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Self-Adaptive Software (SAS) can reconfigure itself to adapt to the changing environment at runtime, aim-

ing to continually optimize conflicted nonfunctional objectives (e.g., response time, energy consumption,

throughput, cost, etc.). In this article, we present Feature-guided and knEe-driven Multi-Objective optimiza-

tion for Self-Adaptive softwAre (FEMOSAA), a novel framework that automatically synergizes the feature

model and Multi-Objective Evolutionary Algorithm (MOEA) to optimize SAS at runtime. FEMOSAA operates

in two phases: at design time, FEMOSAA automatically transposes the engineers’ design of SAS, expressed

as a feature model, to fit the MOEA, creating new chromosome representation and reproduction operators.

At runtime, FEMOSAA utilizes the feature model as domain knowledge to guide the search and further ex-

tend the MOEA, providing a larger chance for finding better solutions. In addition, we have designed a new

method to search for the knee solutions, which can achieve a balanced tradeoff. We comprehensively evalu-

ated FEMOSAA on two running SAS: One is a highly complex SAS with various adaptable real-world software

under the realistic workload trace; another is a service-oriented SAS that can be dynamically composed from

services. In particular, we compared the effectiveness and overhead of FEMOSAA against four of its variants

and three other search-based frameworks for SAS under various scenarios, including three commonly applied

MOEAs, two workload patterns, and diverse conflicting quality objectives. The results reveal the effectiveness

of FEMOSAA and its superiority over the others with high statistical significance and nontrivial effect sizes.
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1 INTRODUCTION

Self-Adaptive Software (SAS) is a special type of software that is capable of adapting and recon-
figuring itself at runtime through a set of known features (e.g., CPU cap, thread pool size, cache
size, etc.), according to the changing environment [17]. One major goal of SAS is to continually
optimize multiple and often conflicting nonfunctional objectives (e.g., response time versus energy
consumption, throughput versus cost, and the like). However, given the dynamic and uncertain
nature of running software, it is difficult to fully specify all possible conditions and their adap-
tation solutions at design time. Thus, designing an efficient and effective runtime optimization
approach is necessary yet challenging. Depending on the complexity of SAS, software engineers
have exploited various search algorithms (e.g., exact or stochastic search) for continually finding
the optimal (or near-optimal) adaptation solution for SAS at runtime [23][51][12][42][41][15][13].

To optimize SAS at runtime using the search algorithms, there are two crucial challenges: First,
it is difficult to effectively and systematically convert the SAS design to the context of a search
algorithm while considering the right encoding of features in the representation of optimization
(e.g., using only the features that contribute to different aspects of the variability of SAS). Here, the
features might be categorical or numeric, where the former refers to those with distinct character-
istics (e.g., the Cache feature is “on” or “off”), and the latter denotes those that can be quantified,
measured, and sorted (e.g., the size of maxThreads). Furthermore, it is difficult to effectively and
systematically handle the features’ dependencies; for example, one can change Cache Mode only
if the Cache feature is “turned on.” Dependency can become even more complex in the presence
of numeric features; for example, in Tomcat [2], the size of maxThreads should not be less than
the size of minSpareThreads. Those conversion tasks are nontrivial as the design of SAS can be
complex, and most search algorithms cannot handle dependency constraints in nature. Second,
optimizing multiple conflicting objectives and managing their tradeoffs are complex and challeng-
ing, especially for SAS runtime. This is attributed to the huge number of alternative adaptation
solutions and the requirement that the found solution be effective. Moreover, the dynamic and un-
certain nature of SAS further complicates the conflicting relations between objectives, rendering
the tradeoff surface difficult to explore. Those challenges, when not appropriately addressed, can
result in compromised quality, unacceptable running overhead, and imbalanced tradeoff in SAS
runtime optimization.

Most existing work fails to handle the first challenge as researchers have relied on a manual
and/or incomplete conversion of the SAS design in the search algorithm’s context [42][1][22][51],
which renders the process expensive, nonsystematic, and error-prone. Moreover, the feature de-
pendencies are often ignored, wasting the valuable function evaluations on invalid solutions at
SAS runtime while providing no guarantee of finding the valid ones. Inspired by the applications
of search algorithms to Software Product Line problems [45], researchers [23][41] have combined
the feature model [33] with search algorithms to optimize SAS at runtime, considering categorical
dependencies. However, numeric features are ignored, and a solution often encodes all the features
using a simple binary representation. This might lead to the curse of dimensionality and thereby en-
tail unnecessary complexity at SAS runtime. Further, existing approaches cannot prevent wasteful
exploration of invalid solutions and difficult-to-handle dependencies related to numeric features.
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For the second challenge, exact search [23] [9], with the helps of objective aggregation (e.g., a
weighted sum), has been exploited for SAS runtime optimization. However, modern SAS often ex-
hibits high variability, leading to an explosion of the search space of all possible solutions and ren-
dering the problem intractable. Henceforth, exact search may fail to scale at runtime. In contrast,
stochastic search, particularly evolutionary algorithms that are widely applied in Search-Based
Software Engineering (SBSE), tend to be naturally robust in solving problems with extremely high
numbers of alternatives and thus appealing for SAS optimization [29]. Those algorithms, when
properly tailored, can lead to approximate and near-optimal solutions for complex software en-
gineering problems with reasonable running time (minutes, if not seconds) [31]. Furthermore,
stochastic search has proved effective for many real-time systems [22][27][51][12]. Often, existing
approaches rely on a single-objective evolutionary algorithm to optimize SAS by simply trans-
forming a multi-objective problem into an aggregated single-objective one [42][27]. While objec-
tive aggregation might be preferable for some contexts, it has been shown that there are cases
where assigning weights to different objectives is a nontrivial task for software engineers, and
the aggregation can hardly maintain a good diversity of solutions [29]. To alleviate this issue,
studies [1][22][51] have used NSGA-II [20], a popular Multi-Objective Evolutionary Algorithm
(MOEA), to optimize SAS without using weighted aggregation; these have shown that MOEA can
find more convergent and diverse solutions in the tradeoff surface than optimizing via objective
aggregation. However, NSGA-II has a coarse diversity preservation mechanism that is unable to
provide well-distributed solutions in certain cases [52]. Therefore, it is desirable to have a general
framework that can easily work with different MOEAs for optimizing SAS without suffering the
limitation of one specific algorithm. In addition, given the fact that MOEAs produce a set of non-
dominated solutions, there is no established method for the SAS to choose an appropriate one for
adaptation at runtime, thus entailing the risk of imbalanced tradeoffs.

To address these challenges and limitations, this article presents Feature-guided and knEe-
driven Multi-Objective optimization for Self-Adaptive softwAre (FEMOSAA), a novel framework
that automatically synergizes the feature model and a given MOEA to optimize SAS at runtime.
Specifically, our contributions include:

—We rely on the feature model to represent the design of a given SAS with explicit consider-
ations of numeric features and their dependencies. In FEMOSAA, we provide an automatic
and systematic approach to transpose a given design of SAS, expressed as a feature model,
into the MOEA’s context at design time. Further, such transposition extends the internal
structure of MOEAs in order to improve their ability to search for better adaptation solutions
at SAS runtime. Notably, we contribute to the following in the transposition approach:
(1) To tailor the problem to be more suitable for SAS runtime, we discard lengthy binary

encoding. Instead, our approach identifies the elitist features from the feature model
to encode an elegant and polyadic chromosome representation in the MOEA. By
“elitist features,” we refer to those that cannot be removed in the optimization without
damaging the original variability of SAS while minimizing the length of encoding. The
benefit of such encoding is that (i) it is intuitive, simpler, and enables direct dependency
extraction and (ii) reducing the number of genes helps to greatly shrink the search
space and simplify the dependency constraints, which also improves the quality of the
solutions found while shortening the running time of MOEA.

(2) To better guide the search and avoid exploring invalid solutions, our approach extracts
feature dependencies with respect to these elitist features. Then, these dependencies
are injected into the basic mutation and crossover operators of the MOEA to create new
dependency-aware operators. These operators can systematically steer the MOEA to
focus on exploring valid solutions for SAS, creating a larger chance to find better ones.
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—Without loss of generality, we design FEMOSAA in such a way that it can be seamlessly
integrated with different MOEAs1 to optimize SAS at runtime. The elitist features and ex-
tracted dependencies, as processed by the transposition approach at design time, are used
to guide the running behaviors of a given MOEA for SAS runtime optimization. In this
work, we run FEMOSAA with three fundamentally distinct yet widely used MOEAs in the
literature: MOEA-based Decomposition with STable-Matching model (MOEA/D-STM) [36],
Non-dominated Sort Genetic Algorithm-II (NSGA-II) [20], and Indicator-Based Evolution-
ary Algorithm (IBEA) [53].

—To achieve a balanced tradeoff in SAS optimization, FEMOSAA identifies knee solutions au-
tomatically from the final nondominated set. The knee solutions often imply well-balanced
tradeoffs, such that any improvement on one objective of a knee will cause relatively severe
degradations on others.

—We conduct comprehensive experiments on two running SAS: One is a highly complex SAS
that consists of the eBay-like RUBiS benchmark [43] and a set of real-world adaptable soft-
ware (i.e., Apache Tomcat [2], MySQL [40], Ehcache [3], and Xen [48]) under the realistic
FIFA98 workload trace [5]; another is a service-oriented SAS that can be dynamically com-
posed by various services. We compare FEMOSAA with four of its variants (e.g., without
dependency-aware operators) and three other state-of-the-art frameworks (i.e., DUSE [1],
PLATO [42], and FUSION [23]) under various scenarios, including three commonly applied
MOEAs (i.e., MOEA/D-STM, NSGA-II, and IBEA) and two different workload patterns2 (i.e.,
read-write and read-only) along with diverse conflicting quality objectives. The experiments
reveal the effectiveness of FEMOSAA and its superiority over the others when optimizing
conflicting objectives for SAS, with statistically significant results and nontrivial effect sizes.

The contributions have clear impact on the synergy between software engineering for SAS and
evolutionary computation as FEMOSAA combines strengths from both fields. Unlike many SBSE
work that simply formulates the software engineering problem as a classic optimization problem
for some MOEAs, our deeper synergy takes one step further by automatically and dynamically
extracting the domain information of SAS to extend the internal structure of MOEA, thus im-
proving its search ability. As a result, to control and exploit the power of MOEAs, SAS software
engineers only need to provide the feature model when using FEMOSAA, without being an expert
on MOEA. In addition, FEMOSAA improves MOEA and provides insights for MOEA researchers to
design better algorithms for SAS since the identified elitist features and their dependencies serve
as the engineers’ systematic domain knowledge by which we can reduce the search space and
better guide the search, providing a larger chance for finding better solutions.

The remainder of this article is organized as follows: Section 2 illustrates a detailed motivating
example of SAS. Section 3 presents the background and extended notions of numeric features in
the feature model. Section 4 gives an overview of FEMOSAA. Section 5 illustrates our approach
that transposes a feature model to MOEA. Section 6 presents how the internal structure of existing
MOEAs can be extended to combine with our dependency-aware operators and knee selection. Ex-
perimental results, verifiability, and threats to validity are discussed in Section 7. Finally, Sections 8
and 9 present related work and a conclusion, respectively.

1In addition to MOEAs, FEMOSAA also works with single-objective evolutionary algorithms in which case the knee se-

lection method would be deactivated.
2Different workload patterns will create diverse behaviors of the SAS.
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Fig. 1. An example of SAS.

2 A DETAILED MOTIVATING SCENARIO OF SELF-ADAPTIVE SOFTWARE

While our work can be applied to different contexts that demand runtime adaptation, we draw on
a representative and realistic SAS to motivate and illustrate the need. As shown in Figure 1, like
many SASs, the SAS example consists of two parts: an adaptable software that is being managed
at runtime and an engine that controls the adaptation. Additionally, the SAS contains a complex
software stack consisting of RUBiS3 [43], Apache Tomcat [2], Ehcache [3], and MySQL [40], run-
ning on the virtualization hypervisor Xen [48]. The RUBiS benchmark serves as a representative
of many real-world software applications that offer diverse functionalities and services to many
end-users concurrently. We can see from Figure 1, as is the case of most practical software appli-
cations, the SAS’s software stack contains a large amount off-the-shelf real-world software. Each
of the software items support various control features, which, together with those from other soft-
ware in the stack, can be changed dynamically on-the-fly to influence the runtime behaviors of
the software system. An example of the control features includes the number of threads, the mem-
ory allocation, and enabling/disabling cache mechanism. By design, all possible configurations of
control features form the search space or variability of the SAS. As the workload changes, the SAS
is capable of adapting features at runtime to optimize for various nonfunctional quality attributes
(e.g., response time). To achieve such goal, and thanks to the rapid development of search algo-
rithms, SAS is often designed to continually search for that combination of feature configurations
that leads to optimal (or near optimal) quality at runtime. However, to effectively and efficiently
engineer SAS in this way is challenging for the following reasons:

Encoding the Features from the SAS Design. Consider a complex SAS which contains many
features and configurations, systematically and generically choosing the right features and encod-
ing them into the representation of search algorithm is difficult. To optimize the SAS at runtime,
such representation defines the fundamental search space of the problem to be explored; there-
fore, the encoding of features could have a positive or negative impact on the search ability of a
potential search algorithm. Given that some features in the SAS design do not contribute to the
SAS’s variability or can represent the same aspect of variability [6], existing work [23] [41] that
simply encodes all features in a binary format is unnecessary. Consider a feature model with 100
features, binary representation can easily create a search space of 2100 and this, as we will show in
Section 7.4.1, can negatively affect adaptation quality and overhead.

Handling Dependencies in the SAS Design. Many widely used exact and stochastic search
algorithms (e.g., MOEA) are not designed to handle dependency constraints. This makes the

3An eBay-like software application with 26 services.
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treatment of dependencies difficult, especially when the dependencies in SAS come in a mixture
of categorical dependencies (e.g., Cache Mode require Cache) and numeric ones (e.g., maxThreads ≥
minSpareThreads). As we will show in Section 7.4.2, those dependencies, when ignored [42] [1] [27]
or incorrectly handled [23] [41] (as in existing work), can degrade the adaptation quality.

Explosion of the Search Space. Modern SAS often has high variability, leading to an explosion
of the search space. For example, the original design of the SAS shown in Figure 1 has a search
space of more than 1 billion, which we will elaborate in detail in Section 3.3.

Tradeoff on Conflicting Objectives. SAS often exhibits multiple conflicting quality objec-
tives that need to be optimized simultaneously, and tradeoffs need to be made. In general, many
existing approaches [42] have assumed that the relative importance of objectives can be correctly
quantified as numeric weights, which has been found to be difficult in some cases [29]. Those
weights, when inappropriately specified and expressed, inevitably create negative impact on the
search process and result in unwanted, poor adaptation quality. It is even more difficult to achieve
balanced tradeoff.

These difficulties motivate our work, which automatically synergizes the feature model of SAS
and a given MOEA, creating a feature-guided MOEA with knee selection to optimize SAS at
runtime.

3 BACKGROUND AND PRELIMINARIES

3.1 Multi-Objective Evolutionary Algorithm (MOEA)

Evolutionary algorithm, a stochastic search-based meta-heuristic, has been widely accepted as a
major approach for solving multi-objective optimization problems [19], in which case it is also
known as MOEA. In MOEA, the population contains a set of solutions (individuals), each of which
is represented by a fixed-length thread-like chromosome carrying different values at each gene. As
shown in Figure 2 and Algorithm 1, the evolutionary search of MOEA starts after the initialization
of the population (Lines 2 to 9). During the search process, the elite information can propagate from
parents to offspring via some random and probabilistic reproduction operations (i.e., crossover and
mutation) on the mating parents chosen from the mating selection procedure. Inspired by the sur-

vival of the fittest rule from evolutionism, survival selection preserves high-quality individuals
with superior fitness values to the next iteration (generation), as shown in Lines 10 to 24. The
evolution process repeats until a stopping criteria (e.g., a predefined function evaluation thresh-
old) is satisfied. The major difference between MOEA and the classic single-objective evolutionary
algorithm lies in the mating and survival selection mechanisms. In particular, instead of finding a
single optimal (or near optimal) solution, as in the single-objective evolutionary algorithm, MOEA
aims to find a set of nondominated solutions4 that approximate the Pareto front with good con-
vergence and uniform distribution (Line 25). Notably, for every solution in the nondominated set,
any improvement of an objective will result in a degradation for at least one other objective.

