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Abstract  

The dehydrogenation reaction pathways of a 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni 

mixture in the temperature range of 25-650 °C in flowing Ar and the cycling 

stability in H2 are presented. No H2 is released immediately after melting at 225 

°C. The major dehydrogenation occurs above 350 °C. Adding nano-sized Ni 

reduces the dehydrogenation peak temperatures by 20-25 °C, leading to three 

decomposition steps where Ni4B3 and Li1.2Ni2.5B2 are found in the major 

dehydrogenation products for the 1st and the 3rd step; whilst the Ni-free mixture 

decomposes through a two-step decomposition pathway. A total of 8.1 wt.% of 

hydrogen release from the 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixture is 

achieved at 650 °C in Ar. This mixture has a poor hydrogen cycling stability as its 

reversible hydrogen content decreases from 5.1 wt.% to 1.1 wt.% and 0.6 wt.% 

during three complete desorption-absorption-cycles. However, the addition of 

nano-sized Ni facilitates the reformation of LiBH4.  
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1 Introduction 

Due to its high energy content, hydrogen is considered one of the most 

promising energy vectors for use in establishing sustainable energy systems 

[1,2]. One of the main challenges for the use of hydrogen as a fuel is the safe and 

efficient storage of hydrogen [3]. Hydrogen can be stored in several different 

ways, among which the solid-state storage approach has received extensive 

attention [4–7]. 

 

Metal borohydrides, such as LiBH4 or Mg(BH4)2, chemically store the hydrogen 

atoms by covalently bonding hydrogen to boron in the complex anion [BH4]-. 

Such compounds have been considered as promising solid-state hydrogen 

storage media since 2003, due to their high volumetric hydrogen content and 

low operating pressures (<12 bar) [5,8–14]. For instance, the volumetric 

hydrogen density of LiBH4 is 121 kg H2 m-3 [8], which is about four times higher 

than the 40 kg H2 m-3 for gaseous H2 compressed at 700 bar [15]. However, the 

hydrogen release and uptake properties of metal borohydrides are often 

hindered by poor thermodynamics (i.e. high temperatures are required) and 

sluggish kinetics, which has prevented their use as reversible hydrogen stores 

[5].  

 

One of the potential approaches to decrease the hydrogen sorption temperatures 

of borohydrides is to form low-melting-point borohydride mixtures, such as 

LiBH4-NaBH4, LiBH4-KBH4, LiBH4-Mg(BH4)2, LiBH4-Ca(BH4)2 and NaBH4-KBH4 

[16–22]. These mixtures are often called eutectic borohydrides and have lower 

fusion temperatures than their pure constituents, leading to dehydrogenation at 

relatively low temperatures through kinetic effects [11]. In fact, the nature of 

molten salts is critical in utilizing H2 release from borohydrides, especially from 

alkali-metal borohydrides that often melt before their major H2 desorption begin 
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[11]. In addition, the dehydrogenation of borohydrides from the liquid rather 

than the solid state may lead to less unwanted phases in the reaction products, 

such as [B10H10]2- and [B12H12]2- phases [23]. Since metal dodecaborates act as 

boron sinks that hinder the rehydrogenation of decomposed borohydrides 

[24,25], the formation of such compounds is not favorable and needs to be 

avoided in solid-state hydrogen storage systems. Moreover, the low melting 

point is beneficial for the nanoconfinement-by-infiltration approach, in which 

molten borohydrides are infiltrated into a porous material to reduce the 

decomposition temperature as well as to improve the reversibility [26–32]. 

 

The eutectic LiBH4-NaBH4 mixture has received attention owing to its relatively 

low cost among known eutectic borohydride mixtures and a high theoretical 

gravimetric hydrogen storage capacity of approximately 15 wt.% [17]. According 

to experimental measurements and theoretical calculations, two eutectic 

compositions have been proposed in the past: 0.62LiBH4-0.38NaBH4 [17,28] and 

0.71LiBH4-0.29NaBH4 [33]. The melting of this kind of mixtures occurs at around 

216-225 °C [28,33], which is about 60 °C lower than that of LiBH4 [34] and about 

280 °C lower than that of NaBH4 [35,36]. The dehydrogenation of 0.62LiBH4-

0.38NaBH4 mixture starts at 287 °C with a total of 10.8 wt.% hydrogen release 

upon heating to 650 °C in Ar [37]. In general, the decomposition of borohydrides 

is complex and usually involves the formation of a series of intermediate phases, 

as a function of temperature and pressure [38–41]. Under an Ar atmosphere, the 

dehydrogenation pathways of the 0.62LiBH4-0.38NaBH4 mixture are mainly 

accompanied by the precipitation of LiH, Li2B12H12 and B from 287 °C to 520 °C 

and the formation of Na and B from 520 °C to 650 °C [37]. These high 

dehydrogenation temperatures are indeed above the US DOE (department of 

energy) target of on-board H2 storage for light-duty vehicles [42] and therefore 

need to be further reduced with the help of a detailed understanding of the 

dehydrogenation pathways. 

 

Many attempts to tailor the temperature required for dehydrogenation and to 

improve the cycling stability of borohydrides have been made, such as adding 

additives/catalysts [9,19,43–47], forming reactive hydride composites [48–55] 
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and confining into nano-porous scaffolds [56–59]. Furthermore, adding Ni to 

LiBH4 forms an interesting LiBH4-Ni system, which has received attention due to 

the low dehydrogenation enthalpy values (18-34 kJ mol-1 H2) of the possible 

chemical reactions (Equation 1-3), generating nickel borides (i.e. N4B3, Ni2B, 

Ni3B) [60], which have been described as valuable additives [60–62]. The 

addition of 25 wt.% nano-sized Ni to LiBH4 reduces the dehydrogenation peak 

temperature by 50 °C, and improves the reversible hydrogen content from 4.3 

wt.% for Ni-free sample to 10.8 wt.% as a consequence of the effect of the Ni4B3 

[60].  

