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ABSTRACT 

 

 

The widespread use of antibacterial drugs over the last 70 years has brought  

immense benefits to human health at the price of increasing  drug inefficacy. 

Antibacterial agents have a strong selective effect in both favouring resistant strains 

and allowing particular species and families of bacteria to prosper, especially in the 

healthcare setting. Whilst important gram positive bacterial pathogens such as 

Staphylococcus aureus and Streptococcus pneumoniae caused concern over the 

last 20 years because of the spread of antibiotic resistant strains, Enterobacteriacae 

have become the biggest challenge. They have very efficient mechanisms for 

genetic exchange as illustrated by the emergence and rapid spread of CTX-M beta-

lactamases and the carbapenemases. The unique epidemiology of 

Enterobacteriacae with substantial numbers colonising the mammalian gut and 

subsequent release into and spread in the environment presents a significant threat 

to human health because of the high levels of exposure for the whole community. 

The use of antimicrobials in agriculture combined with global movements of people, 

animals and food arising from worldwide industrialisation generates a diversity and 

level of resistance not seen previously. Control will require globally co-ordinated 

interventions similar to those needed to ameliorate climate change. 
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INTRODUCTION 

 

Professor L.P. Garrod, in whose honour this lecture was inaugurated in 1982 by the 

British Society for Antimicrobial Chemotherapy, was a pioneer of linking laboratory 

investigation to the clinical outcome of antimicrobial chemotherapy.  In 1954 Garrod 

published the results of the first comprehensive clinical trial of antimicrobial 

susceptibility testing and clinical outcome in urinary tract infection.  He made the 

observation that outcome was closely linked to the in vitro antibiotic susceptibility of 

individual strains of different bacterial species  in the routine laboratory1.  He can, 

therefore, be regarded as one of the first to study the epidemiology of antimicrobial 

resistance in Enterobacteriacae, the subject of this Garrod lecture. 

 

I feel very privileged to have been invited to deliver this Garrod lecture for 2017, 

particularly as I attended the first lecture given by Professor Sir Mark Richmond in 

1982 at the Zoological Society of London.  He, together with Professor Peter Bennett 

and Professor David Speller, supervised my MD degree at the University of Bristol in 

the early 1980s.  The project focused on gentamicin resistant Providencia stuartii 

that were causing infections particularly in Care of the Elderly Wards (CoEW).  The 

reservoirs and mode of spread of P.stuartii were poorly understood, as clusters of 

cases occurred with colonised urine in catheters as the presumed source of 

infection, at other times occurrence of overt infection was sporadic with no apparent 

source2 .  A detailed study of a male CoEW showed that faecal colonisation 

represented the most significant reservoir 3.  During the course of collecting strains 

for this study a series of isolates were obtained over a 20 month period from a 

patient with a long term urinary catheter colonised by a single serotype (O:63) of 

P.stuartii.  The isolates suddenly developed resistance to carbenicillin having 

previously been susceptible. Plasmid isolation, restriction endonuclease digestion 

mapping and isoelectric focussing of the β-lactamase from these resistant isolates 

showed that a 34 kilobase cryptic plasmid carried by the sensitive isolates had 

acquired two copies of the class II transposon TnI encoding the TEM-2 β-lactamase 

4.  This turned out to be an extremely rare example of horizontal transfer of antibiotic 

resistance genes in the clinical environment.  Such transfer events are key to the 
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evolution of antibiotic resistant plasmids and although presumed to occur quite 

frequently, are hardly ever observed in nature. The  class II transposable element IS 

1071, has been hypothesized to be involved in multiple mobilisations of a number of 

the important polychlorinated biphenyl (PCB) catabolizing genes found in   

environmental bacteria in industrially polluted soils.  The remarkable similarity of the 

flanking IS 1071 sequences, despite huge geographic separations, suggested the 

same process had occurred as found in my P.stuartii strains5.  My work at Bristol 

sparked a lifelong interest in the evolution of the genes and mobile elements 

encoding β-lactamases and the dynamics of faecal carriage of the host bacterial 

species. 

 

EPIDEMIOLOGY OF β-LACTAMASE GENES 

 

The ability of antibiotic resistant Shigella spp to transfer specific resistance markers 

to E.coli by cell to cell contact (conjugation) was first recognised by the Japanese 

scientists Watanabe, Mitsuhashi and Akiba between 1959 and 19616.  Naomi Datta, 

working at The Royal Postgraduate Medical School, Hammersmith London, 

produced  the first report of conjugative antibiotic resistance transfer in Europe 

reporting  transfer of streptomycin, tetracycline and sulphathiazole resistance 

between Salmonella typhimurium and  Shigella sonnei7.  She went on to identify a β-

lactamase produced by an isolate of Escherichia coli from the blood culture of a 

patient in Greece named Temionera, so the enzyme was named TEM.  This was the 

first β-lactamase from Gram negative bacteria identified to be carried on a 

transmissible R factor (plasmid) and to be purified in scale and characterised, its 

ability to hydrolyse the recently introduced antibiotic  ampicillin was particularly 

significant 8.  The genes encoding the TEM β-lactamase were subsequently shown 

to be capable of replicative transfer from one plasmid (the early R plasmid RP4) to 

another and  was the first antibiotic resistance transposon to be  identified 9.  