Generally, the existing MOEAs can be divided into the following three categories according to
the survival selection mechanisms:

• Decomposition-based method: The MOEA decomposes the original multi-objective optimiza-
tion problem into several single-objective optimization subproblems by linear or nonlin-
ear aggregation methods [38]. Then, it uses a population-based technique to solve these
subproblems in a collaborative manner. MOEA/D [52], MOEA/D-STM [36], and NSGA-
III [18] are the representative algorithms of this sort.

4A solution dominates another if it has at least one objective better than another while all other objectives are not worse

than another. Nondominated solutions denote those solutions that are not dominated by any other solutions in the set.
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ALGORITHM 1: General Algorithmic Process of MOEA

Input: Given mutation rate rm , crossover rate rc and the maximum number of evaluation evalmax , which

is often equivalent to the size of population × the maximum number of generations

Output: A set of optimized non-dominated solutions

1: start evolution

2: P = ∅
3: eval = 0

4: for i = 1 to Psize do
5: S = getRandomSolution()

6: evaluateFitness(S)

7: eval = eval + 1

8: P = P + S
9: end for

10: while eval < evalmax do
11: P0 := ∅
12: while |P0 | ≤ Psize do

13: parents := doMatingSelection(P )

14: offspring := doCrossover(parents , rc )

15: for each solution S in offspring do

16: doMutation(S , rm )

17: end for

18: evaluateFitness(offspring)

19: eval := eval + |offspring|
20: P0 := P0 ∪ offspring

21: end while

22: P := P ∪ P0

23: doSurvivalSelection(P , Psize )

24: end while

25: return getNonDominatedSolutions(P )

26: end evolution

• Pareto-based method: The MOEA uses a Pareto dominance relation as the primary selec-
tion criterion to push solutions as close to the Pareto front as possible. Meanwhile, it em-
ploys some density estimation techniques (e.g., crowding distance [20] and clustering anal-
ysis [54]) to maintain population diversity. The representative algorithms are NSGA-II [20],
SPEA2 [54], and PAES [34], and others.

• Indicator-based method: Here, sophisticated performance indicators are designed to measure
the overall quality of a solution set. The representative algorithm is IBEA [53], which trans-
fers the multi-objective optimization problem into a new single-objective one that aims to
find the optimal set of solutions with respect to a given indicator.

3.2 Knee Solutions

The MOEA generates a set of nondominated solutions that approximate the Pareto front. However,
not every nondominated solutions can lead to a balanced tradeoff for SAS runtime optimization.
Indeed, the most common purpose of MOEA is to search and visualize a set of nondominated
solutions that are as close to the true Pareto front as possible. Then, a human decision-maker
can pick whichever solution that he or she prefers. However, there is no such human available in
the SAS optimization problem. Therefore, a method is required to pick a sole solution from the
resulting set of nondominated solutions to execute adaptation.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 2, Article 5. Pub. date: June 2018.
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Fig. 2. The general workflow of MOEA. Fig. 3. Pareto optimal

and knee solutions.

A simple Pareto optimal front is shown in Figure 3, where the two objectives should be mini-
mized. Clearly, solutions near the edges strongly favor one objective over the other, but there is a
visible bulge around the middle, which is the knee region. Those solutions in the knee region (or
simply knee solutions) are characterized by the fact that a small improvement in either objective
will cause a large deterioration in the other. In the case where human intervention is limited while
the two objectives are equally important or when it is difficult to correctly weight them (which is
common for SAS), knee solutions are more balanced than the others, and they are almost the most
preferable ones. This is because the knee solutions achieve a good sense of compromise, while mov-
ing the solution in any direction from the knee region would create a bias toward an objective and
lead to imbalanced adaptation results. Finding the knee solutions is challenging because real-world
runtime SAS problems may not pose the perfect convex objective surface as shown in Figure 3.

3.3 Feature Model with Numeric Features

The feature model [16], expressed as the tree structure, is a widely used notation for software engi-
neers to represent the functional variability of a software [6]. In feature-oriented domain analysis,
the feature model is particularly important for expressing the possible variations under which a
software system can operate in order to improve functional and nonfunctionary quality [33]. In
this perspective, features define the prominent or distinctive aspects between different variations
of a software system [33], which range from high-level architectural elements (an entire compo-
nent) to low-level configurations (a specific parameter).

In the context of SAS, the inherited concept of a feature model allows it to define the extent to
which the SAS is able to adapt at runtime (i.e., a range of variations that the SAS can achieve). Given
this, some successful attempts have been made to apply the feature model to design SAS [23][41].
Therefore, to correctly exploit the feature model for SAS, the software engineer must identify
(i) the variations of different features that are supported by the SAS and (ii) the dependency con-
straints that determine the validity of a given variation (adaptation solution). However, while the
feature model is useful to express the variability of SAS (i.e., the search space of the adaptation
decision-making problem), it does not correlate the effects of those variations to the concerned
quality attributes. Therefore, in this work, we exploit an additional system model to evaluate how
a variation can affect the quality of SAS, as we will discuss in Section 7.2.

Figure 4 shows an example of a feature model for one of the SASs we study in this article.5 As
we can see, there are four types of in-branch relation between a feature and its parent:

• Optional refers to the feature that might be deselected (e.g., Cache).
• Mandatory denotes core features that cannot be deselected (e.g., Thread Pool).

5In this article, we use a graphical figure of the feature model for more intuitive presentation. In practice, the feature model

might be expressed in XML or conjunctive normal form, which can be parsed and analyzed directly by FEMOSAA.
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Fig. 4. The feature model for the example SAS shown in Figure 1. (The numeric features are shown in bold

and italic letters. A zipped cache mode means the cached data are compressed, thereby costing a smaller

amount of memory; otherwise, it is unzipped. CPU % denotes to what extent the SAS can consume CPU

capacity, where each 100% means a CPU core, e.g., 200% means two cores; 150% means one full core and 50%

of another).

• XOR represents the feature in a group such that exactly one group member can be selected
(e.g., Cache Mode).

• OR means a group in which at least one group member needs to be selected (e.g., Cache

Size).

When a feature is selected, it means that it is “turned on”; similarly, deselection of a feature
means that it is “turned off.” Selecting a feature implies that its parent should be selected, too. In
this work, we call a feature deselectable if it has an Optional , OR, orXOR relation to its parent or
conditionally deselectable if it has a Mandatory relation to its parent but there exist deselectable
ancestors. On the other hand, common cross-branch relations include:

• Fi require Fj means the former can only be selected if the latter is selected.
• Fi exclude Fj denotes two features that are symmetrically mutually exclusive.
• Fi at -least -one-exist Fj is an implied relation between the members of an OR group. It rep-

resents the same notion as that of OR.
• Fi at -least -one-require Fj is an implied relation between a member of an OR group and an-

other external feature, which has require at the root of the said OR group. It means Fi can
only be selected if at least one member of the OR group, to which Fj belongs, is selected.

All these relations constitute the dependency chain(s) in the model. As in Figure 4, the number of
features in the preceding example is 1,151, with a search space of more than a billion.

To better incorporate the feature model with SAS and simplify the design, we distinguish cat-

egorical features and numeric features. We define numeric features as: A feature is numeric if

it has more than one child in its XOR group, and all its children can be quantified by real numbers.

For example, in Figure 4, Memory is clearly a numeric feature. Otherwise, the feature is categorical
(e.g., Cache Mode). Similarly, a dependency is numeric as long as it is linked to numeric features
and it involves quantitative comparisons. As in Figure 4, we propose the following cross-branch
numeric dependencies for engineers to specify in their design:

• Range-to-range. This is associated with two numeric features, and it can be expressed as, for
example, Fi range-to-range Fj (Fi < Fj ), meaning that Fi ’s selected child in its XOR needs to
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be smaller than that of Fj . It can be easily translated into a categorical dependency: Fi < Fj

simply means that Fi ’s XOR child C would have an exclude dependency on each Fj XOR
child that is larger than or equal to the value of C . Other quantitative comparisons (e.g., >)
can be also applied.

• To-range. This constrains a categorical feature Fi (dependent) with respect to a numeric
feature Fj (main); for example, Fi to-range Fj (Fj < 10), meaning that Fi can only be selected
if Fj ’s selected child in its XOR falls in the given range, as expressed by the mathematical
formula. This can be translated to categorical dependency such that Fi would have exclude
dependency on each of Fj ’s XOR children that is not in the range.

• Range-to. This is the inverse of to-range dependency where a numeric feature (dependent) is
constrained by a categorical feature (main).

Clearly, numeric dependencies can only be cross-branched, while categorical ones exist on both
in-branch and cross-branch. When a dependency is associated with one categorical feature and
one numeric feature (i.e., to-range and range-to), we call it a hybrid dependency, which is a special
case of numeric dependency. Note that numeric features might have all types of dependencies, but
categorical features cannot be linked to the range-to-range numeric dependency.

3.3.1 The Benefits of Explicitly Considering Numeric Features. As mentioned, given that the
feature model is discrete and statically defined at design time, it is possible to convert those numeric
features and their dependencies into categorical ones without affecting the original variability of
SAS. However, explicitly considering numeric features in the feature model will introduce the
following benefits in terms of both design time analysis and runtime optimization in FEMOSAA:

• Explicitly considering the numeric features provides simpler and more intuitive design of
the feature model as numeric features can be interpreted directly by the software engineers.

• Converting the numeric features into categorical ones will unnecessarily complicate the
feature model, which can implicitly induce software engineers to design the feature model
in a way that the children of numeric features would need to be encoded as genes. As
mentioned, this will greatly increase the number of solution variables in the optimization,
leading to the curse of dimensionality. Therefore, explicitly considering numeric features
can provide us with the foundation to design novel and simpler encoding of chromosome
representation in MOEA, as we will show in Section 5.1.

• Explicitly considering the numeric features results in fewer dependencies, in contrast to the
case where the numeric features are converted into categorical ones. As we will show in
Section 5.2, this simplifies our dependency extraction process for injecting dependencies
into the mutation and crossover operators of MOEA. In addition, fewer dependencies im-
plies simpler dependency structure; that is, a dependent feature has fewer main features,
which in turn reduces the running overhead of our dependency-aware operators at runtime.

4 FEMOSAA OVERVIEW

As shown in Figure 5, a SAS generally consists of two parts: an adaptable software that is managed
at runtime and an engine that controls the adaptation. The adaptable software could be a software
stack that contains different interconnected software or middleware.

Our FEMOSAA framework is deployed as the adaptation engine, and it operates on both the
design time and runtime of the SAS. At design time, FEMOSAA analyzes and transposes the fea-
ture model of SAS, which is provided by the software engineers, to the context of MOEA. The
transposition first identifies elitist features (see Section 5.1), which are passed to the process
for extracting the dependency to accommodate selected features (step 1), as we will explain in
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Fig. 5. The architecture of FEMOSAA.

Section 5.2. With the help of FEMOSAA, those elitist features and dependencies are stored and will
be used directly by the MOEA at runtime (steps 2 and 3). Given that only the elitist features would
be encoded into the chromosome representation of MOEA, the identified elitist features can be
used as the objective functions’ inputs and can serve as the indication of which sensors/actuators
to use or to implement (step 2).

FEMOSAA has two main components at runtime: (i) a Modeler which contains the objectives
(fitness functions) that build the correlation between features and quality attributes. Those ob-
jectives functions can be created using analytical models [44], simulation [26], or machine learn-
ing [10] [11] [14] in which they might be updated on-the-fly using data from sensors. And (ii) an
Optimizer that realizes the MOEA (extended by our knee selection) and is guided by the transposed
information from the feature model to find a single optimized solution for adaptation via actuators
(see Section 6).

Given the uncertain and dynamic environment, these two components constitute the feedback
loop that continually adapts the SAS toward better quality (e.g., improved response time). The
adaptation cycle starts with monitoring the status of the SAS and the environment (step 1), which
is then used to update the objective functions and model (step 2). Next, the feature-guided MOEA
optimizes and searches for a set of nondominated solutions based on the updated objective func-
tions (step 3), after which the knee selection selects the most balanced one for adaptation (step 4).
The optimization can be triggered either by violations of quality requirements or, as in this work,
by a fixed frequency (e.g., at a particular point in time). Note that we consider the execution order
of a solution as a separate issue from the optimization. Thus, given a valid and optimized solution,
we assume that the valid order of execution, with respect to the dependency, is enforced in the
actuators through analyzing the dependencies in the feature model.

5 TRANSPOSING A FEATURE MODEL OF SELF-ADAPTIVE SOFTWARE

TO MOEA AT DESIGN TIME

In this section, we present an automatic and systematic approach as part of FEMOSAA that trans-
poses a feature model into MOEA’s context. At design time, the approach finds the elitist features
from the model (by which we refer to those that cannot be removed in the optimization without
damaging the original variability of SAS while minimizing the length of encoding to form chromo-
some representation); it then extracts the feature dependency with respect to these elitist features.
Such information will be used at runtime to guide the evolutionary optimization.

To guarantee correctness of the transposition, it is imperative to ensure that the feature model
has been fully tested and verified by existing tools [6]. This ensures that faults (e.g., dead features,
false options, and contradictory relations) have been already dealt with before the transposition.
The verification of a feature model is beyond the scope of this work, however. Unlike our work,
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Fig. 6. The growing process in SAS’s feature model.

the dependency related to numeric features is not treated explicitly in existing testing tools. How-
ever, as discussed in Section 3.3, a numeric (and hybrid) dependency can be easily transferred into a
categorical dependency, which can be then tested directly. We also assume that all possible children
(including 0) of numeric features are discretized and predefined. It is worth noting that discretizing
the numeric features is the first step to removing unnecessary complexity in our SAS optimiza-
tion problem because many real-world features are often discrete and/or can be customized based
on software engineers’ knowledge (e.g., it may be known that changing memory allocation by
less than 1MB does not affect the behavior and quality of a SAS; thus, instead of considering the
memory feature as a continuous feature, the possible child features of the memory feature can be
discretized at every 1MB).

While FEMOSAA is generic and can be applied to any case as long as the feature model and
MOEAs are involved, in the following, we specify the transposition approach in FEMOSAA for
general cases but refer to a concrete example for more intuitive illustration where appropriate.
Specifically, in Section 5.1, we introduce an approach to identify the elitist chromosome repre-
sentation of a SAS’s feature model. Subsequently, in Section 5.2, we illustrate how the related
dependency chains and the value trees can be extracted (Section 5.2.1) and merged (Section 5.2.2),
according to the genes identified in Section 5.1.

5.1 Finding Elitist Features for Chromosome Representation

5.1.1 Growing the Feature Model Tree. Deselectable features in a feature model often do not
explicitly indicate the “on” and “off” features as children, but they are important information for us
to parse and understand the full variability of the model. Hence, to correctly transpose the feature
model, we first grow the feature model tree to disclose the hidden information inferred from the
deselectable features. As illustrated in Figure 6, this is achieved by adding children representing
On and/or Off to any given feature F in the feature model using the following steps in order:

• G-1. If F is a leaf feature that has an OR relation to its parent, we then add two children
representing On and Off in a XOR group to F . This explicitly states that, in such a case, the
leaf F can have two mutually exclusive options, which is important to our encoding.

• G-2. If F is a leaf feature that has neither an OR nor XOR relation to its parent, we then
add one child representing On in aXOR group to F . This ensures that every feature has the
option of “on” (and translates them into branches to be parsed by G-3), except those with
an OR orXOR relation to their parent, as the former has been considered in G-1 while the
latter’s “on” option can be expressed by the parent.

• G-3. If F is a branch feature that has an Optional , OR, orXOR relation to its parent, we then
add one child representing Off in a XOR group to F and to the descendants of F that are
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Fig. 7. The example SAS’s feature model after the process of finding elitist features.

branch features (if they do not currently have a child representing Off). This ensures that
both the deselectable and conditionally deselectable features expose the option of “off.”

After growing the tree, the added features and the steps that create them are shown in Figure 7.

5.1.2 Identifying Genes from the Feature Model Tree. We have now obtained a model with no
hidden information; the next phase is to find the elitist features for genotype encoding in MOEA,
thus creating an elitist chromosome representation. Intuitively, following the grown tree, our
approach encodes a feature F as a gene in the chromosome if and only if it is the parent of a XOR
group, which contains more than one group member. Hence, F ’s children within the XOR group
constitute its set of alternative optional values to be chosen in MOEA, subject to the constraints
in dependencies. Drawing on this, the representation can be simplified in three aspects without
affecting the original variability:

(1) Eliminating features whose variability can be expressed by their parent (i.e., those with
XOR relations to the parent); for example, the variability of CPU ’s children can be rep-
resented by itself.