 

𝟔𝑳𝒊𝑩𝑯𝟒 + 𝟖𝑵𝒊 = 𝟐𝑵𝒊𝟒𝑩𝟑 + 𝟔𝑳𝒊𝑯 + 𝟗𝑯𝟐     Equation 1 

𝟐𝑳𝒊𝑩𝑯𝟒 + 𝟒𝑵𝒊 = 𝟐𝑵𝒊𝟐𝑩 + 𝟐𝑳𝒊𝑯 + 𝟑𝑯𝟐     Equation 2 

𝟐𝑳𝒊𝑩𝑯𝟒 + 𝟔𝑵𝒊 = 𝟐𝑵𝒊𝟑𝑩 + 𝟐𝑳𝒊𝑯 + 𝟑𝑯𝟐     Equation 3 

 

Thus, to reduce the dehydrogenation temperature of the 0.62LiBH4-0.38NaBH4 

mixture, this work used 18 wt.% (9 mol%) nano-sized Ni particles as additive. In 

addition, the modified decomposition pathways were studied by determining the 

phases and the structural evolution as a function of temperature, using a series 

of samples heat-treated at selected temperatures through a combination of 

experimental techniques, i.e. powder X-ray diffraction (PXD), Raman 

spectroscopy, Fourier Transform infrared spectroscopy (FTIR), 

Thermogravimetry differential scanning calorimetry (TG-DSC) and temperature 

programmed desorption – mass spectrometry (TPD-MS). The rehydrogenation 

of this LiBH4-NaBH4-Ni mixture was also investigated using a Sieverts type 

apparatus. 

 

2 Materials and Methods 

2.1 Synthesis 

LiBH4 (≥ 95.0%), NaBH4 (≥ 99.99%) and nano-sized Ni powder (100 nm, ≥ 

99.9%) were received from Sigma-Aldrich, stored and handled solely in an Ar 

glovebox.  
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The 0.62LiBH4-0.38NaBH4 and 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixtures 

were prepared using a Retsch PM 400 planetary ball mill in 1 bar Ar for 10 h (in 

total) at 175 rpm. The ball milling process used 250 mL stainless steel milling 

pots and 13 mm (diameter) stainless steel balls. The ball-to-sample mass ratio 

was 66:1. To avoid sample overheating during milling, this process was set to 

rest for 5 min in between every 5 min of operation.  

 

The milled samples were heat-treated by heating at 2 °C min-1 in Ar (flowing at 

160 mL min-1) to different targets temperatures: 250, 468, 515, 586 and 650 °C. 

These samples were cooled to room temperature (RT) before further 

characterization.  

 

2.2 Characterization 

2.2.1 Powder X-ray diffraction 

Powder X-ray diffraction (PXD) measurements were performed using a Bruker 

D8 Advance X-Ray Diffractometer with Cu Kα radiation (λ = 1.5418 Å). Samples 

were loaded and sealed inside a PMMA airtight dome-shaped sample holder 

inside an Ar glovebox, before transfer to the PXD. The surface of sample was 

flattened and smoothed to ensure a well-defined geometry. The measurements 

were performed in the range 2𝜃 = 5–90° at a scanning rate of 2° min-1 using a 9 

position multi-changer stage. In case of relatively small amount of powder 

samples, these samples were loaded into rotating glass capillaries (inner 

diameter = 0.5 mm) and sealed with silicone grease, then measured in 10-70° 2𝜃 

at a scanning rate of 1° min-1.  

 

Phase identification from the PXD patterns was performed with EVA software 

and the PDF-2 database [63]. Quantitative Phase Analysis (QPA) was performed 

with the Rietveld method using TOPAS-Academic [64] and jEdit software. 

Published Crystallographic Information Files (*.cif) from the Inorganic Crystal 

Systems Database [65] for each compound were used for performing the 

refinements.  
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2.2.2 Raman/FTIR Spectroscopy 

Raman spectroscopy measurements were performed using a Renishaw inVia 

Reflex Raman spectrometer with a confocal microscope (equipped with a 20x 

objective). The laser and grating system used were 488 nm (30 mW) and 2400 l 

mm-1, respectively. About 5-10 mg of sample was loaded in an aluminium 

crucible, which was placed and sealed in the INSTEC HCS621V cell. Samples were 

measured in 1 bar Ar. The obtained vibrational modes were analyzed using 

Renishaw Wire 4.0 [66] and compared with literature data for assignments.  

 

Fourier Transform infrared spectroscopy (FTIR) measurements were carried out 

inertly using a BRUKER Alpha Platinum-ATR spectrometer. The instrument was 

placed inside an Ar glove box. A small amount of sample (~ 2 mg) was placed 

directly on a diamond disc equipped on the infrared source and then compressed 

by a one-finger clamp for obtaining intensive signals. The spectra were collected 

over a wide wavenumber range from 400 to 4000 cm-1 with a resolution of 2 

cm−1 at RT. In general, measurements including 32 scans were averaged for each 

spectrum and the background. The obtained vibrational results were compared 

with literature data for assignments.  

 

2.2.3 Thermal Analysis 

Thermal properties were investigated using a Netzsch STA 449 F3 Jupiter® 

Thermogravimetry DSC (TG-DSC). Approximately 1 mg of sample was loaded in 

an Al crucible and sealed with a lid using mechanical press inside an Ar glovebox. 

The samples needed to be transferred outside the glovebox for loading onto the 

TG-DSC, and thus have been exposed to air for a few seconds. The exact amount 

of sample was weighed out using the balance system equipped on the TG-DSC. 

The sample was heated at 5 °C min-1 in Ar (flowing at 70 mL min-1) from 50 to 

250 °C. 

 

2.2.4 Temperature Programmed Desorption 

An in–house manufactured Temperature Programmed Desorption (TPD) 

apparatus connected to a Thermo ProLab Mass Spectrometry (MS) was used to 
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test the H2 desorption properties. Around 20 mg powder was loaded into a 

stainless steel tube and sealed in a T-shape sample holder before being 

transferred and attached to the TPD frame. Samples were heated at 2 °C min-1 in 

Ar flowing at 160 mL min-1 from 50 to 650 °C. The amount of H2 released from 

the sample was interpreted using the same method as explained in Ref. [37].  

 

2.2.5 Recombination 

A Sieverts type apparatus [67] was used to dehydrogenate and rehydrogenate 

samples by subjecting them to suitable condition combinations. Approximately 

300 mg of sample was loaded into the bottom of the reactor in an Ar glovebox to 

test the reversible H2 capacity. The reactor was then sealed, transferred and 

attached to the Sieverts apparatus. The reaction conditions were: 500 °C, 1 bar 

H2 and 10 h for desorption; and 400 °C, 130 bar H2 and 12 h for absorption.  

 

3 Results and Discussion 

3.1 Characterization of as-milled mixture 

The nano-sized Ni (~ 100 nm) was mixed with LiBH4 and NaBH4 by ball milling. 