Transposition is defined as the insertion of a DNA sequence into a new location, on 

the same molecule or on a different one, ie a DNA rearrangement by a specialised 

form of recombination ,that is  are able to transpose independently of the rest of the 

structure.  Various types of transposon exist, the most “evolved” being the complex 

transposons.  The genes concerned with transposition and other unrelated genes 
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are located side by side and form a single mobile module.  Transposons are defined 

as transposable elements that accommodate at least one gene unconnected with 

transposition the expression of which confers a predictable phenotype on the cell, for 

example an antibiotic resistance gene in the case of antibiotic resistance 

transposons.  These elements may be carried on the bacterial chromosome, or by a 

bacteriophage or a plasmid.  The most common location for antibiotic resistance 

transposons is on a conjugative plasmid.  Whether this reflects a natural distribution 

or experimental bias is not clear, but whole genome sequencing and metagenomics 

studies should provide an answer to this question the future. 

A further mechanism for the movement of antibiotic resistance genes was 

recognised about 20 years ago namely the integron.  Integrons are site specific 

recombination elements which mediate the organised transfer of genes on cassettes 

10. Antibiotic resistance genes are the most commonly carried genes and therefore 

represent an important molecular mechanism for horizontal gene transfer.  The 

integrons carry their cassettes downstream of a recombinase encoding a conserved 

sequence (CS) which carries a strong promoter 11.  This promoter enables the 

expression of the inserted cassettes which can have originated from unrelated 

bacteria which use different sigma factors to the new host bacterium.  Integrons are 

found on a wide range of conjugative plasmids some of which have a remarkably 

wide host range.  It is striking that the metallo-carbapenemases IMP and VIM are 

almost exclusively found on class I integrons. 

During the 1960s the widespread use of the aminopenicillins such as ampicillin and 

carbenicillin together with other antibiotics such as tetracyclines, chloramphenicol 

and sulphonamides drove increasing rates of resistance particularly as they are all 

mediated by R factors.  The extent of this resistance, its strong association with 

transmissible plasmids and its widespread distribution in the faecal flora of the 

general population was identified by a seminal study by Naomi Datta published in 

196912 .  Patients admitted to the Hammersmith Hospital, London for routine surgical 

procedures were asked to provide a sample of faeces on admission, following their 

operation and before leaving hospital.  Antibiotic resistant Gram negative bacilli were 

isolated on MacConkey’s agar formally identified and tested for susceptibility to 

ampicillin, streptomycin, tetracycline, chloramphenicol, kanamycin, sulphathiazole, 

polymyxin B, nitrofurantoin and nalidixic acid.  The ability of these resistances to 



12 

 

transfer to E.coli K12 was then determined. Seventy of the 100 pre-admission 

specimens yielded resistant coliform bacteria of which 52 were  resistant E.coli.  The 

majority (61%) of the 139 resistant strains of E.coli on  admission, following surgery 

and before discharge transferred resistance to E.coli K12.  There was only a slight 

increase in resistance rates in samples taken during hospital admission when 

compared to the rates in the community.  Sulphonamide and tetracycline resistance 

was common with associated streptomycin resistance in a smaller number of strains. 

Ampicillin resistance was by the time of the survey (1968) already common in the 

community E.coli as 18/81 (22%) resistant E.coli pre-admission were resistant to 

ampicillin and therefore must be presumed to have been carrying the TEM β-

lactamase.  The difficulty of predicting susceptibility and the importance of 

susceptibility testing was emphasised in the discussion.  The following chillingly 

accurate prediction was made “drugs to which coliform bacilli are still usually 

sensitive such as kanamycin or gentamicin must be brought into use, which will in 

turn have  the effect of favouring resistant bacteria and may result in the 

dissemination of  R factors conferring resistance to increasing numbers of drugs” 12. 

Indeed in the latter part of the 1970s nosocomial outbreaks of cross infection by 

gentamicin resistant Klebsiella pneumoniae were reported, one of the earliest  

coming from Bristol, UK 13.  They identified asymptomatic faecal colonisation of 

patients as the source of infections caused by the K. pneumoniae with secondary 

colonisation of patients’ skin and transmission on staff hands as the route of spread.  