(2) Eliminating features whose variability can be expressed by their descendants; for example,
the variability of the Cache feature can be represented by the combination of Cache Mode

and Cache Size features; Cache Mode can be represented by Heap Size and Disk Size.
(3) Eliminating those features that have no implication on variability (e.g., the Thread Pool is

always mandatory). This, however, does not mean that we simply remove all mandatory
features (as in [31]); instead, our approach retains those mandatory features with a XOR
group of children as they would often help us to considerably reduce the number of genes,
as explained in (1) above.

From now on, those features, which are chosen to be encoded in the chromosome, are called genes.
It is easy to see that numeric features are always chosen as genes. As shown in Figures 7 and 8,
there are 10 features being considered as genes in the example feature model of SAS.6 To make
the model informative, we prune those features that are the only members of their corresponding
XOR group. For all genes, if they select Off or 0 as their value, then it means they are deselected;
any other values mean that they are selected. Note that when a gene selects 0, it implies that the
numeric value is 0 and that the feature is “turned off,” which will have no further effects on the SAS.

6The other features, which are not genes, can be fixed to On in the SAS.
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Fig. 8. The resulted chromosome representation of the SAS studied in form of genes (G1, G2, . . . ,G10).

In this way, the elitist chromosome representation is polyadic, elegant, and free of unnecessary
information (e.g., some unneeded relations to the parent of a feature), which is otherwise unavoid-
able in the classic binary representation. This, as we will show in Section 7.4.1, can bring nontrivial
benefits for optimization quality and runtime overhead.

5.2 Extracting Feature Dependency for Guiding Evolution

5.2.1 Analyzing and Refactoring the Dependency. While the identified elitist chromosome repre-
sentation can naturally prevent violation of theXOR relation, it does not contain any information
about other dependency constraints (require, OR, etc.). This issue is nontrivial as leaving it without
treatment could result in a high possibility of exploring invalid solutions that negatively affect the
quality of adaptation. To this end, our next step in the transposition is to extract and analyze the
dependency chain(s) that accommodate the genes so that they can be injected into the mutation
and crossover operators of MOEA to prevent the search from exploring an invalid solution. Here,
a single dependency between two genes represents the constraint on the dependent gene with re-
spect to the conditions of the main gene. The extracted dependencies and their imposed constraints
are shown in the Table 1, which will be discussed in Section 5.2.2. Specifically, we distinguish two
categories of dependency: in-branch and cross-branch.

Extracting in-branch dependency chain(s) aims to handle the constraints introduced by Optional ,
Mandatory , OR, and XOR relations with respect to the genes. To achieve this, the features’ in-
branch dependencies are extracted in both vertical and horizontal directions while considering all
the four relations.

Vertical analysis for extracting in-branch dependency helps to ensure that the in-branch relation
between feature and parent is captured. As shown in Figure 9, for any feature F in the original
feature model, we conduct the following vertical analysis:

• VA-1. If F is a gene and it is deselectable (Optional , OR , or XOR to its parent) or condi-
tionally deselectable (Mandatory to its parent but has deselectable ancestors), then, for each
path from F , the closest descendant gene Dд of F would have require dependency on F as
Dд cannot be selected without the presence of F . Additionally, if Dд has Mandatory relation
to its parent and the path between F and Dд does not contain deselectable features, then F
would also have require on Dд as both features need to be selected at the same time.

• VA-2. In addition to VA-1, if F hasXOR relation to its parent and it is a gene, then F would
have a require on its parent, denoted as Pд = α (F ’s parent Pд would always be a gene, as
ensured by our gene identification process), where α is the reference of F in Pд ; similarly,
Pд = α would also have require on F as both features need to be selected at the same time. On
the other hand, if F has XOR relation to its parent but it is not a gene, then, for each path
from F , the closest descendant gene Dд of F would have its own require on Pд = α . Under
the same case, if Dд has Mandatory relation to its parent and the path between F and Dд

does not contain deselectable features, then Pд = α would also need to have require on Dд .
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Fig. 9. The vertical analysis for extracting in-branch dependencies in SAS’s feature model with respect to

the elitist genes.

Fig. 10. The horizontal refactoring for extracting in-branch dependencies in SAS’s feature model with respect

to the elitist genes.

• VA-3. In addition to VA-1, if F has OR relation to its parent, we find the closest deselectable
ancestor of F , denoted as A, if such an A does exist. Now, if at least one ancestor of F is a
gene, or F ’s parent is neither deselectable nor conditionally deselectable, or there exists at
least one closest descendant gene, Dд , of a path fromA, such that Dд has Mandatory relation
to its parent and there is no deselectable features in the path between Dд and A, then this
means that the OR group for which F ’s parent is the root needs to select at least one group
member. Thus, unless there already exist an at -least -one-exist dependency, F (if F is a gene)
or its closest descendant genes, each of which follows different paths (if F is not a gene),
would have at -least -one-exist on (i) the other closest descendant genes of F if it is not gene;
(ii) those sibling genes of F in the same OR group; and (iii) the closest descendant genes,
each of which follows different paths from F ’s siblings that are not genes but are in the
same OR group as F .

The horizontal refactoring, on the other hand, is to ensure that elimination of some features
does not mislead the dependencies implied by the original variability. Suppose that F is a feature
in the original feature model and that A is the closest deselectable ancestor of F , if such an A does
exist. Now, assuming that A is not a gene and that there is no gene on the path from A to F , we
then conduct the following horizontal refactoring, as shown in Figure 10:

• HR-1. If F has Optional relation to its parent, then we do nothing, even if it is a gene. This
is because the selection of F does not affect A’s closest descendant genes, each of which
follows the other paths from A.
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Fig. 11. The refactoring for extracting cross-branch dependencies in SAS’s feature model with respect to the

elitist genes.

• HR-2. If F is a gene that has Mandatory relation to its parent and it is conditionally dese-
lectable, then, for each path fromA, the closest descendant gene Dд ofA (excluding F itself)
would have require on F . This can ensure that, when Dд is selected, F would be also selected.

• HR-3. If F has OR relation to its parent and it does not have at -least -one-exist dependency
for the group, then for each path fromA (except the paths that pass through F ’s OR group),
the closest descendant gene Dд of A would have at -least -one-require on F , if F is a gene; or
on those closest descendant genes of F , each of which follows different paths from F , if F is
not a gene. Hence, when Dд is selected, at least one member of the OR group of F (or their
closest descendant genes) would be also selected.

• HR-4. If F has XOR relation to its parent, then we do nothing, even if it is a gene. This
is because our gene identification process ensures that the parent of F would always be a
gene, which also express the selection of F .

After considering the in-branch dependency, we now focus on refactoring the cross-branch
dependency. If both sides of a cross-branch dependency are genes, then it can be extracted directly.
However, if either side (or both) of the feature is not a gene, then a treatment is needed. Suppose
that a feature F is associated with one or more cross-branch dependencies and that F is not a gene;
we then do the following refactoring, as shown in Figure 11:

• CR-1. If F is a branch, then its cross-branch dependencies are migrated to those closest
descendant genes of F , each of which follows different paths from F . Further, if F is the
root of an OR group and it is the main feature in any require dependency, then those requires
would be changed to at -least -one-require, which are migrated to the member genes of F ’s
OR group, and to the closest descendant genes, each of which follows different paths from
those members that are not genes.

• CR-2. If F is a leaf, then its cross-branch dependencies are migrated to the parent of F ,
denoted as Pд , where the dependency would remain the same but the main gene becomes
Pд = α , where α is the reference of F in Pд . Here, F would always have XOR relation to Pд

because, if F was to have Mandatory relation to Pд , then there would be a contradiction as
the main feature of a cross-branch dependency is mandatory. In addition, when F is a leaf,
our growing process has ensured that F has neither OR nor Optional relation to Pд , which
would always be a gene.

Finally, putting everything together, the extraction that occurs on the model and the extracted
dependency chain(s), with respect to the elitist chromosome, are shown in Figures 12 and 13,

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 2, Article 5. Pub. date: June 2018.



FEMOSAA 5:17

Fig. 12. The example SAS’s feature model and the extracted dependency after the processes of VA, HR, and

CR.

Fig. 13. The extracted dependency chains of genes for the example feature model.

respectively. The constraint of a dependent gene imposed by a dependency, according to Table 1,
can be expressed using a value tree, where each leaf is a set of optional values constrained by the
corresponding condition in a branch (i.e., the selected values of the main gene). For example, in
Figure 14, the value tree for the dependency between the Cache Mode (G2) gene and Transmission

Compression (G1) gene constrains that the former can only be Off or Unzipped if the latter is On;
or any optional values, otherwise. Note that if a gene is not a dependent of any dependency, then
it would have a value tree without any branches.

5.2.2 Merging the Dependency. After the extraction, we can see that a dependent gene might
have multiple dependencies on the same or different main genes. To construct a combined value
tree for a dependent gene, the dependencies, by which it is constrained need to be merged one
by one, using set operators (union or intersection) to combine the leaves from their value trees.
Table 1 shows which set operators are needed for each dependency type when merging with the
others; this is derived from the conjuncture normal form of the related genes.

Specifically, for every dependent gene, the merging process has the following steps:

—Step 1. If it has two or more dependencies with identical main genes, then the leaves, which
are constrained by the same condition in the branches, would be combined directly using
the set operations shown in Table 1.
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Table 1. The Extracted Dependency Constraints Between Two Genes and the Related

Set Operations for Merging Dependency

Dependency (denoted as D ) Constraints on Gi Merge with Other Dependency D ′

Gi require G j if G j = Of f or 0, then
As = {Of f } or {0}. Otherwise, As = A.

As ∩ A′s .

Gi = α require G j if G j = Of f or 0, then As = A − {α }.
Otherwise, As = A.

As ∩ A′s .

Gi require G j = α if G j � α , then As = {Of f } or {0}.
Otherwise, As = A.

As ∩ A′s .

Gi = α1 require G j = α2 if G j � α2, then As = A − {α1 }.
Otherwise, As = A.

As ∩ A′s .

Gi exclude G j if G j � Of f or 0, then
As = {Of f } or {0}. Otherwise, As = A.

As ∩ A′s .

Gi = α exclude G j if G j � Of f or 0, then As = A − {α }.
Otherwise, As = A.

As ∩ A′s .

Gi = α1 exclude G j = α2 if G j = α2, then As = A − {α1 }.
Otherwise, As = A.

As ∩ A′s .

Gi at -least -one-require G j if G j = Of f or 0, then
As = {Of f } or {0}. Otherwise, As = A.

if D′ is (or merged from only) at -least -one-require that
related to the same root of OR group as D ’s, then
As ∪ A′s . Otherwise, As ∩ A′s .

Gi = α at -least -one-require
G j

if G j = Of f or 0, then As = A − {α }.
Otherwise, As = A.

if D′ is (or merged from only) at -least -one-require that
related to the same root of OR group as that of D , then
As ∪ A′s . Otherwise, As ∩ A′s .

Gi at -least -one-exist G j if G j = Of f or 0, then
As = A − {Of f } or A − {0}. Otherwise,
As = A.

if D′ is (or merged from only) at -least -one-exist that
related to the same root of OR group as that of D , then
As ∪ A′s . Otherwise, As ∩ A′s .

Gi range-to-range G j (e.g.,
Gi < G j )

if G j = α , then As = {α1, ..., αn }
where ∀αn ∈ A, and ∀αn meets the
given condition with respect to α , e.g.,
∀αn < α , etc.

As ∩ A′s .

Gi (R) range-to G j if G j = Of f or 0, then As = A − R .
Otherwise, As = A.

As ∩ A′s .

Gi (R) range-to G j = α if G j � α , then As = A − R . Otherwise,
As = A.

As ∩ A′s .

Gi to-range G j (R) if G j = α ; α � R , then
As = {Of f } or {0}. Otherwise, As = A.

As ∩ A′s .

Gi = α1 to-range G j (R) if G j = α2; α2 � R , then As = A − {α1 }.
Otherwise, As = A.

As ∩ A′s .

Additionally, when the set operation leads to an empty set, we fix As = {Of f } or {0}.

Gi and G j are dependent and main gene, respectively; A is the entire set of optional values for Gi ; As denotes the set of values

for Gi , given a selected value of G j ; α , α1, α2, and αn denote some selected values for Gi or G j ; R is a given constrained set

of range, e.g., G j < 10, etc.; D′ is another single or merged dependency for which Gi is the dependent gene; A′s denotes the

set of values for Gi , given the selected value(s) of the main gene(s) in D′.

—Step 2. If it has dependencies on different main genes, all branch nodes of one single or al-
ready combined value tree are replicated and grafted (as a whole) to each right-most branch
node of another single or already combined value tree, forming new levels for the newly
combined value tree representing the combinatorial conditions. Then, for the two value
trees that were grafted, their leaves, whose original ancestors are now on the same path
from root to a right-most node in the newly grafted tree, are combined using the set oper-
ations shown in Table 1 to create the new leaf-set.

The process stops when all related dependencies are merged and their value trees are combined,
resulting in a finally combined value tree. As an example, Figure 14 illustrates the merging process
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Fig. 14. The example of dependency merging and the combined value tree for the gene G2 (Cache Mode),

which is the dependent gene of three different main genes: G1 (Transmission Compression), G3 (Heap Size),

and G4 (Disk Size). As and A′s denote two sets of values (leaf-set) to be combined, as specified in Table 1.

and the finally combined value tree for the Cache Mode (G2) gene, which originally contains
dependencies on three different main genes. The same merging procedure is repeated for every
dependent gene.

To ensure the correctness of merging, in both steps, the dependencies that require union are
always merged ahead of the others, leading to a set of partially merged dependencies. Since each
of them are merged from the identical dependency type, as shown in Table 1, they can then be
merged with each other (and the remaining single dependencies) using the same set operators as
if they were single dependencies.

It is worth noting that, despite the fact that the given feature model is contradiction-free, it might
still be possible for the combined leaves to have an empty set under some conditions. For example,
recall the Disk Size gene from Figure 13: When its require dependency on Cache Mode merges with
its at -least -one-exist on Heap Size, then combining the leaves for the condition where Cache Mode

selects Off and Heap Size selects 0 MB would lead to an empty set. This is due to the fact that some
dependencies have different priorities: In this example, at -least -one-exist would constrain Disk Size

only if it is allowed to be selected as indicated by the require on Cache Mode. In those cases, we fix
{Off} (or {0}) as the new leaf-set for the dependent gene’s combined value tree, representing the
fact that it needs to be “turned off” and cannot affect the SAS under the corresponding conditions.

In Section 6, we will describe how the elitist chromosome, the extracted dependency chain(s),
and the (combined) value trees of genes are seamlessly injected into the MOEA for optimizing SAS
at runtime, regardless of the order of changes on genes.

6 FEATURE-GUIDED AND KNEE-DRIVEN MOEA AT RUNTIME

We have now completed all the design time transposition and analysis in FEMOSAA. Next, to
optimize the SAS at runtime using FEMOSAA, we extend MOEA with the domain information
gathered from the feature model, creating a feature-guided MOEA with knee selection, as shown
in Figure 15 and Algorithm 2. In particular, the elitist features from Section 5 form the basic
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Fig. 15. The workflow of the extended feature-guided MOEA with knee selection.

ALGORITHM 2: The Extended Feature-Guided MOEA with Knee Selection

Input: The extracted dependency chain(s) C and the (combined) value trees of the genes VT , in addition to

the inputs in Algorithm 1

Output: A single knee solution

1: start evolution

2: P = ∅
3: eval = 0

4: for i = 1 to Psize do
5: S = getRandomSolution()

6: doDependencyAwareMutation(S ,1,C ,VT ) �mutation rate of 1 means mutating every gene.