The PXD pattern of the as-milled LiBH4-NaBH4-Ni presented in Figure 1 shows 

Bragg peaks for LiBH4, NaBH4, Ni and NiO phases, suggesting no reaction 

between the parent borohydrides and additive has occurred during the milling 

process. The QPA refinement (Figure B. 1 in Supporting Information) suggests 

the following composition: 40.1(7) wt.% of LiBH4, 42.1(5) wt.% of NaBH4, 

16.5(3) wt.% of Ni and 1.3(3) wt.% of NiO, respectively. This small amount of 

NiO, which was present as a minor impurity phase in the as-received nano-Ni (6 

wt%, see Figure A. 1 in Supporting Information), is neglected for simplicity in 

phase composition reported below. The refined composition of the as-milled 

sample is 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni and is in the following noted as 

LiNa-Ni. Due to the addition of nano-sized Ni, the nominal phase composition of 

LiNa-Ni is different from that of 0.62LiBH4-0.38NaBH4. However, the molar 

ratios of LiBH4 to NaBH4 for these two mixtures are identical.  
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Figure 1 RT PXD (Cu Kα, λ = 1.5418 Å) pattern for the as-milled 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni 

(LiNa-Ni) mixture compared with that for the as-milled 0.62LiBH4-0.38NaBH4 (LiNa) mixture.  

 

In previous work [37], the changes of unit cell volumes of LiBH4 (enlargement) 

and NaBH4 (shrinkage) components in the as-milled 0.62LiBH4-0.38NaBH4 

mixture (noted as LiNa) have been linked to the formation of solid solutions, 

Li(Na)BH4 and Na(Li)BH4. However, in this work the addition of nano-sized Ni 

enlarges the refined unit cell volumes for the LiBH4 and NaBH4 constituents in 

the LiNa-Ni mixture. These values are both larger than that for the LiBH4 and 

NaBH4 constituents in the LiNa mixture and for as-milled LiBH4 and NaBH4 as 

shown below: 

 

 LiBH4 in LiNa-Ni LiBH4 in LiNa [37] LiBH4 [37] 

cell volume [Å3] 219.71 ± 0.08       > 217.03 ± 0.08      >= 216.84 ± 0.10  

    

 NaBH4 in LiNa-Ni NaBH4 [37,68]  NaBH4 in LiNa [37]  

cell volume [Å3] 236.91 ± 0.11       > 234.78 ± 0.13      > 234.06 ± 0.022 
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These increases may be related to the insertion of Ni as interstitials but there is 

no direct evidence. Furthermore, a systematic error due to different instrument 

setups / calibration setups cannot be neglected. Thus, it is suggested that the 

changes in the unit cell volumes cannot be regarded as an indicator for the 

formation of a solid solution in LiNa-Ni mixture.  

 

Raman and FTIR spectra of LiNa-Ni are shown in Figure 2. The vibrations of B-H 

stretching and bending modes resemble those of LiBH4 and NaBH4 phases [69–

72]. The observed wavenumbers are in good agreement with the Ni-free sample 

(Table B. 2 and Table B. 3 in Supporting Information) [37]. The measured 

wavenumbers of the total symmetric stretching mode (ν1) for NaBH4 in the as-

milled LiNa-Ni and LiNa mixtures are found to be 2323 cm-1 and 2324 cm-1, 

respectively. These wavenumbers are 7-8 cm-1 lower than the 2331 cm-1 

measured for as-milled pure NaBH4, suggesting again the volume expansion via 

an increase in B-H bond length according to Badger’s rule [73,74]. This 

expansion was proposed due to the substitution of Li+ into NaBH4 [37], 

suggesting the formation of a Na(Li)BH4 solid solution in the as-milled LiNa-Ni 

mixture. However, no shift in wavenumbers has been found for the LiBH4 peaks, 

possibly due to the limited solubility of Na+ in orthorhombic LiBH4 (o-LiBH4) 

[33]. 
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Figure 2 RT Raman (488 nm laser, 2400 l/mm grating system) and FTIR spectra for the as-milled 

0.91(0.62LiBH4-0.38NaBH4)-0.09Ni (LiNa-Ni) mixture compared with that of as-milled 0.62LiBH4-

0.38NaBH4 (LiNa) mixture. For better comparisons, the spectra at different regions are normalized 

to the most intensive peak in the region. Dashed lines are added as a guide for the eye. Due to the 

high fluorescence effect occurred in the as-milled LiNa-Ni mixture, it has a relatively larger signal to 

noise ratio in the Raman data than that of the Ni-free sample. 
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3.2 Melting Behavior 

Figure 3 shows the DSC results of as-milled LiNa-Ni mixture compared with the 

Ni-free mixture.  

 

 

Figure 3 DSC patterns of as-milled 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixture (red solid curve), 

compared with the as-milled 0.62LiBH4-0.38NaBH4 mixture (black dash curve). Samples were 

heated from 50 to 250 °C at 5 °C min-1 and then cooled to RT at the same rate in Ar flowing at 70 mL 

min-1. 

 

The orthorhombic to hexagonal phase transition of LiBH4 in the LiNa-Ni mixture 

occurs at an onset temperature of 99 ± 1 °C during heating. This is in agreement 

with the Ni-free sample within the standard deviation, and about 15 °C lower 

than the common phase transition temperature of LiBH4 (~115 °C) [37]. This 

temperature reduction was proposed due to the existence of Li(Na)BH4 [33,37]. 

Therefore, the Li(Na)BH4 solid solution is formed in the as-milled LiNa-Ni 

mixture even though it is not observed in the PXD and Raman data. The 

corresponding phase transition temperatures during cooling of the LiNa-Ni and 

LiNa mixtures are both 89 ± 1 °C. This temperature is lower than that during 

heating as a consequence of under-cooling [33].  
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From DSC data the fusion and solidification onset temperatures of the as-milled 

LiNa-Ni mixture are determined to be 225 ± 1 °C and 222 ± 1 °C, respectively, 

influenced by a minor under-cooling effect. These temperatures are similar to 

those for the Ni-free sample (227 ± 1 °C and 222 ± 1 °C), suggesting the addition 

of 9 mol% of nano-sized Ni does not change the melting point for the 0.62LiBH4-

0.38NaBH4 mixture. However, by integration the area of those events, it is found 

that the phase transition areas are slightly reduced (Table B. 4 in Supporting 

Information). These areas are linearly proportional to the enthalpy.  

