14(a) are optimized
in IE3D software as S1 = 0.35, S2 = 0.9, S3 = 1.25, S4 = 2,
S5 = 0.35, and S6 = 1.25 mm.

Fig. 16. Photograph of the fabricated 2 × 4 filtering Butler matrix.

Fig. 17. Simulated and measured S-parameters of the fabricated filtering
2×4 filtering Butler matrix. (Solid lines: simulation results and dashed–dotted
lines: measured results). (a) S11, S31, and S21. (b) S22, S32, and S12.

Fig. 16 shows a photograph of the fabricated 2 × 4 filtering
Butler matrix. Measurements can be done taking the output
port 3 as an example. For this case, the simulated and
measured S-parameters of the fabricated 2 × 4 filtering Butler
matrix are shown in Fig. 17. It is can be clearly observed that
the measured results are in good agreement with the simulation
results. The measured minimum insertion loss for the bandpass
filter is 8.8 dB, which includes the 6-dB power splitting ratio
and 2.8-dB filter loss. The measured return losses are lower
than 15 dB, and the isolation between ports 1 and 2 is larger
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Fig. 18. Measured output phase of the fabricated 2×4 filtering Butler matrix.
(a) S31, S41, S51, andS61. (b) S32, S42, S52, and S62.

than 25 dB. Similar results are obtained when measurements
are done with other port configurations. The measured output
phases of the fabricated 2 × 4 filtering Butler matrix are shown
in Fig. 18. When the signal is input from port 1, the phases
� S31, � S41, � S51, and � S61 are almost equal in phase. When
the signal is input from port 2, the phases � S42 and � S62
are also almost equal in phase, while the phases � S32 and
� S52 are almost equal out of phase. Within the 3-dBFBW
(2.33–2.46 GHz) of the bandpass filter, the measured phase
imbalances are within ±9°.

A switched-beam antenna array has been designed and
fabricated to further test the 2 × 4 filtering Butler matrix.
Considering that the radiation element should have a broad-
band characteristic to cover the bandwidth of the bandpass
filter, a Vivaldi antenna is selected to be the radiation ele-
ment [26]. Fig. 19(a) and (b) shows the simulated antenna
radiation patterns in the E- and H -planes. For the test, the four
antenna elements have been equally spaced with 62.5-mm
gap, which corresponds to 0.5 λ0 at 2.4 GHz, as shown
in Fig. 19(c). Butler matrix is connected to the antenna array
by coaxial cables of equal length. Fig. 20 shows the measured
reflection coefficient and gain of the Vivaldi antenna array
fed by the Butler matrix with port 1 used as the input port.
It can be seen that a good filtering characteristic is achieved.
Similar performance can be obtained when port 2 is used as

Fig. 19. (a) Antenna element. (b) Simulated radiation patterns of the antenna
element used in the linear array. (c) Prototype of the Butler matrix connected
to the Vivaldi antenna array.

Fig. 20. Measured reflection coefficient and gain of the Vivaldi antenna array
when inputting at port 1.

the input port. The simulated and measured radiation patterns
obtained at 2.4 GHz of the Vivaldi antenna array are shown
in Fig. 21. As can be seen, the directions of main beams’
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Fig. 21. Simulated and measured radiation patterns at 2.4 GHz while input
port at (a) port 1 and (b) port 2.

point at 0° when port 1 is used as the input port, while end-
fire performance can be obtained when port 2 is used as the
input port. Good agreement has been obtained between the
simulation and measured results.

IV. CONCLUSION

A systematic design procedure of the novel filtering 180°
hybrid coupler and its application to the design of a 2 × 4 fil-
tering Butler matrix were presented in this paper. The hybrid
coupler is composed of four resonators, which can provide
power division, phase shift, and bandpass response. By uti-
lizing the coupling between resonators as the connecting
network, a 2 × 4 filtering Butler matrix can be designed
easily. For validation, a 180° filtering hybrid coupler and a
2 × 4 filtering Butler matrix are designed, fabricated, and
measured. In addition, a Vivaldi antenna array was designed
and fabricated to examine the effectiveness of Butler matrix.
Close correlation between the simulation and measured results
confirms the correctness of the design method. The 2 × 4
Butler matrix can be extended to larger sizes including the
classic 4 × 4 array. However, this is subject to further study,
as additional phase shifting is required.
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