7: evaluateFitness(S)

8: eval = eval + 1

9: P = P + S
10: end for

11: while eval < evalmax do
12: P0 = ∅
13: while |P0 | ≤ Psize do

14: parents = doMatingSelection(P )

15: offspring = doDependencyAwareCrossover(parents ,rc ,C ,VT )

16: for each solution S in offspring do

17: doDependencyAwareMutation(S ,rm ,C ,VT )

18: end for

19: evaluateFitness(offspring)

20: eval := eval + |offspring|
21: P0 = P0 ∪ offspring

22: end while

23: P = P ∪ P0

24: doSurvivalSelection(P , Psize )

25: end while

26: P = getNonDominatedSolutions(P )

27: return getKneeSolution(P )

28: end evolution

chromosome representation of the solution in MOEA. To avoid exploring invalid solutions, we ex-
plicitly inject the extracted dependencies (e.g., Figure 13) and the (combined) value trees of genes
(e.g., Figure 14) into the basic mutation and crossover phases of MOEA to create dependency-
aware operators (Lines 6, 15, and 17). Finally, we apply the knee selection proposed in Section 6.4
to identify a single adaptation solution from the set of nondominated solutions returned by MOEA
(Line 27).
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6.1 Objective Functions

The elitist chromosome representation from Section 5 also helps to define the inputs of the ob-
jective (fitness) functions used in the optimization. It is worth noting that FEMOSAA works with
a range of quantifiable quality objectives and is agnostic to the actual objective functions as the
framework itself does not rely on any assumptions about the internal structure of those objectives.
With FEMOSAA, it is also possible to consider more than two objectives but we use two in this
article to provide a more intuitive illustration since the fundamental principle of multi-objective
optimization is the same regardless of the objective number.

The actual objective functions exploited by FEMOSAA can be built using various modeling
approaches from the literature (e.g., machine learning-based [10][14][11], analytical [44], and
simulation-based [26]), as long as they are compatible with the genes identified by FEMOSAA.
In Section 7.2, we elaborate the concrete objective functions, which are built by using different
approaches, for each subject SAS.

6.2 Dependency-Aware Mutation Operator

At runtime, to prevent generating invalid offspring when mutating the solutions, the extracted
dependency chain(s) and the (combined) value trees of the genes are seamlessly injected into the
mutation operation. In this work, we use the boundary mutation operator as the basis, in which
each gene might be mutated subject to a mutation rate. Upon mutation of a gene, one of its op-
tional values is randomly assigned. The reason why the boundary mutation operator was chosen
is because (i) it is one of the most commonly used mutation operators, and (ii) it works under
discrete optimization problems while allowing us to randomly select a value from a predefined
value tree, which particularly fits with our SAS optimization problem. However, since the viola-
tion of dependency is prevented whenever a gene is changed, it is easy to modify FEMOSAA to
work with any other operators that mutate the genes in a way similar to the boundary mutation
operator.

As illustrated in Algorithm 3 and Figure 16, our extended dependency-aware mutation operator
has the following recursive steps:

—Step 1. When a geneG (e.g., Cache Mode) needs to be mutated, as identified by the basic mu-
tation operator or due to its violation, we randomly select a value from its (combined) value
tree with respect to the selected values of G’s main genes (e.g., Transmission Compression,
Heap Size, and Disk Size).

—Step 2. Then, we propagate, according to the dependency chain, to G’s dependent genes
(e.g., Heap Size and Disk Size), and we then validate if those genes in the solution violate
any dependency using their (combined) value trees. If a violation is found, we mutate the
corresponding gene and start from Step 1 (e.g., Heap Size = 5MB in Figure 16), as shown in
Lines 4 to 10 of the mutateWithDependency function.

—Step 3. The process stops when all the genes identified by the basic mutation operator have
been mutated and there is no further violation found.

Using this operator, we guarantee that the mutation process in MOEA will be better guided, such
that only valid adaptation solutions can be explored regardless of the order of mutation. Since the
given feature model has been fully validated and exhibits no design errors, there will be at least one
state such that all genes can satisfy all dependencies, which in turn prevents infinite loops in the
presence of circular dependencies. As we show in Section 7.4.2, the dependency-aware operators
can lead to better quality adaptations.
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Fig. 16. Workflow of dependency-aware mutation operator. (The example genes from left to right represent

Transmission Compression, Cache Mode, Heap Size, and Disk Size.)

ALGORITHM 3: Dependency-Aware Mutation Operator

Input: Given a valid solution S , the extracted dependency chain(s) C and the (combined) value trees of the

genes VT
Output: A mutated valid solution (individual) S

1: start mutation

2: Gset = the genes that requires mutation as identified by the basic crossover operator based on mutation

rate

3: for each G in Gset do
4: mutateWithDependency(G,S)

5: end for

6: return S
7: end mutation

Function: mutateWithDependency(G,S)

1: VTд = the (combined) value tree of G from VT
2: randomly choose a new value for G of S from VTд

3: Cд = the chain that contains G from C
4: for each dependent gene of G (Gd ) in Cд do

5: VTд = the (combined) value tree of Gd from VT

6: validate Gd based on current conditions in VTд

7: if Gd ’s value in S is invalid then

8: mutateWithDependency(Gd ,S)

9: end if

10: end for

6.3 Dependency-Aware Crossover Operator

Similar to the mutation process, it is necessary to eliminate invalid offspring when swapping el-
ements of the solutions. To this end, the extracted dependency chain(s) and the (combined) value
trees can be injected into the given crossover operator7 in the MOEA. In this work, we rely on
the widely used uniform crossover, where two genes, each from a different parent and both at the
same position in the chromosome, might be swapped subject to a crossover rate. Such a uniform
crossover operator was chosen because it mitigates the problem of gene locus; that is, the ability
to explore the search space is less sensitive to the closeness of highly dependent genes (features)
in the encoding, which helps to relax extra design requirements of the SAS. However, since the
violation of dependency is prevented whenever a pair of genes is swapped, it is easy to modify

7In this work, we used the most common type of crossover operators, one that takes two parents and produces two offspring.

However, our dependency can be injected with other types of crossover operators (which are rare) in a similar way.
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FEMOSAA to work with any other operators in which each pair of the swapped genes would be
always at the same position in the encoding.

After the injection, as shown in Algorithm 4 and Figure 17, our dependency-aware crossover
operator uses the following recursive steps:

—Step 1. When a gene G (e.g., Disk Size) needs to be swapped, as identified by the basic
crossover operator or due to violation, we swap it in the offspring if it has not been swapped
already.

—Step 2. We propagate, according to the dependency chain, to G’s dependent genes (Heap

Size and Cache Mode). If a dependent gene in an offspring violates the dependency, we then
attempt to swap the gene by repeating from Step 1 (e.g., Heap Size = 0MB in Figure 17), as
shown in Lines 7 to 13 of the crossoverWithDependency function.

—Step 3. Next, we check if G in an offspring violates dependencies; if a violation exists, we
then attempt to swap all the main genes ofG (e.g., Cache Mode and Heap Size, although this
is not needed in the example shown) by repeating from Step 1 for each of them, as shown
in Lines 14 to 20 of the crossoverWithDependency function.

—Step 4. The process terminates when there is no dependency violation or all genes in the
parents have been swapped.

In this way, we guarantee that only valid adaptation solutions are produced, given any order
of crossover. As we show in Section 7.4.2, dependency-aware operators can lead to better quality
adaptations.

6.4 Knee Selection

As mentioned in Section 3.2, knee points are those solutions that achieve well-balanced tradeoff
on all objectives. This is particularly appealing as FEMOSAA aims for those cases where the rela-
tive importance between conflicting objectives of SAS is unknown and it is too difficult to quantify
them. As we can see in Figure 18, which shows solutions that minimize both response time and en-
ergy consumption, those more balanced knee solutions are likely to occur around the visible bulge,
representing a good sense of compromise. Intuitively, the knee solutions tend to be the furthest
away from all solutions that have the worst result on each single objective (i.e., the extreme solu-
tions). As a result, finding the knee solutions within a nondominated set is equivalent to searching
for the solution(s) that has the largest general distance from extreme solutions in the set.

To achieve this, we developed a knee selection method for selecting a single solution from the
set returned by MOEA. As shown in Figure 18, given the final nondominated set obtained by the
feature-guided MOEA, we at first construct a line � that connects the extreme solutions holding
the worst value at each single objective. Then, we calculate the perpendicular distance from each
nondominated solution x to the �:

d (x, �) =
⎧⎪⎨
⎪
⎩

|ϵ |√
a2+b2

, if ϵ < 0

− |ϵ |√
a2+b2

, otherwise,
(1)

where ϵ = a × f (x) + b × д(x) + c and the parameters a, b, and c can be identified through the
extreme solutions. In particular, ϵ < 0 means that x is on the left side of �; otherwise, x is on the
right side of �. Clearly, solutions on the left side of � are preferable to those on the right when
considering a minimization problem. The solution(s) that has the largest perpendicular distance to
� is the knee solution(s) that we are seeking. When there are multiple knee solutions, we randomly
select one for adaptation. As we show in Section 7.4.3, the knee selection can lead to more balanced
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Fig. 17. Workflow of dependency-aware crossover operator. (The example genes from left to right represent

Transmission Compression, Cache Mode, Heap Size, and Disk Size.)

ALGORITHM 4 : Dependency-Aware Crossover Operator

Input: Given two valid parent solutions S1 and S2, the extracted dependency chain(s)C and the (combined)

value trees of the genes VT
Output: Two new valid solutions (individuals) Sn1 and Sn2

1: start crossover

2: Sn1 = S1

3: Sn2 = S2

4: Gset = the genes that requires crossover as identified by the basic crossover operator based on crossover

rate

5: for each G in Gset do
6: crossoverWithDependency(G,S1,S2,Sn1,Sn2)

7: end for

8: return Sn1 and Sn2

9: end crossover

Function: crossoverWithDependency(G,S1,S2,Sn1,Sn2)

1: if G in Sn1 and Sn2 has already been swapped then
2: return

3: end if

4: swap the values of G in Sn1 and Sn2

5: Cд = the chain that contains G from C
6: for each solution S in {Sn1,Sn2} do
7: for each dependent gene of G (Gd ) in Cд do

8: VTд = the (combined) value tree of Gd from VT

9: validate Gd based on current conditions in VTд

10: if Gd ’s value in S is invalid then

11: crossoverWithDependency(Gd ,S1,S2,Sn1,Sn2)

12: end if

13: end for

14: VTд = the (combined) value tree of G from VT

15: validate G based on current conditions in VTд

16: if G’s value in S is invalid then

17: for each main gene of G (Gm ) in Cд do

18: crossoverWithDependency(Gm ,S1,S2,Sn1,Sn2)

19: end for

20: end if

21: end for
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Fig. 18. Finding knee solution(s) in the nondominated set.

tradeoffs on the quality of adaptations. Note that by replacing � with a surface or a hyperplane,
we can easily extend our knee selection to more than two objectives.

6.5 The Concrete MOEAs

Without loss of generality, FEMOSAA can work easily with a wide range of MOEAs. In this work,
we run FEMOSAA with three distinct MOEAs (i.e., MOEA/D-STM, NSGA-II, and IBEA), each of
which is a widely used representative of its own category, as explained in Section 3.1. In the fol-
lowing, we briefly explain their principles and ideas, although the details are beyond the scope of
this article.

• NSGA-II [20]—As one of the most popular MOEAs, NSGA-II first uses nondominated sort-
ing to divide the population into several nondomination levels. Solutions in the first sev-
eral levels have a higher priority to survive to the next iteration. If the size of the current
nondominated solution set exceeds the predefined threshold, NSGA-II uses the crowding
distance, a density estimation technique, to trim the population.

• IBEA [53]—The basic idea of IBEA is to first define the optimization goal in terms of a bi-
nary performance measure/indicator, which is then used to guide the survival selection pro-
cess. In this way, IBEA transfers a multi-objective optimization problem into a new single-
objective optimization problem, with respect to the chosen indicator, to facilitate the fitness
assignment procedure.

• MOEA/D-STM [36]—MOEA/D is a MOEA framework that combines the mathematical
rigour of the classic multi-objective optimization method and the implicit parallelism of
evolutionary algorithms in a single paradigm. Different from the classic multi-objective op-
timization method [38], which can only obtain a single Pareto-optimal solution at a time
by aggregating all objectives into a single-objective aggregation function, MOEA/D de-
composes the original multi-objective optimization problem into a population of single-
objective optimization subproblems. In particular, each subproblem corresponds to a pre-
defined weight vector generated in a systematic manner [35]. Afterwards, MOEA/D uses
a population-based technique to solve these subproblems in a collaborative manner. As a
recent variant of MOEA/D, MOEA/D-STM achieves a balance between convergence and
diversity by modifying the survival selection mechanism of the original MOEA/D. In a nut-
shell, MOEA/D-STM treats subproblems and solutions as two sets of agents. Each agent has
its preferences over the agents on the other side. In particular, subproblems concern con-
vergence, while solutions concern diversity. The survival selection process is modelled as a
matching process between subproblems and solutions. The stable matching between them
finally turns out to be the selection result. Note that the stable matching achieves an equi-
librium between the preferences of subproblems and solutions; thus, the selection strikes a
balance between convergence and diversity simultaneously.
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7 EXPERIMENTS AND EVALUATION

By using the actual running SAS that consists of a stack of real-world software, we conducted
comprehensive experiments to evaluate the effectiveness of FEMOSAA by comparing it with its
variants and state-of-the-art frameworks under different metrics. The source code of FEMOSAA,
the comparative variants and state-of-the-art frameworks, the subject SAS, and all the experiment
data can be publicly accessed via GitHub.8,9 Specifically, our evaluation aims to answer the follow-
ing research questions:

• RQ1. What are the added values of the elitist chromosome representation in contrast to the
conventional binary representation?

• RQ2. What benefits do the dependency-aware operators provide compared to classical and
widely used operators?

• RQ3. What benefits does the knee selection mechanism provide in contrast to selecting
arbitrary nondominated solutions?

• RQ4. What is the effectiveness of FEMOSAA in contrast to other state-of-the-art search-
based frameworks?

• RQ5. What is the overhead of FEMOSAA, in terms of execution time, compared to other
state-of-the-art frameworks? Which part(s) cause the most overhead? Is the overhead
suitable for SAS runtime?

7.1 Verifiability and Methodology

We conducted experiments on a dedicated server that runs Ubuntu Linux 14.04 on an Intel i5
2.8GHz Quad Core processor, 4GB RAM. To separate the adaptation engine and the adaptable
software, we used Xen v3.0.3 [48] as the hypervisor to create a virtualized environment. We
implemented FEMOSAA as the adaptation engine using Java, JDK 1.6, and it is deployed on the
Dom0 of Xen. To set up all the MOEAs, we use a population size of 100 for 10 generations as
the termination criteria; the mutation and crossover rates are 0.1 and 0.9, respectively. In par-
ticular, for IBEA, we use the ϵ-indicator and an archive size of 500; whereas for MOEA/D-STM,
we apply Tchebycheff aggregation to create subproblems where the number of evenly distributed
weight vectors is 100 (i.e., 100 subproblems) and the size of each subproblem’s neighborhood is
20. Those settings are either common values or have been tailored for runtime optimization in
our cases with respect to quality and overhead. All MOEAs used in the experiments are extended
from the jMetal Framework [21]. To mitigate interference caused by the adaptation engine, we
used one vCPU and 800MB RAM on Dom0.

7.2 The Subject SAS

We deploy two running SAS for our real-time experiments. The two diverse subject SAS aims
to examine the generality and applicability of FEMOSAA under different domains. On the micro
level, they help to demonstrate how FEMOSAA can be applied to different feature models,
dependency structures, environmental factors, dimensions of quality objectives, and degrees of
objective conflicts:

—RUBiS-SAS. This adaptable software is a software stack that contains RUBiS [43], which is
a well-known software benchmark that simulates the eBay model, and a set of real-world
software including Tomcat v6.0.28 [2], MySQL v3.23.58 [40], and Linux kernel v2.6.16.29

8https://github.com/taochen/ssase.
9https://github.com/JerryI00/Software-Adaptive-System.
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Fig. 19. The changing environment of a subject SAS.

running on a configurable guest virtual machine. Ehcache v2.6 [3] is plugged to RUBiS
as the cache management module. All the features that can be adapted at runtime are
represented by the feature model in Figure 4, with a total of 1,151 features and a search
space of around 1.3 × 1016 using the elitist chromosome representation (including both
valid and invalid solutions). We also use two distinct workload patterns, a read-write patten
and a read-only one, to create diverse runtime behaviors in the SAS. To simulate realistic
time-varying environmental conditions within the capacity of our testbed, we vary the
number of clients according to the compressed FIFA98 workload trace [5], as shown in
Figure 19(a). This setup can generate up to 600 parallel requests, which offers sufficient
dynamism and uncertainty. The workload is generated by another machine using the client
emulator provided in RUBiS. In general, a heavier workload implies more pressure on the
SAS, which reduces the number of effective solutions and thus makes the problem harder.
The goal is to continually optimize the following two conflicting quality attributes that
need to be minimized:
(1) Response Time: In the RUBiS-SAS, response time is measured as the elapsed time be-

tween a request’s arrival and its response. To express the quality of RUBiS-SAS by the
end of a time point, we calculated the average response time for all monitored requests
served in the past time interval.