 

3.3 Dehydrogenation Behavior 

The TPD-MS trace for the dehydrogenation of the as-milled LiNa-Ni mixture is 

compared with the as-milled LiNa mixture in Figure 4.  

 

 

Figure 4 TPD-MS data show hydrogen desorption of the as-milled 0.91(0.62LiBH4-0.38NaBH4)-

0.09Ni mixture (red solid curve), compared with that for the as-milled 0.62LiBH4-0.38NaBH4 

mixture (black dash curve). Samples were heated at 2 °C min-1 in flowing Ar at 160 mL min-1 

between 50 and 650 °C. 
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The LiNa-Ni mixture starts to release H2 from a relatively low temperature 

between 150-200 °C (Figure B. 2 in Supporting Information), which is about 50 

°C lower than its melting point (225 °C) and about 100 °C lower than the 

dehydrogenation onset temperature (287 °C) for the Ni-free sample. However, a 

very limited amount of H2 is released in this low temperature range.  

 

The major dehydrogenation of the LiNa-Ni mixture starts above 350 °C, which is 

much lower than the 400 °C for the Ni-free sample. During decomposition, three 

peaks corresponding to three different dehydrogenation steps are observed at 

468 °C, 515 °C and 586 °C. The peak temperatures for the 1st and 2nd peaks are 

20 °C and 25 °C lower than the peaks at 488 °C and 540 °C for the Ni-free 

mixture. The 3rd peak at 586 °C is not observed in the Ni-free sample, suggesting 

a different decomposition pathway. Therefore, the dehydrogenation of LiNa-Ni 

mixture can be roughly divide into three ranges accordingly: 300-490 °C, 490-

565 °C and 565-650 °C. 

 

A total of 8.1 wt.% of hydrogen is released from LiNa-Ni upon heating to 650 °C 

in Ar. This value is calculated from the TPD-MS data (Figure 4) using the method 

described in Ref. [37]. When the weight of additives (17.8 wt%) is excluded, the 

LiBH4-NaBH4 content liberates 9.9 wt.% of hydrogen. The latter value is 9% less 

than the 10.9 wt.% for the Ni-free sample. B2H6 gas [75] is not detected during 

dehydrogenation of any sample in this work due to the experimental set-up 

whereby the mass spectrometer is connected to the TPD frame via a heated 

capillary tube and so the amount of gas that is able to reach the detector is 

limited. Therefore, the presence of a small amount of B2H6 cannot be ruled out.  

 

3.4 Decomposition Pathways 

Figure 5 summarizes the RT PXD results of as-milled LiNa-Ni mixture and LiNa-

Ni samples heat-treated at 250 °C, 468 °C, 515 °C, 586 °C and 650 °C.  
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Figure 5 RT PXD pattern (Cu Kα, λ = 1.5418 Å) of 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixtures heat-

treated at 250 °C, 468 °C, 515 °C, 586 °C and 650 °C in flowing Ar. Vertical ticks mark the Bragg peak 

positions for the found compounds. The intensities are normalized. Dashed lines were added as a 

guide for the eye.  

 

In general, the PXD patterns in Figure 5 only indicate the stable phases at room 

temperature that provide guidance for a general understanding of the 

dehydrogenation. Due to the fact that LiH (Tmelt = 687.6 ± 0.8 °C), B (Tmelt = 

2052.8 ± 21.3 °C) and Ni4B3 (Tmelt = 1007.55 °C) have higher melting points 

[76,77] than the heat-treatment temperatures (max. 650 °C) used in this work, 

their presences in the product remain solid once precipitated. Though the 

melting point of Li1.2Ni2.5B2 has not been reported, Ref [78] suggested it is stable 

in crystalline structure to 760 °C. Thus, it is expected to be in its solid-state in the 

decomposition products. In addition, the metallic Na has a low melting point at 

97.5 ± 0.6 °C [77], and thus stays in its liquid form once formed. However, 

unstable or intermediate phases are not represented but cannot be ruled out.  

 

In order to investigate the solid-state reactions occurring in the low temperature 

range (150-250 °C), as-milled LiNa-Ni mixture was heated to 250 °C; this is 
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below the temperature where major dehydrogenation started in Ar. After heat-

treatment, Bragg peaks of NiO disappear (Figure 5); indicating reactions 

between the parent borohydrides (very likely LiBH4) and NiO. According to Ref. 

[79], LiMOx (M = transition metal) was observed as the main reaction product in 

a reaction involving transition metal oxide (MOx) and LiBH4. Thus, the formation 

of LixNiyOz (i.e. LixNiO2, x =0.25, 0.33, 04, 0.75, 1 [80]) is expected in our work. 

However, no Bragg peaks of a possible reaction product LixNiyOz have been 

observed by PXD at RT. In addition, a separate study of LiBH4-Ni (14 wt.% Ni) 

systems with bulk (3 μm) and nano-sized Ni (~ 100 nm) (Figure D. 1 in 

Supporting Information) indicates that the reduction of the dehydrogenation 

peak temperatures of LiNa-Ni (Figure 4) is caused by the addition of nano-sized 

Ni.  

 

The PXD data for the sample heat-treated at 468 °C (Figure 5) show LiH, Ni4B3 

and NaBH4 phases. The formation of Ni4B3 is caused by the reaction between 

LiBH4 and nano-sized Ni (Equation 1) leading to a 20 °C reduction of 

dehydrogenation peak temperature compared to the Ni-free sample, and thus in 

agreement with the literature [60]. However, other possible reaction products 

such as Ni2B (Equation 2) or Ni3B (Equation 3) [60] are not observed, suggesting 

these reactions have not occurred under the applied conditions or reaction 

products are amorphous. Signals related to Li2B10H10 (i.e. most intensive Bragg 

peaks at 14.5, 15.7, 17.8 and 18.8 2θ°) [81] or Li2B12H12 (i.e. most intensive Bragg 

peaks at 16.0 and 18.5 2θ°) [82] are not observed in the PXD patterns. However, 

the corresponding Raman spectra (Figure B. 3 in Supporting Information) 

present signals of remaining NaBH4 (1276 cm-1), B (1121 cm-1 and 1191 cm-1), 

and Li2B12H12 (765 cm-1). The identification of LiH from PXD, as well as B and 

Li2B12H12 from Raman spectroscopy confirm the decomposition of LiBH4 via two 

competing decomposition pathways as suggested in Equation 4 and 5. There is 

no evidence of the decomposition of NaBH4, which is in good agreement with the 

Ni-free sample [37]. Thus the 1st dehydrogenation step (300-490 °C) is 

associated with the reaction between LiBH4 and nano-sized Ni along with the 

dehydrogenation of LiBH4 in the mixture.  
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𝑳𝒊𝑩𝑯𝟒 = 𝑳𝒊𝑯 + 𝑩+ 𝟑/𝟐𝑯𝟐   13.9 wt.% Equation 4 