Introducing routine faecal screening followed by patient isolation completely 

controlled the outbreak. 

Investigation of the mechanisms of resistance to gentamicin in these outbreaks 

identified aminoglycoside inactivating enzymes to be responsible, the genes often 

residing on transposons located on plasmids.  The first study to really conclusively  

demonstrate the movement of a common plasmid amongst different bacterial 

species over time using molecular methods was that undertaken in a hospital in 

Boston, USA by Tom O’Brien and colleagues14 .  They followed an outbreak of 

gentamicin resistant Gram negative bacilli which occurred initially in a single strain of 

K.pneumoniae which carried plasmid mediated resistance to gentamicin due to 2” 

aminoglycoside nucleotidyltransferase – AAD (2”) as well as resistance to 

sulphonamides, chloramphenicol and the production of TEM 1 β-lactamase 
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conferring resistance to ampicillin.  Between 1975 and 1977 this Inc M plasmid which 

had a highly conserved Eco RI DNA restriction endonuclease digestion pattern 

spread to multiple species of Enterobacteriacae and finally became dominant in  

Serratia marcescens and E.coli.  The authors commented “These observations 

emphasized that resistance genes are too complex to arise often by chance 

mutation, so most strains of bacteria have to get them by transfer from other strains.  

Thus the delivery of an antibiotic resistance gene through the world’s bacterial flora 

to a strain exposed to that antibiotic may be as necessary for the emergence of 

resistance as is the antibiotic exposure.”14 . 

 

Although this paper was written nearly 40 years ago the same basic principles apply 

to the scientific community’ efforts to counter the spread of resistance to the latest 

antibiotics such as carbapenems and the diaza-bicyclo-octane β lactamase 

inhibitors.  It is also critical to understand the epidemiology of the host bacterium and 

then to investigate the movement and evolution of plasmids within those bacterial 

hosts and then the movement of individual antibiotic resistance genes between 

plasmids and the chromosome.  Without an understanding of each one of these 

aspects it is not possible to truly characterise the movement of antibiotic resistance 

genes in humans, animals or the environment. 

At the beginning of the 1980s the prospects for reliably treating serious infections 

caused by Enterobacteriacae were poor.  However, the development of the extended 

spectrum cephalosporins,  more frequently referred to as third generation 

cephalosporins (3GCs), starting with cefotaxime followed by ceftazidime and 

ceftriaxone saved the day.  These antibiotics were stable to almost all the then 

circulating β lactamases, particularly those found in nosocomial strains of Klebsiella, 

Enterobacter  and Serratia and therefore almost all the other Enterobacteriacae were 

susceptible to these new antibiotics.  

 It would not be long before bacterial evolution put bacteria ahead in the eternal arms 

race that is antimicrobial treatment.  In France, where cefotaxime had been heavily 

used since 1980, strains of K.pneumoniae were reported in 1987 from isolates 

collected as early as 1984 which were particularly resistant to cefotaxime were found 

to produce a plasmid encoded β lactamase then called CTX-1 15.  The β lactamase 
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was then recognised as being derived by mutation from the widely distributed TEM-2 

β lactamase (not capable of degrading 3CGs and very closely related to TEM-1) by 

two amino acid substitutions of which the G238S conferred a  substantial increase in 

the hydrolysis of the cefotaxime and ceftazidime 1617.  

 A number of different combinations of mutated TEM and SHV derived β lactamases 

were discovered  in short succession that were  capable of hydrolysing 3GCs, giving 

rise to the term extended spectrum β lactamases (ESBLs)18 .  There have been a 

number of definitions of ESBL.  The most pragmatic is: “a β lactamase, generally 

acquired rather than inherent to a species, that is either able to confer resistance to 

oxyimino-cephalosporins (but not carbapenems) or that has had an increased ability 

to do so, as compared with classic numbers of its genetic family (ie a mutant)” 19.  In 

order to be meaningful the definition requires that the ESBL class also be specified, 

eg TEM ESBL or CTX-M ESBL.  As the number of both individual genotypes of 

ESBL and molecular families expanded it became clear that a range of MICs to 

3GCs existed some of which were found to be in the susceptible range.  This led 

EUCAST and CLSI to recommend that susceptibility results should be reported “as 

found” and the presence of either ESBL genes or the phenotypic characteristics of 

ESBL not be sought.  An expert group convincingly argued that ESBLs should 

continue to be sought for three reasons.  Firstly although there are cases where 

3GCs have been effective in treating infections due to ESBL producers that exhibit a 

low MIC, there are a similar number of cases that failed treatment.  Secondly routine 

susceptibility testing is less accurate than research methods and ESBL producers 

with MICs 1-8 mg/L will oscillate between susceptible and resistant depending on 

who tests them.  Finally, although EUCAST and CLSI advocate testing for 

epidemiological purposes, it is likely that many laboratories will not test at all leading 

to a loss of critical information.  It is, therefore, prudent to continue to search for  