(2) Energy Consumption: The energy consumed by software systems, which accounts
for 2% of the global carbon emissions in 2007 [39], is increasingly becoming an im-
portant quality concern that has clear conflicts with response time. To measure energy
consumption, we leveraged PowerAPI [7], a tool that measures the actual energy (watt)
incurred by the software’s CPU and memory utilization through probing into the sen-
sors of the hardware infrastructure. For each time interval, we computed the average
of 30 measurement results from PowerAPI as the energy consumed by the RUBiS-SAS

for that interval.
These two quality attributes serve as a case with moderate degree of conflict. In other

words, it is easier to find solutions that have better response time and energy consumption
when the workload is lower. However, as the workload increases, the degree of conflict
between them tends to amplify. Formally, the objective functions for RUBiS-SAS’s quality
attributes are defined as:

RT (t + 1) = f (G1 (t + 1),G2 (t + 1), . . . ,Gn (t + 1),δ (t )) (2)

EC (t + 1) = д(G1 (t + 1),G2 (t + 1), . . . ,Gn (t + 1),δ (t )), (3)

wherebyG1 (t + 1),G2 (t + 1), . . . ,Gn (t + 1) denote the genes and their selected values in a
possible adaptation solution, and δ (t ) denotes a set of most recent environmental factors
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Fig. 20. The architecture of SOA-SAS.

(e.g., workload in this article). Given an adaptation solution, RT (t + 1) and EC (t + 1) are
the expected fitness values for response time and energy consumption, respectively.

In RUBiS-SAS, we adopt the machine learning-based model from [10][14][11] to build
the objective functions for RUBiS-SAS since it relies on few assumptions of the application
domain. By using the actual data of quality performance, software status, and environment
monitored from the SAS, this model can be continually updated at runtime to provide
sufficient accuracy [11]. To stabilize the objective functions in this work, we pretrained
these models by monitoring the data from SAS under random workload for 120 intervals,
after which the models are gradually and dynamically updated at runtime. This step is
similar to the testing phase occurring before actual production deployment in the industry.
As we show for the next subject SAS, other modeling approaches (e.g., analytical [44] or
simulation-based [26]) can be easily applied as long as they are compatible with the genes
identified by FEMOSAA.

To emulate the behaviors of a running software system, we run the SAS, empowered
with FEMOSAA, under the entire FIFA98 workload trace, where the sampling interval is
120s for a total of 102 timesteps, leading to around 5 hours per experiment run, including
the emulated end-users’ thinking time. For all experiments, we trigger an optimization run
by the end of each interval.

—SOA-SAS. This is a Service-Oriented Architecture (SOA)-based adaptable software derived
from Wada et al. [49]. At the highest level, it is composed of five abstract services con-
nected in parallel or in sequence, as shown in Figure 20. Each abstract service can select 2
to 5 concrete services, which are redundantly parallel and associated with different quality
values. Each concrete service could have up to 10 concurrent instances with the same qual-
ity of throughput and cost. Those abstract services, concrete services, and their replicas are
all considered as features of SOA-SAS (e.g., a fragment in Figure 20), creating a total of 221
features in the feature model with a search space of around 5.6 × 1018 using the elitist chro-
mosome representation (including both valid and invalid solutions). We also placed various
categorical and numeric dependencies on the feature model. To simulate dynamism and un-
certainty under time-varying environmental conditions, we amended the throughput and
cost of certain concrete services at each timestep by changing their diversity level accord-
ing to Gaussion distribution, as shown in Figure 19(b). Generally, more diverse concrete
services imply more sparse adaptation solutions, which reduces the number of effective
solutions and thus makes the problem harder. Here, we consider the following conflicting
objectives to be maximized and minimized for the entire composition:
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(1) Throughput: In the SOA-SAS, throughput of each concrete service is its maximum
capacity under normal operation, expressed as number of requests per second. The
throughput of the entire composition is calculated via an aggregate analytical model,
as shown in Equation (4).

(2) Cost: Each concrete service, when utilized, comes with a monetary cost. The cost of
the entire composition is again calculated via an aggregate analytical model, as shown
in Equation (5).

As suggested in Wada et al. [49], the basic throughput and cost for each concrete service
in SOA-SAS were specified following two different Gaussian distributions such that a con-
crete service with higher throughput would have higher cost, too. In SOA-SAS, we leverage
an analytical model to define the objective functions:

T (t + 1) = min
⎧⎪⎨
⎪
⎩
a ∈ A :

a∑
i=1

Gi (t + 1) ×Ti (t )
⎫⎪⎬
⎪
⎭

(4)

C (t + 1) =
n∑

i=1

Gi (t + 1) ×Ci (t ), (5)

whereGi (t + 1) is the ith gene (a concrete service) and its selected value (the actual number
of instances for that concrete service) in a possible adaptation solution for the total of n
genes.Ti (t ) andCi (t ) are the related throughout and cost value, respectively. a refers to the
genes associated with a given abstract service, denoted by A. Since the analytical model is
customizable, we forced the objective functions to produce a worst possible fitness value
for any invalid solutions, creating a stronger pressure for them to be eliminated in the
classic, non-dependency aware approaches.

Similar to RUBiS-SAS, there is a total of 102 timesteps, and we trigger an optimization
run by the end of each interval.

As discussed, FEMOSAA finds elitist features and extracts their dependencies at design time,
after which the outcomes are passed to the MOEA and knee selection for runtime optimization.

7.3 The Metrics

We consider the following metrics to evaluate various aspects of FEMOSAA:

—Individual Quality Attribute: In addition to the detailed plots of the results, we also report
on the Geometric Mean (GM) for all the observed objective values over 102 intervals, as GM
tends to be more resilient to the outliers than the arithmetic mean even though it still can be
influenced by those outliers. This is important because outliers on the achieved quality are
common in real-world scenarios; they cannot be eliminated, but we need to prevent them
from strongly dominating the overall result.

—Aggregate Quality of SAS: To compare the overall quality for both objectives and provide
an overall assessment, we apply a modified Hypervolume (HV) [55][37] for two objectives
and Euclidean Distance (ED) [50] on GMs to assess the balance in tradeoffs and the extent
to which both objectives are optimized, respectively. The GMs are normalized before com-
puting those metrics so that they range from 0 to 1. Hence, the modified HV is computed
as:

HV =
n∏

i=1

(
1 −

GMi −GMi,b

GMi,w −GMi,b

)
(6)
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and ED can be calculated by:

ED =
1

n
×

√√
n∑

i=1

(
GMi −GMi,b

GMi,w −GMi,b
− 0

)2

, (7)

where n is the number of objectives and GMi is the GM for the ith objective; GMi,b and
GMi,w are the best and worst GMs that we observed for the ith objective, respectively.
Notably, we converted the maximizing objective (e.g., throughput) into a minimizing one
by inverting the results.

—Percentage of Valid Solutions Found: For all the intervals, we also compare the average
percentage of valid adaptation solutions found in the final population.

—Running Overhead: We report on the mean running overhead, in terms of the execution
time, over all the intervals in the experiment runs.

To confirm the statistical significance of the comparisons on the quality attributes, we performed
a Wilcoxon Signed-Rank test (two-tailed) for all comparisons between FEMOSAA (or FEMOSAA-N)
and the others as our data do not follow Gaussian distributions. We use 95% as the confidence
interval (α = 0.05), which means that if the test produces a p smaller than 0.05, we can reject the
null hypothesisH0, which states that the given two approaches cannot be statistically distinguished
when optimizing a quality attribute of the SAS. The effect size for each test is also reported, and
we follow the categories in Kampenes et al. [32] to measure the meaningfulness of effect size.

7.4 Effectiveness of FEMOSAA

To ensure generality of the evaluation, we run each of the three MOEAs for optimizing the SAS
under each case, which results in a total of nine scenarios. Further, to evaluate the effectiveness of
FEMOSAA in each scenario, we compare FEMOSAA with a number of its variants:

FEMOSAA-K—This is similar to our FEMOSAA except that it relies on the classic, non-
dependency aware operators. Therefore, if the final population contains invalid solutions, it auto-
matically filters them and works only on the valid ones. When no valid solutions are found in the
final nondominated set, it corrects the invalid solutions via a dependency-aware mutation opera-
tor. FEMOSAA-K aims to examine whether the specifically tailored dependency-aware operators
can achieve benefit over the classic operators that are widely used in SBSE.

FEMOSAA-D—This variant of FEMOSAA is without knee selection. Hence, in the final non-
dominated set, one solution is randomly selected for adaptation. FEMOSAA-D aims to examine
the importance of considering knee in runtime SAS optimization. Notably, the use of a random-
ized baseline is strongly recommended by the existing SBSE community [4].

FEMOSAA-N—This variant considers neither dependency nor knee selection in the evolution-
ary optimization. Hence, it uses the same ad hoc strategies from FEMOSAA-D and FEMOSAA-K.
FEMOSAA-N is designed to evaluate the combinatorial benefit of dependency-aware operators
and the selection.

FEMOSAA-0/1—A baseline variant, built from FEMOSAA-N, this exploits the conventional bi-
nary chromosome representation using all the features from the feature model. Thus, it works
under a search space of 21151 and 2221 for the two-subject SAS, as opposed to the search space
of 1.3 × 1016 and 5.6 × 1018 when using the elitist chromosome representations. FEMOSAA-0/1
considers neither dependency nor knee in the evolutionary optimization. Note that if more than
one members in a XOR group is selected, we then randomly choose one among them to create a
computable solution for the fitness functions. FEMOSAA-0/1 aims to evaluate whether the elitist
chromosome representation outperforms the commonly used binary one.
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Fig. 21. Results with MOEA/D-STM under read-write pattern on RUBiS-SAS. (GM denotes Geometric Mean.

The significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

Fig. 22. Results with NSGA-II under read-write pattern on RUBiS-SAS. (GM denotes Geometric Mean. The

significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

Fig. 23. Results with IBEA under read-write pattern on RUBiS-SAS. (GM denotes Geometric Mean. The

significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

We report the results for all cases from Figures 21 to 29, and we also plot the achieved quality
for all timesteps with respect to the environmental conditions in Figures 30 and 31, as well as the
results of an example optimization run in Figure 32. Note that, in Figures 30 and 31, the area near
the bottom-left line of the cube is the ideal area; the closer the points converge to that line, the
better the overall result.

7.4.1 Evaluating the Elitist Chromosome Representation. To evaluate the effectiveness of our
elitist chromosome representation in contrast to the conventional binary representation, we first
compare FEMOSAA with FEMOSAA-0/1 for all cases on RUBiS-SAS, as shown in Figures 21 to 26.
Clearly, we see that FEMOSAA greatly outperform FEMOSAA-0/1 on both response time and
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Fig. 24. Results with MOEA/D-STM under read-only pattern on RUBiS-SAS. (GM denotes Geometric Mean.

The significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

Fig. 25. Results with NSGA-II under read-only pattern on RUBiS-SAS. (GM denotes Geometric Mean. The

significant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

Fig. 26. Results with IBEA under read-only pattern on RUBiS-SAS. (GM denotes Geometric Mean. The sig-

nificant statistics of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

energy consumption with p < 0.05 and nontrivial effect sizes. Further, FEMOSAA yields better
HV and ED values for all cases. In Figure 30, we also note that, in contrast to FEMOSAA-0/1 under
all cases, the quality achieved by FEMOSAA tends to be much more convergent to the left-bottom
line of the cube even under heavy workload, meaning that it leads to better quality results and a
more balanced tradeoff. For SOA-SAS, we observe similar results on throughput and cost, as shown
in Figures 27 to 29 and Figure 31.

However, the preceding comparison only demonstrates the combinatorial effectiveness of elit-
ist chromosome representation, dependency-aware operators, and knee selection, while it is not
clear whether superiority over the conventional binary representation truly results from the elitist
chromosome representation. To answer this, we then compare FEMOSAA-N with FEMOSAA-0/1
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Fig. 27. Results with MOEA/D-STM on SOA-SAS. (GM denotes Geometric Mean. The significant statistics

of comparisons, i.e., p < 0.05, are highlighted and shown in bold.)

Fig. 28. Results with NSGA-II on SOA-SAS. (GM denotes Geometric Mean. The significant statistics of com-

parisons, i.e., p < 0.05, are highlighted and shown in bold.)

Fig. 29. Results with IBEA on SOA-SAS. (GM denotes Geometric Mean. The significant statistics of compar-

isons, i.e., p < 0.05, are highlighted and shown in bold.)

for all cases on RUBiS-SAS, as shown in Figures 21 to 26. We see that, again, FEMOSAA-N yields
much better results on both quality attributes than FEMOSAA-0/1 under all cases, while such im-
provements are statistically significant on at least one attribute with nontrivial effect sizes. It also
achieves better HV and ED results. Further, although it is less than 15%, FEMOSAA-N does pro-
duce more valid solutions than FEMOSAA-0/1, which cannot identify any valid solution and thus
affect the quality of optimization. Next, we take a more detailed comparison between FEMOSAA-N
and FEMOSAA-0/1 through Figure 30, which reveals that, for all cases, the results of FEMOSAA-
N are closer to the left-bottom line of the cube when the workload is low (e.g., less than around
500 requests/min). For SOA-SAS, we observe even better results: FEMOSAA-N largely outperforms
FEMOSAA-0/1 on all metrics, and the comparisons on quality attributes exhibit p < 0.05 and large
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Fig. 30. Measured quality results with respect to workload for all the timesteps for RUBiS-SAS.
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Fig. 31. Measured quality results with respect to changes for all the timesteps for SOA-SAS.

effect sizes for all cases, as shown in Figures 27 to 29 and Figure 31. Those improvements of elitist
chromosome representation over the conventional binary representation are mainly due to the
fact that it fundamentally reduces the search space without affecting the original variability of
SAS, so that the MOEA search has a larger chance to identify ideal solutions, leading to more
valid solutions and better quality. In addition, as we show in Section 7.6, the elitist chromosome
representation can significantly shorten MOEA running time.

Notably, as shown in Figure 30 for RUBiS-SAS, when the workload increases (i.e., more than 500
requests/min), we see that the achieved quality between FEMOSAA-N and FEMOSAA-0/1 barely
differs. This is because the number of good and effective solutions tends to be limited when the
workload is heavy, causing the benefit of reduced search space introduced by the elitist chromo-
some representation less obvious. Those results indicate that, overall, the elitist chromosome rep-
resentation can better guide the search towards ideal solutions, but such improvement tends to blur
as the workload increases. Similarly, for SOA-SAS in Figure 31, we see that although FEMOSAA-
N creates better results than FEMOSAA-0/1 across different levels of diversity on the concrete
services, the improvement tends to degrade under high diversity.

In summary, the results conclude that:

Answering RQ1—In contrast to the binary encoding, the elitist chromosome representa-
tion helps to produce better optimized quality for SAS with statistically significant results
and nontrivial effect sizes on at least one quality attribute. It can also shorten the running
time of MOEAs (in Section 7.6). However, the improvements might be hardly observed
when the number of effected solutions is limited (e.g., under heavy workload).
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Fig. 32. Objective space of searched, nondominated, and selected valid solution(s) on a timestep of RUBiS-

SAS.

7.4.2 Evaluating the Dependency-Aware Operators. To evaluate the benefit of dependency-
aware operators, we first compare FEMOSAA with FEMOSAA-N for RUBiS-SAS, as shown in
Figures 21 to 26. It is easy to see that, for all cases, FEMOSAA yields better results on both quality
attributes with p < 0.05 and nontrivial effect sizes on at least one attribute. FEMOSAA also out-
performs FEMOSAA-N in terms of HV, ED, and the number of valid solutions. In Figure 30, we see
that the achieved quality of FEMOSAA better converges to the ideal area of the cube on different
degrees of workload. Similar observations can be obtained for SOA-SAS, as illustrated in Figures 27
to 29 and Figure 31.