𝑳𝒊𝑩𝑯𝟒 = 𝟓/𝟔𝑳𝒊𝑯 + 𝟏/𝟏𝟐𝑳𝒊𝟐𝑩𝟏𝟐𝑯𝟏𝟐 + 𝟏𝟑/𝟏𝟐𝑯𝟐 10.0 wt.% Equation 5 

 

At 515 °C, Bragg peaks of elemental Na, LiH and Ni4B3, along with weak peaks 

from NaBH4, are observed in the PXD pattern (Figure 5). This indicates H2 

release mainly due to dehydrogenation of NaBH4 for the 2nd dehydrogenation 

step (490-565 °C). The corresponding Raman spectra at this temperature (Figure 

B. 3 in Supporting Information) shows [B12H12]2- (762 cm-1), B (1112 cm-1), and 

two unknown peaks at 1249 cm-1 and 1224 cm-1 (shoulder).  

 

At 586 °C, where the 3rd dehydrogenation step occurs, phases such as Li1.2Ni2.5B2, 

Ni4B3 and Na are present in the PXD pattern (Figure 5), but the Bragg peaks of 

LiH have disappeared. Li1.2Ni2.5B2 has not been observed in any other sample 

heat-treated at lower temperatures. Its existence is in agreement with the 

formation of Li1.2Ni2.5B2 at 600 °C for 2LiBH4-Ni (micro-sized Ni ~ 41 μm) [83]. 

Li1.2Ni2.5B2 is stable and it is observed in the PXD pattern of the sample heat-

treated at 650 °C, where Ni4B3 has disappeared. The corresponding Raman 

spectra at 586 °C (Figure B. 3 in Supporting Information) shows [B12H12]2- (752 

cm-1), and three unknown peaks at 1059 cm-1, 1173 cm-1 and 1220 cm-1. The 

signals of B are not observed. Thus the dehydrogenation reaction occurring at 

this temperature is proposed to a chemical reaction between LiH, B and Ni4B3 

that forms Li1.2Ni2.5B2, H2 and unknown phase(s).  

 

Furthermore, it has been found that the position of the boron breathing mode 

(ν2) of the [B12H12]2- red shifts with increasing heat-treatment temperature 

(Figure B. 3 in Supporting Information). This reduction in wavenumber is 

possibly due to the formation of Na2B12H12 or a solid solution: LixNa1-xB12H12, 

since the Raman shift of Na2B12H12 was about 20 cm-1 lower than that of 

Li2B12H12 [84] and the addition of Ni facilitated the formation of metal 

dodecaborates [85]. A degradation of the boron skeleton of [B12H12]2- could 

cause a shift of wavenumbers. However, this is unlikely to occur due to the stable 

cluster structure [86]. Moreover, lithium borates (such as LiB3O5, Li2BO2, Li2B4O7, 
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Li4B2O5) have been ruled out as contributing towards the unknown Raman peaks 

in the heat-treated samples at 515 and 586 °C [87–91].  

 

3.5 Recombination 

The measured (Meas.) H2 release during cycling (Figure C. 1 in Supporting 

Information) for the LiNa and LiNa-Ni mixtures are summarized in Table 1. The 

corrected values (Corr.) exclude the weight of additive. 

 

Table 1 Measured (Meas.) hydrogen release (wt.%) of 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni during 

cycling (500 °C, 1 bar H2 and 10 h for desorption, and 400 °C, 130 bar H2 and 12 h for absorption), 

compared with 0.62LiBH4-0.38NaBH4. The corrected values (Corr.) are found by disregarding the 

weight of the Ni additive. 

H (wt.%) 
LiBH4-NaBH4 LiBH4-NaBH4-Ni 

Meas. Meas.  Corr. 

1st cycle 5.5 5.1  6.2 

2nd cycle 1.1 1.1  1.3 

3rd cycle 0.8 0.6  0.7 

 

The LiNa mixture releases 5.5 wt.% of hydrogen during the 1st dehydrogenation 

(Table 1). The amount of hydrogen desorbed under the same conditions after 

reabsorption decreases dramatically to 1.1 wt.% at the 2nd cycle and further to 

0.8 wt.% at the 3rd cycle. This poor cycling stability agrees with Ref. [28]. 

 

The LiNa-Ni mixture releases 6.2 wt.% of hydrogen (corrected value) during the 

1st dehydrogenation (Table 1), which is 13 % higher than the 5.5 wt.% for the Ni-

free sample, due to the destabilization effect of the nano-sized Ni additive. After 

rehydrogenation, the LiNa-Ni mixture absorbs 1.3 wt.% of hydrogen (corrected 

value) at the 2nd cycle, which is slightly higher than the 1.1 wt.% for the Ni-free 

sample. In addition, the reversible hydrogen content at the 3rd cycle for the LiNa-

Ni mixture is 0.7 wt.% (corrected value), which is slight lower than the 0.8 wt.% 

for the Ni-free sample. Nevertheless, the reversible hydrogen contents of LiNa-Ni 

mixture at the 2nd and 3rd cycles are significantly reduced in contrast to that for 

the 1st cycle, which is not expected due to the Ni-induced high reabsorption 
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capacity of LiBH4 [60]. This may be caused by the use of much harsher 

rehydrogenation conditions (350 bar, 550 °C, 24 h) in Ref. [60].  

 

Figure 6 and Figure 7 show PXD and FTIR results for the LiNa and LiNa-Ni 

samples in their reabsorbed state after being cycled three times.  
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Figure 6 (a) PXD patterns (Cu Kα, λ = 1.5418 Å) and (b) FTIR spectra of 0.62LiBH4-0.38NaBH4 

decomposed at 500 °C in 1 bar static H2 for 10 h and recombined in 130 bar H2, 400 °C for 12 h at 3rd 

reabsorbed states (denoted as 3rd Abs.), compared with the as-milled sample (denoted as RT). 
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Figure 7 (a) PXD patterns (Cu Kα, λ = 1.5418 Å) and (b) FTIR spectra of 0.91(0.62LiBH4-0.38NaBH4)-

0.09Ni decomposed at 500 °C in 1 bar static H2 for 10 h and recombined in 130 bar H2, 400 °C for 12 h 

at 3rd reabsorbed states (denoted as 3rd Abs.), compared with the as-milled sample (denoted as RT). 

 

The three-time rehydrogenated LiNa mixture (Figure 6) contains LiH (PXD) and 

NaBH4 (PXD, FTIR), indicating the NaBH4 component is stable during cycling and 

the LiBH4 component is not reversible under the applied conditions. The LiBH4 is 

not fully decomposed after being kept at 500 °C in 1 bar H2 for 10 h (Figure C. 2 

in Supporting Information). Thus, the small amount of reabsorbed hydrogen 

contents at the 2nd and 3rd cycle (Table 1) may be mainly due to the 

dehydrogenation of the remaining LiBH4. 

 

The PXD pattern of the three-time rehydrogenated LiNa-Ni mixture (Figure 7) 

shows Bragg peaks of NaBH4, LiH, NaH, Ni4B3, Ni3B and Ni2B phases, indicating 

the occurrence of: reactions of LiBH4 with Ni; decomposition of LiBH4; and 

partial decomposition of NaBH4 during the cycling.  Due to the addition of nano-

sized Ni, LiBH4 is found to be fully decomposed after the first dehydrogenation 

process as no LiBH4 signal has been observed in either PXD or FTIR result 

(Figure C. 3 in Supporting Information). A broad shoulder peak at around 2470 
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cm-1 is found in the FTIR data for the reaction product of LiNa-Ni at the 1st 

dehydrogenated state (Figure C. 3 in Supporting Information), which is due to 

the formation of closo-boranes ([B10H10]2- at ~2467 cm-1 or [B12H12]2- at ~2480 

cm-1) [92,93]. This broad peak has not been observed by FTIR for the 

dehydrogenation product of the Ni-free sample at the same state (Figure C. 2 in 

Supporting Information), confirming the addition of Ni facilitates the formation 

of dodecaborates, as mentioned in Ref. [85]. 

 

The Bragg peaks of NaH are first found in the PXD pattern for the 

dehydrogenation product of LiNa-Ni after being kept at 500 °C in 1 bar H2 for 10 

h (Figure C. 3 in Supporting Information) and its observation can be explained as 

follows: due to the low boiling point of Na (i.e. 281 °C at 10-5 bar of Na gas [94]), 

any reaction product Na (liquid) vaporizes immediately. The gaseous Na will 

condense when it reaches the colder part outside the hot zone (might further 

solidify, subject to temperature). The escaped Na reacts in an exothermic 

reaction with gaseous H2 to form NaH, leading to a physical segregation of 

decomposition products [95]. The hydrogenation of Na was also noted to occur 

at 300 °C in 2-3 bar H2 [96]. Thus, when the decomposition occurs in Ar, NaH is 

not observed (Figure 5). To prevent such eventualities, Na could be physically or 

chemically confined using nano-scaffolds (nanoconfinement) or metal fluorides 

[97] or closed containers [98]. 

 

In addition, Ni4B3 is one of the major dehydrogenation products of the LiNa-Ni 

mixture after being kept at 500 °C in 1 bar H2 for 10 h (Figure C. 3 in Supporting 

Information). It could convert to Ni3B after rehydrogenation, and Ni3B could be 

further oxidized by B to Ni2B [95]. Since the Bragg peaks for NaH disappear after 

the first rehydrogenation step (Figure C. 3 in Support Information), it is 

proposed that NaH reacts with Ni4B3 under H2 and consequently forms NaBH4 

and Ni3B during H2 absorption.  

 

After being cycled 3 times, the FTIR data (Figure 7) for the rehydrogenated LiNa-

Ni mixture show peaks at 1079 cm-1, 1238 cm-1, 1308 cm-1 and a shoulder 

around 2270 cm-1. These peaks are similar to LiBH4 (i.e. 1091 cm-1, 1236 cm-1, 
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1308 cm-1 and a 2273 cm-1 in as-milled LiNa-Ni), suggesting an amorphous LiBH4 

phase is reformed, which can be attributed to the catalytic effect of Ni4B3 on 

rehydrogenation [60]. 

 

Broad signals around 2400-2500 cm-1 have been noticed in the FTIR data for the 

rehydrogenated LiNa (Figure 6) and LiNa-Ni (Figure 7), indicating the formation 

of [B10H10]2- (~2467 cm-1) [92] or [B12H12]2- (~2480 cm-1) [93]. However, none of 

the mentioned dodecaboranes could be identified from the corresponding PXD 

data, where we would have expected Bragg peaks in the low 2θ range (15-20 

2θ°) [81,82], thus indicating that they could be present in an amorphous or 

nano-crystalline state. 

 

Although the cycling stability of the LiNa mixture has not been significantly 

improved by adding nano-sized Ni particles, the reaction product Ni4B3 

facilitates the reformation of LiBH4 under much milder conditions (lower 

temperature and pressure) than reported before [60]. 

 

4 Conclusions 

The dehydrogenation mechanism of the 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni 

mixture is systematically studied between 25 °C and 650 °C in flowing Ar. The 

addition of 9 mol% nano-sized Ni powder does not affect the low orthorhombic 

to hexagonal LiBH4 phase transition temperature (99 °C) and the low melting 

temperature (225 °C), whilst it reduces the dehydrogenation peak temperatures 

by 20-25 °C, leading to three major decomposition steps, from:  

1) 300 °C to 490 °C, H2 release is associated with a reaction between LiBH4 and 

nano-sized Ni (forming LiH and Ni4B3), along with the dehydrogenation of the 

LiBH4 component in the mixture, forming LiH, B, Li2B12H12;  

2) 490 °C to 565 °C, the dehydrogenation is mainly due to the decomposition of 

the NaBH4 component, forming Na, B, and possibly Na2B12H12;  

3) 565 °C to 650 °C, H2 liberation is due to a reaction between LiH, B and Ni4B3, 

forming Li1.2Ni2.5B2 and unknown phases.  
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A total of 8.1 wt.% of hydrogen is released upon heating to 650 °C in Ar, which is 

lower than 10.9 wt.% of the Ni-free mixture. This 0.91(0.62LiBH4-0.38NaBH4)-

0.09Ni mixture has a poor cycling stability as its reversible hydrogen content 

reduced from 5.1 wt.% to 1.1 wt.% to 0.6 wt.% during three complete 

desorption-absorption-cycles. However, it is suggested that its LiBH4 content is 

partially reversible under much milder conditions than reported before [60]. 
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Supporting Information 

Appendix A Analysis of as-received nano-sized Ni powder 
 
Figure A. 1 shows the PXD pattern of the as-received nano-sized Ni at room 

temperature. Bragg peaks are mainly observed for the cubic Ni phase. Some low-

intensity peaks associated with NiO are detected. The amount of NiO is 6.4 ± 0.2 

wt.% according to QPA refinement results. 