However, the preceding comparison does not indicate whether the improvement is mainly in-
troduced by the dependency-aware operators or the knee selection method, thus, we then further
compare FEMOSAA with FEMOSAA-K, which omitted the dependency-aware operators. In Fig-
ures 21 to 26 for RUBiS-SAS, we see that FEMOSAA still exhibits superior quality results under
all cases which are statistically significant on at least one attribute with nontrivial effect sizes;
it also comes with better HV and ED values, while the number of valid solutions is 100% versus
less than 20%. In all cases, the achieved results of FEMOSAA, as shown in Figure 30, are more
convergent around the ideal area of the cube, especially when the workload is heavy (i.e., more
than around 500 requests/min). Similar results can be seen for SOA-SAS, as shown in Figures 27
to 29 and Figure 31. As one exception, we did observed that FEMOSAA-K is better than FEMOSAA
on throughput when using MOEA/D-STM, the comparison is not statistically significant though.
Such observation is an indication that the degree of objective conflicts in SOA-SAS is much stronger
than in the case of RUBiS-SAS.

To gain a better understanding of why our dependency-aware operators can improve the quality
of optimization, in Figure 32, we plot the objective space of all searched, nondominated, and se-
lected valid solution(s) in the final population of an example run. We can clearly see that, under all
studied MOEAs, the dependency-aware operators (i.e., FEMOSAA) can help to find solutions with
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better convergence and diversity when compared with the cases where dependencies are ignored
(i.e., FEMOSAA-N). Such a benefit eventually leads to a better set of nondominated solutions within
which a final one can be selected for adaptation. Fundamentally, this is because the dependency-
aware operators can better guide the search to prevent MOEAs from exploring invalid solutions,
which virtually reduces the search space and provides a larger chance to find better solutions.

Interestingly, when we compare FEMOSAA-D with FEMOSAA-N in Figures 21 to 26 for RUBiS-

SAS, we did not observe significant differences between them in terms of all the metrics, and their
comparison has also failed in all statistical significance tests, which differs from our expectation
that FEMOSAA-D should achieve statistically better results. The same can be also registered in
Figure 30. We believe this is because although FEMOSAA-D can guide the search for better so-
lutions, the fact that a solution from the final nondominated solutions is randomly selected for
adaptation has obscured the benefits of preventing the exploration of invalid solutions as such a
solution might be highly imbalanced for the conflicting objectives. On the contrary, for SOA-SAS in
Figures 27 to 29 and Figure 31, we see that FEMOSAA-D generally outperforms FEMOSAA-N with
better HV and ED values. In particular, under NSGA-II and IBEA, FEMOSAA-D is better on both
attributes with p < 0.05 and nontrivial effect sizes. This implies that, for a feature model with rela-
tively more complex dependencies as in the case of SOA-SAS, the dependency-aware operators can
guide the search process to evolve many highly effective solutions in the final nondominated set;
thus, the randomly selected adaptation solution, although imbalanced, could still be much better
than those cases when dependencies are omitted.

In conclusion, the results suggest that:

Answering RQ2—In contrast to the classic and widely used operators, the benefit of
dependency-aware operators is that they help to find solutions with better convergence
and diversity, leading to better optimized quality for an SAS and with statistically signifi-
cant results and nontrivial effect sizes on at least one quality attribute. Such improvement
can be more obvious when the number of effective solutions is limited (e.g., when the work-
load is heavy). However, applying dependency-aware operators without ensuring balance
of the selected adaptation solution might obscure its effectiveness.

7.4.3 Evaluating the Knee Selection. We have already shown that the combination of depend-
ency-aware operators and knee selection can lead to results that outperform the case where both
are omitted. We now evaluate whether the knee selection method itself can introduce benefit for
runtime optimization of SAS. From Figures 21 to 26 for RUBiS-SAS, when comparing FEMOSAA
with FEMOSAA-D in which knee selecting has been omitted, we see that FEMOSAA achieves supe-
rior HV and ED as well as better results on both quality attributes. The comparisons are statistically
significant with nontrivial effect sizes on at least one attribute for 5 out of 6 cases. In Figure 30, we
can see that the results of FEMOSAA are more balanced (i.e., points converge more to the bottom-
left), and such improvement is more obvious when the workload is heavy under all cases. For SOA-

SAS, we observed similar outcomes overall, as illustrated in Figures 27 to 29 and Figure 31, except
that FEMOSAA-D has better throughput than FEMOSAA under NSGA-II due to the strong conflicts
of objectives in SOA-SAS. These results show that our knee selection method in FEMOSAA con-
tributes to the overall quality of adaptation by automatically selecting the solution with a balanced
tradeoff on the objectives (i.e., a good sense of compromise) to execute the adaptation. The results
achieved by those knee solutions are naturally the most preferable when relative preferences be-
tween objectives are unknown or it is too difficult to quantify them (which is common for SAS).

For all the studied MOEAs in Figure 32 of RUBiS-SAS, we see that, when compared with
randomly selecting an adaptation solution from the nondominated set (i.e., FEMOSAA-N),
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incorporating knee selection can indeed select a more balanced solution for adaptation (i.e.,
FEMOSAA) as it is closer to the bulge near the bottom-left area of the objective space.

Nevertheless, unlike our expectation, FEMOSAA-K and FEMOSAA-N do not yield statistically
significant differences, as shown in Figures 21 to 26 and Figure 30 for RUBiS-SAS. This is because
the effectiveness of knee selection is fundamentally dependent on the quality of the searched valid
solution; thus, as we showed in the previous section, when the search process wastes efforts to
explore invalid solutions, the quality of the solutions in the final population might be compromised,
which would negatively affect the benefit introduced by our knee selection method. For the same
reason, for SOA-SAS in Figures 27 to 29 and Figure 31, we see that although FEMOSAA-K slightly
outperforms FEMOSAA-N on both attributes under all cases, the majority of the differences (5 out
of 6) are not significant statistically.

Overall, the results indicate that:

Answering RQ3—In contrast to the randomly selected nondominated adaptation solution,
knee selection helps to find a more balanced solution for adaptation, leading to better
optimized quality for SAS with statistically significant results and nontrivial effect sizes on
at least one attribute. Such improvement can be more obvious when the number of effective
solutions is limited (e.g., when the workload is heavy). However, applying knee selection
without ensuring the quality of searched valid solution can obscure its effectiveness.

7.5 Comparing FEMOSAA with State-of-the-Art Frameworks

To further evaluate the effectiveness of FEMOSAA, we compare it with the following state-of-the-
art search-based frameworks from the literature:

DUSE10 [1]—A representative framework that optimizes SAS using NSGA-II. Since it does not
consider dependency and knee in the optimization, we adapt the ad hoc strategies applied by
FEMOSAA-D and FEMOSAA-K. As DUSE relies on manual transposition, we used elitist chromo-
some representations to ensure fair comparison and to eliminate bias in reproducibility.

PLATO [42]—An approach that applies a weighted sum of objectives and the Genetic Algorithm,
a popular single-objective evolutionary algorithm, in the optimization. It also does not consider
dependency in the optimization and thus we use the same ad hoc strategy as FEMOSAA-K. We
specify equal weights on the objectives to find the single best solution. As PLATO relies on man-
ual transposition, we used elitist chromosome representations to ensure fair comparison and to
eliminate bias in reproducibility.

FUSION [23]—A well-known feature model-based framework that formulates the SAS opti-
mization as an Integer Programming problem, which assumes aggregate objective function and
is resolved by an exact algorithm (we use Branch-and-Bound in the experiments). FUSION uses
binary representation of the solutions, and it considers categorical dependency only. Thus, when
no valid solution found, we fix the violations on numeric dependency. To avoid unacceptable ex-
ecution time, we forcibly return the best solution so far when it hits a time threshold (i.e., 40s).

Since the source codes of these state-of-the-art frameworks are not openly accessible, we have
reproduced the implementation of the optimization algorithms that are core to these frameworks,
following the exact guidance and setups mentioned in the work. Relevant open-sourced frame-
works (e.g., jMetal [21]) are exploited when possible. In particular, we reproduced the represen-
tation of the solution and dependency handling with respect to these algorithms, as realized by
the state-of-the-art frameworks. The other parts (e.g., the modeling component) are assumed to be

10DUSE is actually the same as FEMOSAA-N with NSGA-II which we have evaluated in the previous sections.
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Fig. 33. Comparing FEMOSAA (under different MOEAs) with state-of-the-art frameworks for RUBiS-SAS.

(GM denotes Geometric Mean. F*MOEA/D-STM, F*NSGA-II, and F*IBEA denote FEMOSAA with MOEA/D-

STM, NSGA-II, and IBEA, respectively.)

Table 2. Wilcoxon Signed-Rank Test Results Between FEMOSAA with Different

MOEAs and State-of-the-Art Frameworks for RUBiS-SAS

The significant statistics, i.e., p < 0.05, are highlighted and shown in bold.

identical to FEMOSAA in all experiments. We apply the same set of metrics, statistical tests, and
methods for categorizing effect size as discussed earlier.

As shown in Figure 33, for both workload patterns on RUBiS-SAS, we can see that FEMOSAA
with MOEA/D-STM, NSGA-II, and IBEA obtain better quality results than the other state-of-the-
art frameworks. They also yield better results in terms of HV and ED. The statistical tests and
effect size for the comparisons are shown in Table 2, in which we can see that the improvements
obtained by FEMOSAA with all three MOEAs over the other state-of-the-art frameworks are sta-
tistically significant in general, resulting in p < 0.05 with nontrivial effect sizes on at least one
quality attribute. The superiority of FEMOSAA when compared with DUSE again confirms that
the combination of elitist representation, dependency-aware operators, and knee selection can
guide the MOEA to achieve better quality results even when using different underlying MOEAs.
PLATO, on the other hand, is further constrained by its nature of weighted sum objective func-
tions, preventing it from finding some of the better tradeoff points. Although FUSION applies
an exact optimization algorithm which should obtain the optimal solution, the fact of the given
large search space has prevented it from reaching such an optimality in a reasonable time, thus
forcing it to terminate when the time threshold is hit. Moreover, since the state-of-the-art frame-
works do not consider all dependencies, their ratio of valid solutions ranges from 8.39% to 64.71%
only. For the case of SOA-SAS, as shown in Figure 34 and Table 3, we see that FEMOSAA with all
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Fig. 34. Comparing FEMOSAA (under different MOEAs) with state-of-the-art frameworks for SOA-SAS. (GM

denotes Geometric Mean. F*MOEA/D-STM, F*NSGA-II, and F*IBEA denote FEMOSAA with MOEA/D-STM,

NSGA-II, and IBEA, respectively.)

Table 3. Wilcoxon Signed-Rank Test Results Between FEMOSAA with Different

MOEAs and State-of-the-Art Frameworks for SOA-SAS

p value (effect size) for Throughput (request/second) p value (effect size) for Cost ($)

FEMOSAA with
MOEA/D-STM

FEMOSAA with
NSGA-II

FEMOSAA with
IBEA

FEMOSAA with
MOEA/D-STM

FEMOSAA with
NSGA-II

FEMOSAA with
IBEA

DUSE .451 (trivial) .300 (small) .007 (medium) <.001 (large) <.001 (large) <.001 (large)

PLATO <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large)

FUSION <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large) <.001 (large)

The significant statistics, i.e., p < 0.05, are highlighted and shown in bold.

three MOEAs yields significantly better results (p < 0.05) than PLATO on both quality attributes.
Through spending the highest cost, DUSE achieves higher value than FEMOSAA on throughput
under MOEA/D-STM, but the comparison is statistically insignificant. Further, FEMOSAA is supe-
rior to and more balanced than DUSE overall, as evidenced by the greatly improved, statistically
significant results on rest of the cases, as well as better HV and ED values. We can also observe
that FUSION has very competitive results on cost, which is the best for this quality. However, this
is due to the fact that the two quality attributes are strongly conflicting, which causes the exact
search in FUSION to trap at a local area of the search space within the given time. This eventually
resulted in an unwisely strong bias towards the improvement of cost, as evident by the even larger
degradation on throughput in contrast to FEMOSAA, as well as the poor HV and ED values. FU-
SION leads to only 3% valid solutions as it considers categorical dependencies only while most of
the cross-branched dependencies in SOA-SAS are numeric.

In conclusion, these results suggest that:

Answering RQ4—In contrast to the state-of-the-art frameworks (DUSE, PLATO, and FU-
SION), FEMOSAA achieves better optimized quality for SAS with statistically significant
results and nontrivial effect sizes on at least one quality attribute, even when using differ-
ent underlying MOEAs.

7.6 Runtime Overhead

Since we are interested in optimizing SAS at runtime, the running overhead of the MOEAs guided
by FEMOSAA is an important aspect to evaluate. In Table 4, we compare the runtime overhead
of FEMOSAA, FEMOSAA-N, FEMOSAA-0/1, DUSE, PLATO, and FUSION under RUBiS-SAS’s
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Table 4. Comparing Mean Running Time for Producing an Adaptation Solution

RUBiS-SAS with Read-Write Pattern RUBiS-SAS with Read-Only Pattern SOA-SAS

FEMOSAA with MOEA/D-STM 1.96s 1.88s 0.30s

FEMOSAA-N with MOEA/D-STM 2.04s 2.5s 0.43s

FEMOSAA-0/1 with MOEA/D-STM 22.02s 22.94s 1.06s

FEMOSAA with NSGA-II 0.9s 0.86s 0.08s

FEMOSAA-N with NSGA-II 0.94s 3.53s 0.04s

FEMOSAA-0/1 with NSGA-II 10.65s 10.48s 0.24s

FEMOSAA with IBEA 1.09s 1.12s 0.20s

FEMOSAA-N with IBEA 1.13s 1.12s 0.14s

FEMOSAA-0/1 with IBEA 20.90s 20.59s 1.45s

DUSE 0.94s 3.53s 0.04s

PLATO 0.99s 0.79s 0.02s

FUSION 37.98s 55.09s 54.54s

two different workload patterns and SOA-SAS. For FEMOSAA and its variants, we examine them
using all the studied MOEAs. We report on the mean overhead over all the timesteps. As we
can see, under all MOEAs and both subject SAS, FEMOSAA (less than 2s) yields much smaller
overhead than FEMOSAA-0/1 (up to 22.94s) as the former encodes the elitist features only,
which fundamentally reduces the search space and also simplifies the process of generating new
solutions (individuals) in MOEAs. Interestingly, we note that for RUBiS-SAS, FEMOSAA (0.9s to
1.96s) has slightly smaller overhead than FEMOSAA-N (0.94s to 3.53s), which is quite surprising
as we expected that the former should introduce slightly bigger overhead as it exploits additional
processes in the reproduction operators and the selection of a final solution for adaptation.
These results could be attributed to two reasons: (i) the extra efforts spent in dependency-aware
operators and knee selection are negligible, and (ii) the dependency-aware operators tend to
produce solutions that can affect the running time of MOEAs; for example, in NSGA-II, if the
number of solutions in most of the higher ranked fronts is smaller, then the calculation of their
crowding distances would yield less running time.

In contrast to the state-of-the-art frameworks, FEMOSAA achieves competitive results on run-
time overhead, but the actual time taken by FEMOSAA depends on the underlying MOEA. Notably,
FUSION has the biggest overhead as its exact algorithm fails to scale with a large search space and
the optimization runs are often forcibly returned as they hit our predefined threshold of 40s.

In summary, the results reveal that:

Answering RQ5—While the running time of FEMOSAA depends on the underlying
MOEA, FEMOSAA has very competitive runtime overhead in contrast to the state-of-the-
art frameworks. In addition, the extra efforts spent in dependency-aware operators and
knee selection are negligible; they may even slightly speed up the running time of MOEAs.

7.7 Discussion

7.7.1 FEMOSAA Benefits and Applicability. The most notable benefit of FEMOSAA is that it ad-
vances the synergy between software engineering for SAS and evolutionary computation. Without
in-depth expertise on evolutionary algorithms in general, software engineers are granted the abil-
ity to influence the behaviors of a MOEA in whatever way they are familiar with (i.e., the feature
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model design of a SAS). On the other hand, such a design serves as strong domain knowledge that
can extend the MOEA and guide evolutionary search behavior (i.e., in form of elitist chromosomes
and dependency-aware operators) to produce better solutions.

FEMOSAA exploits MOEA, which particularly fits for cases where the relative weights between
objectives are unknown or it is too difficult to quantify them. From this perspective, the benefit
of FEMOSAA is that it does not require one to specify weights, which could be labor-intensive.
Indeed, we acknowledge that there are scenarios where the relative importance between conflict-
ing objectives is explicitly known, and their weights can be precisely specified. In those cases, the
concept of MOEA and knee selection employed by FEMOSAA might be less sensible. However, it is
possible for FEMOSAA to work with single-objective evolutionary algorithms using aggregation
of the objectives while deactivating knee selection, in which case the SAS can still benefit from
the power of elitist chromosome representation and dependency-aware operators.

Another point worth mentioning is that MOEA does not guarantee optimal solutions; how-
ever, it is very efficient in producing good approximations to complex and nonlinear problems
that would be otherwise unsolvable by exact optimization. Thus, we would not recommend using
FEMOSAA on SAS that are simple, small in the search space, and can be handled by exact search
that leads to an optimal solution.

7.7.2 FEMOSAA Running Time. Indeed, in contrast to FEMOSAA, the classic rule- and policy-
based decision-making approach is very fast when adapting a SAS. However, the effectiveness of
adaptation quality relies on several important factors, including:

(1) The full knowledge of every possible condition that the SAS may encounter.
(2) Some theoretical assumptions on the SAS and the environment that underpins the rules

and policies.
(3) The manual reasoning of the optimal adaptation decision under a given condition (i.e., the

mapping between a condition and an adaptation decision).

For SAS working in highly dynamic and uncertain environments (e.g., in cloud computing and
software-defined networking), rule- and policy-based approaches would fail due to the fact that
they heavily rely on human knowledge and there are emergent conditions that have not been
accounted for, given the requirements of points (1) and (2). Further, SAS often has large variability
(i.e., a large number of alternatives) as in the two SAS we studied. This makes point (3) in the rule-
and policy-based approaches unrealistic; in fact, an exact search optimization would also fail under
the problem of a large search space, as such a problem itself is intractable. In contrast, search-based
software engineering techniques, particularly evolutionary algorithms, offer a promising way to
solve our SAS optimization problem. This is because those algorithms are dynamic in nature and
are able to perform optimization without in-depth knowledge and assumptions of the problem
in hand (e.g., the property of the SAS and the environment). In addition, the notion of natural
evolution and population permits it to find approximately optimal solutions even for intractable
problems.

As we illustrated in Section 7.6, FEMOSAA achieves a runtime overhead of seconds under the
two SAS studied. This may cause a delay in adaptation under extreme scenarios where the transi-
tion needs to be completed in microseconds. However, for other cases where the requirements of
transition time can be relaxed, the better quality of adaptation generated by the underlying evo-
lutionary algorithm has made the cost of its runtime overhead negligible, especially considering
that the SAS optimization problem would otherwise be unsolvable using rule- and policy-based
approaches. In fact, as we have shown throughout Section 7, the proposed elitist chromosome
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representation and dependency-aware operators in FEMOSAA have enabled the underlying evo-
lutionary algorithm to reach a better adaptation quality with even smaller runtime overheads.

7.7.3 Threats to Validity. Some threats to the validity of FEMOSAA follow.
Threats to construct validity are a concern when considering whether the used metrics can

indeed reflect what we intend to measure. In this work, our experiments selected a wider range
of quality attributes (i.e., response time, energy consumption, throughput, and cost). Those qual-
ity attributes and their metrics are the most commonly assessed quality aspects for SAS from the
literature [39][49][23][42]. Further, we assessed the aggregated results of different quality objec-
tives using HV and ED, which are widely applied metrics to measure the quality of solutions for
multi-objective optimization problems [50][37]. Threats to construct validity could be also related
to the stochastic nature of the considered MOEAs in experiments which can influence the mea-
surements, especially for those that do not account for dependency and knee in the optimization.
Indeed, to draw a meaningful conclusion of the measurements for stochastic search-based opti-
mization, repeated runs are necessary, as suggested in Acuri and Briand [4]. We mitigated this
bias by following the design introduced in Acuri and Briand [4], including conducting 102 opti-
mization runs11 for FEMOSAA and others, exploiting a statistical test to verify the significance
of comparisons, and reporting the effect size to confirm that the measured results are not due to
chance. Further, in the RUBiS-SAS case, FEMOSAA has been evaluated and measured following
the realistic FIFA98 workload trace.

Threats to internal validity are related to the values of parameters for the MOEAs. The setup
in this work has been carefully tailored to produce good tradeoff between the quality of optimiza-
tion and the overhead. However, these values might vary depending on contextual characteristics
(e.g., the given feature model, the types of SAS, and the environmental conditions), which itself
could be a topic for future research. Threats to internal validity can also arise from accidental
bugs in experimental implementations, which is always possible when writing any kind of soft-
ware, especially for SAS, which is naturally highly complex. However, we tried to mitigate this
unavoidable phenomenon by (i) exploiting well-established open-source frameworks whenever
possible (e.g., jMetal [21]), (ii) following the exact guidance given in some of the compared work,
and (iii) debugging through formal software testing procedure.

Threats to external validity are linked to the benchmark and scenario used in the experi-
ments. To improve the generalization of experimental evaluations, we also evaluated FEMOSAA
with three widely applied but distinct MOEAs under two running SAS and different workload
patterns, which can diversify the runtime behaviors of the SAS. In particular, one of the SAS (i.e.,
RUBiS-SAS) contains a stack of real-world software that helps to emulate a more realistic scenario
of the running SAS. Though our experimentation on the cases approximate real and industrial
scale, it is difficult to claim complete generality; such a claim would require a much large number
of independent domain-specific cases and needs to be performed by independent future adopters.
In future work, we plan to evaluate FEMOSAA in other extreme contexts (e.g., in mobile envi-
ronment where computational resources are rather limited). However, it is worth noting that the
efforts in building the experiments and deploying the running SAS are nontrivial and could involve
potential expenses.

8 RELATED WORK

Search-based optimization has been widely applied for SAS, either as a general framework or tai-
lored to a specific domain (e.g., service or cloud systems). In this section, we provide an overview

11The number of runs is an implied result of the client emulator’s setup for RUBiS-SAS and SOA-SAS.
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of the most notable and relevant research in this area while examining them in the light of
FEMOSAA.

8.1 Evolutionary Optimization for SAS

A common way of optimizing multiple objectives is to simply aggregate different objectives (e.g.,
weighted sum) such that they can be resolved in a single objective function. Hence, there exists
some work that leverages single-objective evolutionary algorithms for optimizing SAS based on an
objective aggregation. PLATO [42] and VALKYRIE [27] are two examples. However, as opposed to
the automatic transposition approach in FEMOSAA, they rely on manual encoding of the SAS into
chromosome representation, and they do not consider dependency between features. Further, it is
well-known that the relative weights are difficult to tailor by engineers, and a single aggregation
could restrict the search, causing limitations when searching for good solutions spread over the
search space.

Exploiting MOEAs to handle the tradeoff between conflicting objectives is an emerging trend
for optimizing SAS at runtime. Among others, DUSE [1] uses NSGA-II to produce a set of non-
dominated solutions for SAS. Similarly, NSGA-II and other EAs, as well as other meta-heuristic
algorithms, have also been applied [28][22][51][12][15]; these focus on general SAS and the spe-
cific SAS for cloud and service systems. Nevertheless, their encoding of the SAS is manual, and
no dependency between features is considered. Consequently, a significant number of function
evaluations would be wasted in the search for invalid solutions, which, as we have shown, can
degrade the quality of solutions found. Furthermore, these methods rely on the nondominated set,
from which any solution can be used for adaptation, which can entail an imbalanced tradeoff. By
contrast, FEMOSAA finds a knee solution that is generally preferable. Moreover, FEMOSAA relies
on an automatic approach, where the elitist features are identified and the dependency is extracted
to guide MOEA.

The closely related and most recent work is probably that produced by Pascual et al. [41], where
they proposed a framework for a self-adaptive mobile system that uses the feature model with
MOEA while considering feature dependencies in the optimization. However, FEMOSAA differs
from their work in various aspects:

• Pascual et al.’s work relies on a binary representation of all features and only categorical
features are considered, whereas FEMOSAA encodes elitist features into the chromosome
only to form a polyadic representation that reduces the number of genes and thereby con-
siderably shrinks the search space.

• Instead of modifying the reproduction operators, the work by Pascual et al. still allows the
operators to explore and generate invalid solutions but fixes those solutions using a random
repair strategy (i.e., each gene that violates the categorical dependency is fixed). However,
such a fix is not guided by the dependency chain, thus there is no guarantee that the fixed
gene would not cause additional violations (if there is a chain of dependency); therefore, it
cannot ensure that a valid solution is always produced. Indeed, in their work, the process is
repeated if the previous fix has not resolved all the violations, and the repair stops when a
maximum number of repeats has been reached. On the contrary, FEMOSAA extracts depen-
dencies and directly injects them to both the mutation and crossover operators, which are
explicitly guided by the dependency chains and the related value trees; this fundamentally
prevents invalid solutions from being explored.

• The nature of binary representation in Pascual et al.’s work implies that it is difficult for
them to handle numeric dependencies, which are covered by FEMOSAA.
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• FEMOSAA considers knee selection for adaptation, whereas Pascual et al.’s work selects
any nondominated solution for adaptation, which could be highly imbalanced.

8.2 Evolutionary Optimization in Software Product Line Engineering

The feature model is widely used in Software Product Line (SPL) to model variability, which
is similar to our use of a feature model on SAS. In particular, MOEA has been applied to SPL
(see [45][46][31], for example). However, unlike SPL, where the objectives are highly concerned
with designing software products that expose feature richness, diversity, and known defects, our
focus in SAS is on optimizing nonfunctional quality attributes, seeking adaptation decisions that
can better respond to dynamic situations and uncertainty in the environment with limited or no
human intervention. In addition, SPL focuses on design time, while SAS development mainly fo-
cuses on runtime.

Even given the differences just mentioned, some SPL work exhibits resemblance to FEMOSAA:
They both aim to transpose the design of the feature model onto the context of MOEA. There-
fore, here, we compare FEMOSAA with those SPL preventative approaches where we specifically
look at how the feature model is transposed into MOEA and the strategies used to handle fea-
ture dependencies. This consideration is particularly essential to explain why it is insufficient to
directly apply the transposition used in existing studies of the SPL domain and to describe the
improvements we have made in this aspect.

Among others, Sayyad et al. [45][46] exploit NSGA-II and IBEA for finding the optimal design
of a product line using binary encoding of features into chromosome representations. In contrast,
FEMOSAA does not rely on lengthy binary representation, and it encodes a polyadic chromosome
using elitist features, which, as we have shown, leads to better optimization results and running
time. Hierons et al. [31] proposed an extended MOEA encoding method for the feature model
in which the basic encoding is still binary. Similar to our motivation, Hierons et al. [31] seek
simplification by eliminating features that are the root of an OR group as their variability can be
represented by their children (e.g., Cache Mode in Figure 4). However, FEMOSAA goes one step
further by discarding the binary chromosome representation; this is achieved through selecting
elitist features that cannot be removed without affecting variability while minimizing the length
of encoding. This not only eliminates any features whose variability can be represented by its
children (not restricted to those features that are the root of the OR group, as in Hierons et al.
[31]; e.g., Cache and Cache Mode in Figure 4), but also eliminates those whose variability can be
represented by their parent (e.g., CPU ’s children in Figure 4). Unlike their work, we do not simply
remove all mandatory features; we retain those with a XOR group of children as they would
help us to considerably simplify the chromosome representation even more (e.g., CPU in Figure 4).
Further, they have ignored numeric features, which are common in SAS. The numeric features, if
not specifically handled, can lead to high computational overhead under binary encoding.

Another fact that distinguishes FEMOSAA from existing SPL work on the transposition process
is the way in which the dependencies are handled. Hierons et al. [31] and Sayyad et al. [45][46]
simply formulate dependency compliance as an additional objective to be optimized. Their formu-
lation stems from the fact that it is too complex to explicitly handle dependency during evolution
due to the inherited difficulty of the binary encoding. The basic assumption is that, with a large
number of generations, the MOEA would eventually discover many valid solutions. While this
schema may be sensible for design time optimization problems, it is ill-suited for SAS, where the
optimizations occur at runtime, because the extra dimension of a dependency objective would im-
pose too much additional difficulty on the problem and, at the same time, still fail to guarantee
valid solutions. With the binary chromosome representation, Henard et al. [30] aim to overcome
this by combining MOEA with an off-the-shelf CSP solver; here, the solvers act similarly to our
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dependency-aware operators. However, these solvers are general and have not been specifically
tailored to the needs of SAS problems; in addition, they are often computationally expensive and
they would not guarantee valid solutions either. FEMOSAA, on the other hand, extracts the depen-
dencies with respect to the elitist chromosome representation at design time, and those dependen-
cies are injected into the operators of MOEA to fundamentally prevent the exploration of invalid
solutions during runtime evolution. Further, FEMOSAA handles complex dependencies related to
the numeric features.

8.3 Nonevolutionary Optimization for SAS

In addition to evolutionary algorithms, exact algorithms are also utilized for optimizing
SAS [23][24][9] as they guarantee finding the optimal solution and can easily work with a sin-
gle objective. Here, we consider the most noticeable nonevolutionary optimization approaches for
SAS which do not tie to the special characteristics of a specific application domain. FUSION [23]
is a general framework that optimizes SAS using exact algorithm. At design time, it also applies
the feature model to represent the design of a SAS. However, unlike FEMOSAA, it does not con-
sider numeric features, and it formulates the problem as an Integer Optimization problem using
binary encoding of all features. Eshafani et al. [24] also follow an idea similar to FUSION, but they
additionally use fuzzy logic to constitute the objective functions. MOSES [9] is a framework that
is designed for self-adaptive service systems, where the optimization is formulated as a Linear
Programming problem that is convex and can be solved exactly.

One fundamental issue with nonevolutionary and exact algorithms is that they fail to scale when
the search space is large, which is often the case for modern SAS. Furthermore, exact approaches
tend to be highly sensitive to the nature of the problem (e.g., whether they are convex or con-
cave). This could impose extra difficulty because the analysis of the problem nature for SAS is
very difficult, if not impossible, due to the dynamic and uncertain nature of the context. Addition-
ally, exploiting exact algorithms often must work on an objective aggregation, which limits their
applicability and capability.

In contrast, FEMOSAA relies on MOEA, which is a type of stochastic evolutionary optimization
algorithm specifically designed to handle multi-objective optimization problems. It is known that
MOEA can efficiently find optimal (or near-optimal) solutions for problems with a large search
space, and it is capable of revealing a fine-grained tradeoff surface without the need for objective
aggregation. In addition, MOEA is problem agnostic and therefore less sensitive to the nature of a
given problem.

8.4 Other Approaches for Self-Adaptation at Runtime

Advanced control theory has also been used for SAS decision-making because of its low latency.
Among others, Filieri et al. [25] propose a multi-objective controller where each objective would
have independent sensors and actuators; the reasoning relies on aggregation of objectives, how-
ever. Simplex [47] is another recent control theory method for SAS, wherein a simplex optimization
algorithm is used in conjunction with updates of controller gains.

Reinforcement Learning (RL) [8] is another thread that regards the SAS optimization problem as
a learning problem. However, in RL, there is no explicit optimization process due to the absence of
a clear model, and, therefore, the adaptation decision is often tailored in a trial-and-error manner
that could impose an expensive exploration phase.

Without an explicit search behavior, both control theoretic and learning-based approaches lack
the ability to perform exploration without affecting the SAS. In addition, they do not consider
dependency constraints, and they are difficult to adapt for effective reasoning about tradeoffs at
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runtime. In contrast, FEMOSAA exploits MOEA and the feature model, aiming to explicitly handle
multi-objective optimization while considering dependencies.

9 CONCLUSION

This article presents FEMOSAA, a novel framework that systematically and automatically syn-
ergizes the feature model of SAS and a MOEA to optimize the SAS at runtime. At design time,
FEMOSAA finds elitist features, including categorical and numeric ones, to create a polyadic chro-
mosome representation; it then extracts dependencies between the genes, which are then used
to extend the underlying MOEA for runtime optimization. The feature model serves as the en-
gineers’ domain knowledge that can reduce the search space (fundamentally and virtually) and
guide the search, thus increasing the chance for finding better solutions. Further, FEMOSAA finds
knee solutions that achieve a balanced tradeoff. By extensively comparing FEMOSAA with its vari-
ants and state-of-the-art frameworks on two complex real-world SAS, using three widely applied
MOEAs and under two workload patterns for optimizing various conflicting objectives, we show
that FEMOSAA produces statistically better and more balanced results for tradeoff with reasonable
overhead. In particular, the most notable observations of FEMOSAA are that:

• Applying the elitist chromosome representation to encode the problem into MOEA helps
to produce better quality and a smaller runtime overhead for optimizing SAS, but such
improvement tends to become marginal when the number of effective solutions is small
(e.g., the workload is heavy).