 

 

Figure A. 1 QPA refinement result of as-received nano-sized Ni, including the observed XRD (Cu Kα, λ 

= 1.5418 Å) profile (blue), the calculated profile (red, used to fit the observed profile) and the 

difference profile (grey). Goodness-of-fit = 1.483.  

 

The Philips XL-30 (LaB6) with Link Isis EDS Scanning Electron Microscope 

(SEM) was used to identify the size and morphology of nano-sized Ni powder 

(Figure A. 2). Powder agglomeration was observed.  

 

 

Figure A. 2 Secondary SEM images of as-received nano-sized Ni powder at room temperature.  
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Appendix B Analysis of LiBH4-NaBH4-Ni mixture 
 

Figure B. 1 and Table B. 1 illustrate the TOPAS QPA refinement results of the as-

milled 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixture.  

 

 

Figure B. 1 QPA refinement result of the as-milled 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixture, 

including the observed XRD (Cu Kα, λ = 1.5418 Å) profile (blue), the calculated profile (red, used to 

fit the observed profile) and the difference profile (grey). Goodness-of-fit = 1.459. 

 

Table B. 1 Refined crystal structure parameters of the LiBH4 and NaBH4 components in the as-milled 

0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixture in contrast to of as-milled 0.62LiBH4-0.38NaBH4 mixture 

  
As-milled Pure As-milled Mixture 

  
LiBH4 NaBH4 LiBH4-NaBH4 LiBH4-NaBH4-Ni 

o-LiBH4 

a (Å) 7.199 ± 0.003 - 7.179 ± 0.002 7.211 ± 0.001 

b (Å) 4.438 ± 0.002 - 4.438 ± 0.001 4.456 ± 0.001 

c (Å) 6.798 ± 0.002 - 6.806 ± 0.002 6.837 ± 0.002 

Volume (Å3) 216.84 ± 0.01 - 217.03 ± 0.08 219.71 ± 0.08 

      

c-NaBH4 
a (Å) - 6.169 ± 0.002 6.163 ± 0.002 6.188 ± 0.001 

Volume (Å3) - 234.8 ± 0.013 234.06 ± 0.022 236.91 ± 0.11 

 

Table B. 2 and Table B. 3 summarize the Raman and FTIR frequencies for the 

0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixture compared with that for 0.62LiBH4-

0.38NaBH4 mixture. As a metal, Ni was not detectable by vibrational techniques. 
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Table B. 2 Experimental wavenumbers (cm-1) of the as-milled 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni 

mixture observed in Raman compared with that for the as-milled 0.62LiBH4-0.38NaBH4 

 

Mode 
LiBH4 NaBH4 LiBH4-NaBH4 LiBH4-LiBH4-Ni 

As-milled Lit. [B1-9] As-milled Lit. [B1-9] As-milled As-milled 

ν4 Ag 1096 1097 
  

1097 1097 

ν4' Ag n.a. 1240 
  

1242 1239 

ν2 A1 
  

1277 1279 1282 1285 

ν2 B1g 1290 1290 
  

1290 1291 

ν2' Ag 1319 1320 
  

1317 1314 

2ν4 
 

2163 2157 
  

2159 2156 

2ν4' 
 

2180 2177 
  

2167 n.a. 

2ν4 
   

2195 2198 2198 2194 

2ν4 
   

2227 2229 2229 n.a. 

ν3 Ag 2273 2275 
  

2275 2273 

ν1 Ag 2299 2299 
  

2300 2298 

ν1 A1 
  

2331 2335 2323 2324 

ν2+ν4 E 
  

2401 2403 2404 2399 

 

Table B. 3 Experiment wavenumbers (cm-1) of the as-milled 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni 

mixture observed in FTIR compared as-milled 0.62LiBH4-0.38NaBH4 

Mode 
LiBH4 

 
NaBH4 

 
LiBH4-NaBH4 LiBH4-LiBH4-Ni 

As-received Lit. [B9-10] As-received Lit. [B9-10] As-milled As-milled 

ν4 Ag 1089 1089 
  

1092 1092 

ν4 B2 
  

1107 1119 1117 1116 

ν4' Ag 1233 1254 
  

1237 1236 

ν2 B1g 1285 1284 
  

1286 1286 

ν2' Ag 1307 1323 
  

1310 1309 

2ν4' 
 

2180 2176 
  

2180 2179 

2ν4 
   

2213 2222 2221 2222 

ν3 Ag 2271 2277 
  

2274 2275 

ν3 B2 
  

2282 2297 2297 2295 

ν3' Ag 2300 2307 
    

ν2+ν4 E 
  

2399 2393 2400 2400 

 

Figure B. 2 shows the hydrogen desorption from the as-milled 0.91(0.62LiBH4-

0.38NaBH4)-0.09Ni compared with the as-milled 0.62LiBH4-0.38NaBH4 mixture 

in the temperature range of 50 to 300 °C. The onset dehydrogenation 
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temperature of 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni locates in between 150 to 

200 °C as a consequence of the small amount of NiO (1.3(3) wt.%).  

 

Figure B. 2 TPD-MS data show hydrogen desorption of the as-milled 0.91(0.62LiBH4-0.38NaBH4)-

0.09Ni mixture, compared with that for the as-milled 0.62LiBH4-0.38NaBH4 mixture. Samples were 

heated at 2 °C min-1 in flowing Ar at 160 mL min-1 between 50 and 300 °C. 

 

Table B. 4 Summarizes the DSC curve areas for the as-milled 0.91(0.62LiBH4-

0.38NaBH4)-0.09Ni compared with the as-milled 0.62LiBH4-0.38NaBH4 mixture. 

These area values are linearly proportional to the enthalpy.  

 

Table B. 4 DSC curve areas for the as-milled 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixture compared 

with that for the as-milled 0.62LiBH4-0.38NaBH4 mixture 

Sample 

Energy 

Heating Cooling 

Phase change Fusion Phase change Solidification 

μV mg-1 LiBH4 μV mg-1 LiNa μV mg-1 LiBH4 μV mg-1 LiNa 

1 0.62LiBH4-0.38NaBH4 18.9 ± 1.0 12.7 ± 0.6 13.2 ± 0.7 12.8 ± 0.6 

2 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni 15.5 ± 0.7 11.1 ± 0.6 11.8 ± 0.6 10.4 ± 0.6 
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Figure B. 3 shows the room temperature Raman results of heat-treated 

0.91(0.62LiBH4-0.38NaBH4)-0.09Ni samples (at 468 °C, 515 °C and 586 °C) 

compared with the as-milled LiNa-Ni mixture at room temperature. Due to high 

fluorescence effect, Raman data in the B-H stretching region are not available.  

 

 

Figure B. 3 Room temperature Raman spectra of as-milled 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni, 

which had been heat-treated at 468 °C, 515 °C and 586 °C in flowing Ar. The intensities of the Raman 

peaks were normalized.  

 

Due to its high melting point, B (Tmelt = 2052.8 ± 21.3 °C) is expected to stay in 

solid-state once precipitated. Beside, since the Li2B12H12 phase did not have any 

melting/fusion/frothing behavior when it is heated to 600 °C 

(thermogravimetric analysis, DTA/TGA) [B11], it is therefore expected in their 

solid-state in the decomposition products. 
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Appendix C Cycling stability of LiBH4-NaBH4 and LiBH4-NaBH4-Ni mixtures 
 
Figure C. 1 shows the H2 releases of each desorption process during cycling for 

the 0.62LiBH4-0.38NaBH4 and 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixtures. 

 

 

 

Figure C. 1 Sievert’s measurements showing hydrogen release (in wt.%) while keeping the as-milled 

0.62LiBH4-0.38NaBH4 (a, b, c) and 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni (d, e, f) mixtures under 1 bar 

H2 at 500 °C (ΔT/Δt = 5 °C min-1) for 10 h for desorption and under 130 bar H2 at 400 °C for 12 h for 

rehydrogenation.  

 

Figure C. 2 and Figure C. 3 show the PXD and FTIR results for the 0.62LiBH4-

0.38NaBH4 and 0.91(0.62LiBH4-0.38NaBH4)-0.09Ni mixtures during cycling. The 

Cu based impurities (Cu2O and CuO) observed in PXD pattern was introduced 
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from the outer surface of sample holder during operation (not participated in 

dehydrogenation). No [BnHn]2- has been seen in PXD patterns (10-20° 2θ). 

 

 

Figure C. 2 (a) PXD pattern (Cu Kα, λ = 1.5418 Å) and (b) FTIR spectrum of 0.62LiBH4-0.38NaBH4 

decomposed at 500 °C in 1 bar static H2 for 10 h (denoted as 1st Des.) and recombined in 130 bar H2, 

400 °C for 12 h at 3rd reabsorbed states (denoted as 3rd Abs.), compared with the as-milled sample 

(denoted as RT). 
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Figure C. 3 (a) PXD pattern (Cu Kα, λ = 1.5418 Å) and (b) FTIR spectrum of 0.92(0.62LiBH4-

0.38NaBH4)-0.09Ni decomposed at 500 °C in 1 bar static H2 for 10 h (denoted as 1st Des.) and 

recombined in 130 bar H2, 400 °C for 12 h at 1st and 3rd reabsorbed states (denoted as 1st Abs. and 3rd 

Abs., respectively), compared with the as-milled sample (denoted as RT). 
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Appendix D Dehydrogenation behavior of LiBH4-Ni system 
 
To characterize the nano-sized effect of Ni addition, two types of Ni powder from 

Sigma-Aldrich (bulk: average mean size 3 μm, 99.7%; nano-sized: average mean 

size <100 nm, 99.9%) were mixed with LiBH4 using ball milling. Figure D. 1 

shows their temperature-dependent desorption results from 50 °C to 500 °C in 

flowing Ar using TPD-MS.  

 

 
Figure D. 1 TPD-MS results of as-milled LiBH4-Ni (14 wt.%) samples in the range of 50-500°C heated 
at 2 °C min-1 in contrast to as-milled LiBH4. The desorbed H2 was carried by Ar flowing at 160 mL 
min-1 and measured by MS. Signals were normalized for comparison. No B2H6 was detected. 

 

The LiBH4-Ni (bulk) sample started dehydrogenation at 287 °C that was very 

close to 285 °C for the as-milled LiBH4. Thus, the added 14 wt.% bulk Ni did not 

decrease the decomposition onset temperature. However, it reduced the peak 

temperature by 10 °C (to 460 °C) compared with the 470 °C for the as-milled 

LiBH4. Upon heating to 500 °C, the amount of H2 released from the LiBH4-Ni 

(bulk) sample was 5.2 wt.%. If the weight of Ni is excluded, LiBH4 content 

released 6.0 wt.% of hydrogen, which was slightly smaller than the 6.7 wt.% for 

the as-milled LiBH4. 
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The nano-sized Ni not only decreased the decomposition onset temperature 

(from 285 °C for as-milled LiBH4) to 187 °C, but also reduced the peak 

temperature by 25 °C (to 445 °C) compared with the 470 °C for Ni-free sample. 

In contrast to the bulk Ni sample, this peak temperature was also 15 °C lower.  

 

The decrease of onset temperature was possibly due to the NiO presented; whilst 

the reduction in peak temperature was caused by the nano-sized Ni additive and 

enhanced by its nano-scale effect when compared with the bulk Ni sample. The 

H2 release from nano-sized Ni sample was 5.5 wt.% when heated to 500 °C. This 

value was close to the 5.2 wt.% for bulk Ni sample. They were about half of the 

12.3 wt.% reported by Ref. [D1] for a LiBH4-Ni (25 wt.%) sample when heated to 

527 °C using a Thermo-Gravimetric Analysis (TGA) apparatus. Since this work 

used different experimental conditions (such as size and amount of nano-sized 

Ni, sample preparation methods, equipment and decomposition conditions) 

when compared with Ref. [D1], it is difficult to determine the reason for this 

difference in observed H2 evolutions. Moreover, considering the available 

composition of LiBH4 in the nano-sized Ni sample, about 6.4 wt.% of hydrogen 

was released from the LiBH4 content, which was slightly larger than the 6.0 wt.% 

for the bulk Ni sample but was still smaller than the 6.7 wt.% for Ni-free sample.  

 

[D1] Li H, Yan Y, Akiba E, Orimo S. Improved Dehydrogenation and 
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