• The dependency-aware operators can properly guide the search, finding solutions with bet-
ter convergence and diversity, leading to better quality SAS optimization. However, ap-
plying dependency-aware operators without ensuring a balance in the selected adaptation
solution might obscure its effectiveness.

• The knee selection helps to find a more balanced solution for adaptation. However, applying
knee selection without ensuring the quality of a searched valid solution can obscure its
effectiveness.

• In contrast to the state-of-the-art frameworks from the literature, FEMOSAA, with all three
studied MOEAs, produces statistically and practically better quality for optimizing SAS at
runtime.

• Overall, FEMOSAA has very competitive runtime overhead in contrast to the state-of-the-
art frameworks. Further, the extra efforts spent in dependency-aware operators and knee
selection are negligible; occasionally, they can even slightly speed up MOEA runtime.

Our work impacts and advances the synergy between software engineering for SAS and evolu-
tionary computation, combining strengths from both fields. Particularly with FEMOSAA, software
engineers can exploit MOEAs to tackle SAS optimization without prior extensive expertise with
MOEA. On the other hand, automatic transposition of the feature model into a MOEA context
can improve MOEA and make the domain knowledge systematic and comprehensible for MOEA
researchers, who in turn can design more effective algorithms for SAS. In contrast to many SBSE
work, our deeper synergy takes one step further by automatically and dynamically extracting the
domain information of SAS to extend the internal structure of MOEA. In future work, we plan to
apply FEMOSAA in other domains of SAS and extend it to manage more conflicting objectives.

REFERENCES

[1] Sandro S. Andrade and Raimundo José de A. Macêdo. 2013. A search-based approach for architectural design of

feedback control concerns in self-adaptive systems. In Proceedings of the 2013 IEEE 7th International Conference on

Self-Adaptive and Self-Organizing Systems. IEEE, 61–70. DOI:http://dx.doi.org/10.1109/SASO.2013.42

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 2, Article 5. Pub. date: June 2018.

http://dx.doi.org/10.1109/SASO.2013.42


5:48 T. Chen et al.

[2] Apache Software Foundation. Apache Tomcat. Retrieved from http://tomcat.apache.org/. [Accessed 24 Mar 2018].

[3] Apache Software Foundation. Ehcache. Retrieved from http://www.ehcache.org/. [Accessed 24 Mar 2018].

[4] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests to assess randomized algorithms

in software engineering. In Proceedings of the 2011 IEEE 33rd International Conference on Software Engineering (ICSE).

IEEE, 1–10.

[5] Martin Arlitt and Tai Jin. 2000. A workload characterization study of the 1998 World Cup web site. Network Mag. of

Global Internetworking 14, 3 (May 2000), 30–37. DOI:http://dx.doi.org/10.1109/65.844498

[6] David Benavides, Sergio Segura, and Antonio Ruiz-Corts. 2010. Automated analysis of feature models 20 years later:

A literature review. Information Systems 35, 6 (2010), 615–636. DOI:http://dx.doi.org/10.1016/j.is.2010.01.001

[7] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. 2013. PowerAPI: A software library to

monitor the energy consumed at the process-level. ERCIM News 92 (Jan. 2013), 43–44.

[8] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. 2013. Coordinated self-configuration of virtual machines and appliances

using a model-free learning approach. IEEE Transactions on Parallel and Distributed Systems 24, 4 (2013), 681–690.

[9] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci, Francesco Lo Presti, and Raffaela Miran-

dola. 2012. MOSES: A framework for QoS driven runtime adaptation of service-oriented systems. IEEE Transactions

on Software Engineering 38, 5 (Sept 2012), 1138–1159. DOI:http://dx.doi.org/10.1109/TSE.2011.68

[10] Tao Chen and Rami Bahsoon. 2013. Self-adaptive and sensitivity-aware QoS modeling for the cloud. In Proceedings of

the 8th International Symposium on Software Engineering for Adaptive and Self-Managing Systems. ACM/IEEE, 43–52.

[11] Tao Chen and Rami Bahsoon. 2017. Self-adaptive and online QoS modeling for cloud-based software services. IEEE

Transactions on Software Engineering 43, 5 (2017), 453–475.

[12] Tao Chen and Rami Bahsoon. 2017. Self-adaptive trade-off decision making for autoscaling cloud-based services. IEEE

Transactions on Services Computing 10, 4 (2017), 618–632.

[13] Tao Chen, Rami Bahsoon, Shuo Wang, and Xin Yao. 2018. To adapt or not to adapt? Technical debt and learning driven

self-adaptation for managing runtime performance. In Proceedings of the 9th ACM/SPEC International Conference on

Performance Engineering (ICPE). ACM, 48–55.

[14] Tao Chen, Rami Bahsoon, and Xin Yao. 2014. Online QoS modeling in the cloud: A hybrid and adaptive multi-learners

approach. In Proceedings of the IEEE/ACM 7th International Conference on Utility and Cloud Computing. 327–336.

[15] Tao Chen, Miqing Li, and Xin Yao. 2018. On the effects of seeding strategies: A case for search-based multi-

objective service composition. In Proceedings of the 20th International Genetic and Evolutionary Computation Con-

ference (GECCO). ACM.

[16] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2004. Staged configuration using feature models. In Pro-

ceedings of the International Conference on Software Product Lines. Vol. 3154. Springer, 266–283.

[17] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl,

Gabriel Tamura, Norha M. Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy

Brun, Bojan Cukic, Ron Desmarais, Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Göschka, Alessandra Gorla,

Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer, Antónia Lopes, Jeff Magee, Sam Malek, S. Mankovskii,

R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzé, C. Prehofer, W. Schäfer, R. Schlichting, D. B. Smith, J. P. Sousa, L.

Tahvildari, K. Wong, and J. Wuttke. 2013. Software Engineering for Self-Adaptive Systems: A Second Research Roadmap.

Springer Berlin, 1–32. DOI:http://dx.doi.org/10.1007/978-3-642-35813-5_1

[18] Kalyanmoy Deb and Himanshu Jain. 2014. An evolutionary many-objective optimization algorithm using reference-

point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on

Evolutionary Computation 18, 4 (2014), 577–601. DOI:http://dx.doi.org/10.1109/TEVC.2013.2281535

[19] Kalyanmoy Deb and Deb Kalyanmoy. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley

& Sons, Inc., New York.

[20] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. 2002. A fast and elitist multiobjective

genetic algorithm: NSGA-II. Transactions on Evolutionary Computing 6, 2 (April 2002), 182–197.

[21] Juan J. Durillo and Antonio J. Nebro. 2011. jMetal: A java framework for multi-objective optimization. Advances in

Engineering Software 42, 10 (2011), 760–771.

[22] Donia El Kateb, François Fouquet, Grégory Nain, Jorge Augusto Meira, Michel Ackerman, and Yves Le Traon. 2014.

Generic cloud platform multi-objective optimization leveraging models@Run.Time. In Proceedings of the 29th Annual

ACM Symposium on Applied Computing (SAC’14). ACM, New York, 343–350. DOI:http://dx.doi.org/10.1145/2554850.

2555044

[23] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. 2013. A learning-based framework for engineering feature-

oriented self-adaptive software systems. IEEE Transactions on Software Engineering 39, 11 (Nov 2013), 1467–1493.

DOI:http://dx.1452 doi.org/10.1109/TSE.2013.37

[24] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. 2011. Taming uncertainty in self-adaptive software. In Proceed-

ings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering

(ESEC/FSE’11). ACM, New York, 234–244. DOI:http://dx.doi.org/10.1145/2025113.2025147

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 2, Article 5. Pub. date: June 2018.

http://tomcat.apache.org/
http://www.ehcache.org/
http://dx.doi.org/10.1109/65.844498
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1109/TSE.2011.68
http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1145/2554850.2555044
http://dx.1452 ignorespaces doi.org/10.1109/TSE.2013.37
http://dx.doi.org/10.1145/2025113.2025147


FEMOSAA 5:49

[25] Antonio Filieri, Henry Hoffmann, and Martina Maggio. 2015. Automated multi-objective control for self-adaptive

software design. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM, 13–24.

[26] Florian Fittkau, Sören Frey, and Wilhelm Hasselbring. 2012. CDOSim: Simulating cloud deployment options for soft-

ware migration support. In Proceedings of the 2012 IEEE 6th International Workshop on the Maintenance and Evolution of

Service-Oriented and Cloud-Based Systems (MESOCA’12). IEEE, 37–46. DOI:http://dx.doi.org/10.1109/MESOCA.2012.

6392599

[27] Erik M. Fredericks. 2016. Automatically hardening a self-adaptive system against uncertainty. In Proceedings of the

11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’16). ACM,

New York, 16–27. DOI:http://dx.doi.org/10.1145/2897053.2897059

[28] Sören Frey, Florian Fittkau, and Wilhelm Hasselbring. 2013. Search-based genetic optimization for deployment and

reconfiguration of software in the cloud. In Proceedings of the 2013 International Conference on Software Engineering

(ICSE’13). IEEE Press, Piscataway, NJ, 512–521.

[29] Mark Harman, Edmund Burke, John Clark, and Xin Yao. 2012. Dynamic adaptive search based software engineering.

In Proceedings of the 2012 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement.

ACM/IEEE, 1–8. DOI:http://dx.doi.org/10.1145/2372251.2372253

[30] Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. 2015. Combining multi-objective search

and constraint solving for configuring large software product lines. In Proceedings of the 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering (ICSE). IEEE, 517–528.

[31] Robert M. Hierons, Miqing Li, Xiaohui Liu, Sergio Segura, and Wei Zheng. 2016. SIP: Optimal product selection

from feature models using many-objective evolutionary optimization. ACM Transactions on Software Engineering and

Methodology (TOSEM) 25, 2 (2016), 17.

[32] Vigdis By Kampenes, Tore Dybå, Jo E. Hannay, and Dag I. K. Sjøberg. 2007. A systematic review of effect size in

software engineering experiments. Information and Software Technology 49, 11–12 (2007), 1073–1086. DOI:http://dx.

doi.org/10.1016/j.infsof.2007.02.015

[33] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990. Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA. Retrieved from http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

[34] Joshua D. Knowles and David Corne. 2000. Approximating the nondominated front using the Pareto archived evolu-

tion strategy. Evolutionary Computation 8, 2 (2000), 149–172. DOI:http://dx.doi.org/10.1162/106365600568167

[35] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Sam Kwong. 2015. An evolutionary many-objective optimization algo-

rithm based on dominance and decomposition. IEEE Transactions on Evolutionary Computation 19, 5 (2015), 694–716.

DOI:http://dx.doi.org/10.1109/TEVC.2014.2373386

[36] Ke Li, Qingfu Zhang, Sam Kwong, Miqing Li, and Ran Wang. 2014. Stable matching-based selection in evolutionary

multiobjective optimization. IEEE Transactions on Evolutionary Computation 18, 6 (2014), 909–923. DOI:http://dx.doi.

org/10.1109/TEVC.2013.2293776

[37] Miqing Li, Tao Chen, and Xin Yao. 2018. A critical review of a practical guide to select quality indicators for assessing

pareto-based search algorithms in search-based software engineering: Essay on quality indicator selection for SBSE.

In Proceedings of the 40th International Conference on Software Engineering, NIER Track. IEEE/ACM.

[38] Kaisa Miettinen. 1999. Nonlinear Multiobjective Optimization. Vol. 12. Kluwer Academic Publishers.

[39] Simon Mingay. 2007. Green IT: The new industry shock wave. Gartner RAS Research Note G 153703 (2007), 2007.

[40] Oracle Corporation. MySQL. Retrieved from https://www.mysql.com/. [Accessed 24 Mar 2018].

[41] Gustavo G. Pascual, Roberto E. Lopez-Herrejon, Mónica Pinto, Lidia Fuentes, and Alexander Egyed. 2015. Applying

multiobjective evolutionary algorithms to dynamic software product lines for reconfiguring mobile applications.

Journal of Systems and Software 103 (2015), 392–411. DOI:http://dx.doi.org/10.1016/j.jss.2014.12.041

[42] Andres J. Ramirez, David B. Knoester, Betty H. C. Cheng, and Philip K. McKinley. 2011. Plato: A genetic algorithm

approach to run-time reconfiguration in autonomic computing systems. Cluster Computing 14, 3 (2011), 229–244.

DOI:http://dx.doi.org/10.1007/s10586-010-0122-y

[43] Rice University. Rice University Bidding Systems. Retrieved from http://rubis.ow2.org/. [Accessed 24 Mar 2018].

[44] Nilabja Roy, Abhishek Dubey, Aniruddha Gokhale, and Larry Dowdy. 2011. A capacity planning process for perfor-

mance assurance of component-based distributed systems. In Proceedings of the 2nd ACM/SPEC International Confer-

ence on Performance Engineering (ICPE ’11). ACM, New York, 259–270. DOI:http://dx.doi.org/10.1145/1958746.1958784

[45] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. 2013. Scalable product line configuration: A

straw to break the camel’s back. In Proceedings of the 2013 IEEE/ACM 28th International Conference on Automated

Software Engineering (ASE). ACM/IEEE, 465–474.

[46] Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. 2013. On the value of user preferences in search-based software

engineering: A case study in software product lines. In Proceedings of the 2013 International Conference on Software

Engineering. IEEE Press, 492–501.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 2, Article 5. Pub. date: June 2018.

http://dx.doi.org/10.1109/MESOCA.2012.6392599
http://dx.doi.org/10.1145/2897053.2897059
http://dx.doi.org/10.1145/2372251.2372253
http://dx.doi.org/10.1016/j.infsof.2007.02.015
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID$=$11231
http://dx.doi.org/10.1162/106365600568167
http://dx.doi.org/10.1109/TEVC.2014.2373386
http://dx.doi.org/10.1109/TEVC.2013.2293776
https://www.mysql.com/
http://dx.doi.org/10.1016/j.jss.2014.12.041
http://dx.doi.org/10.1007/s10586-010-0122-y
http://rubis.ow2.org/
http://dx.doi.org/10.1145/1958746.1958784


5:50 T. Chen et al.

[47] Stepan Shevtsov and Danny Weyns. 2016. Keep it SIMPLEX: Satisfying multiple goals with guarantees in control-

based self-adaptive systems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 229–241.

[48] University of Cambridge Computer Laboratory. Xen: A virtual machine monitor. Retrieved from http://www.

xenproject.org/. [Accessed 24 Mar 2018].

[49] Hiroshi Wada, Junichi Suzuki, Yuji Yamano, and Katsuya Oba. 2012. E3: A multiobjective optimization framework for

SLA-aware service composition. IEEE Transactions on Services Computing 5, 3 (2012), 358–372.

[50] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen. 2016. A practical guide to select quality indicators

for assessing Pareto-based search algorithms in search-based software engineering. In Proceedings of the 38th In-

ternational Conference on Software Engineering (ICSE’16). ACM, New York, 631–642. DOI:http://dx.doi.org/10.1145/

2884781.2884880

[51] Zeratul Izzah Mohd Yusoh and Maolin Tang. 2012. Composite SaaS placement and resource optimization in cloud

computing using evolutionary algorithms. In Proceedings of the 2012 IEEE 5th International Conference on Cloud Com-

puting (CLOUD). IEEE, 590–597. DOI:http://dx.doi.org/10.1109/CLOUD.2012.61

[52] Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE

Transactions on Evolutionary Computation 11, 6 (2007), 712–731. DOI:http://dx.doi.org/10.1109/TEVC.2007.892759

[53] Eckart Zitzler and Simon Künzli. 2004. Indicator-based selection in multiobjective search. In Proceedings of the 8th

International Conference on Parallel Problem Solving from Nature. Springer, 832–842. DOI:http://dx.doi.org/10.1007/

978-3-540-30217-9_84

[54] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2002. SPEA2: Improving the strength Pareto evolutionary algo-

rithm for multiobjective optimization. In Evolutionary Methods for Design, Optimisation, and Control with Applications

to Industrial Problems. 95–100.

[55] Eckart Zitzler and Lothar Thiele. 1999. Multiobjective evolutionary algorithms: A comparative case study and the

strength Pareto approach. IEEE Transactions on Evolutionary Computation 3, 4 (Nov 1999), 257–271. DOI:http://dx.

doi.org/10.1109/4235.797969

Received July 2017; revised February 2018; accepted March 2018

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 2, Article 5. Pub. date: June 2018.

http://www.xenproject.org/
http://dx.doi.org/10.1145/2884781.2884880
http://dx.doi.org/10.1109/CLOUD.2012.61
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1007/978-3-540-30217-9_84
http://dx.doi.org/10.1109/4235.797969