ESBLs among  all isolates and when found generally to avoid substrate drugs for 

therapy 20.  Retrospective analysis of a strain of K.oxytoca isolated in 1982 from  a  

neonatal unit in Liverpool, England, represents the earliest known isolate of ESBL  in 

the UK 21.  There had been an outbreak of nosocomial infection due to a gentamicin 

resistant but ceftazidime susceptible strain of K.oxytoca that produced TEM-1 β 

lactamase.  Patients were treated with ceftazidime but subsequent isolates  were 

resistant to ceftazidime.  DNA sequencing showed the mutant TEM-1 gene was 
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carried on a 141 kb plasmid in all the isolates with a G164S mutation associated with 

the ESBL phenotype. This genotype is now recognised at TEM-1221 . 

 

The TEM ESBL emerged worldwide and caused a number of outbreaks 2218.  Some 

particular genotypes such as TEM-10, 12 and 26 pertained particularly common in 

both Europe and North America and these all carry a mutation R164S which has 

been shown to further enhance hydrolysis of ceftazidime over the original TEM-3 

G238S mutation17 .  The evolutionary value in clinical settings of these mutations 

conferring the ESBL phenotype was brought to my attention when investigating an 

outbreak of cefotaxime resistant Enterobacteriacae on a paediatric oncology ward at 

St James’ Hospital, Leeds, England between November 1989 and January 1990 23.  

A total of 81 isolates of 6 species of Enterobacteriacae (K.oxytocoa and E.coli were 

the most common with  28 isolates of each species) were analysed in detail 

revealing the presence of TEM-10B, TEM-12B and TEM-26B carried on plasmids 

ranging in size form 2.5-150 kb.  This was a complex outbreak with some patients 

carrying multiple species containing mixtures of TEM genotypes which was probably 

driven by the fact that we had shown that at least the blaTEM-12 genes were 

transposable24 .  We then realised that our  TEM genotypes were derived from TEM-

1, whereas the TEM-10, TEM-12 and TEM-26 reported from the USA were derived 

from TEM-2 25.This represents one of the few characterised examples of convergent 

evolution by selection from different antibiotic resistance genes leading to common 

genotype.  Furthermore we observed identical ribotype strains of both E.coli and 

Klebsiella producing both TEM-12B and TEM-26B suggesting that the single point 

mutation had been acquired on the ward23.  We produced evolutionary trees to 

suggest the likely paths of evolution by mutation of the genes taking account of 

synonymous and non-synonymous nucleotide changes.  TEM-26 has a single 

mutation E104K (glutamic acid to lysine) which is now recognised to increase 

ceftazidime hydrolysis approximately 40-fold17 suggesting it would be favoured in a 

clinical environments with heavy usage of ceftazidime.  It is tempting to speculate 

that the early TEM-12 producing K.oxytoca found in 1982 in Liverpool had survived 

and spread in the north of England undetected and seeded the Leeds outbreak 

seven years later. 
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During the 1990s it seemed that TEM and SHV ESBLs were not spreading widely 

and did not appear to be producing catastrophic levels of resistance to 3GCs.  They 

also did not seem to spread widely into the environmental and commensal pool of 

Enterobacteriacae, even in countries where ESBL phenotype rates were being 

reported as high such as China and India although there were very little data from 

those countries.  The world was on the verge of experiencing arguably one of the 

biggest, most serious antibiotic resistance outbreaks, namely the emergence from an 

environmental bacterium Kluyvera and the global spread of the CTX-M family of 

ESBLs.  The event has been justifiably described as a pandemic 26. 

 

THE ORIGIN AND EVOLUTION OF THE CTX-M PANDEMIC   

 

. The initially named MEN-1 ESBL from an E.coli isolate characterised in France 

from a patient in Italy (1990) was found to be identical to CTX-M-1 from an E.coli  

isolated from a child in Germany (1989)27. The same paper also reported 2 further 

isolates of CTX-M-1 producing E.coli from Germany in 1994, but they were regarded 

as examples of unusual β-lactamases because of their rarity in Europe. In the 1990s 

in South America the emergence and recognition of CTX-M-2 was seen as much 

more serious as the enzyme was found in Salmonella typhimurium, E.coli, Klebsiella 

spp. and Proteus mirabilis in Argentina and Paraguay 28.  We now realise this was a 

turning point in the evolutionary history of β-lactamases in Enterobacteriacae.  In the 

case of the CTX-M gene it emerged in Enterobacteriacae as a result of horizontal 

gene transfer from an environmental bacterium living in the rhizosphere. The 

chromosomal homologs of the CTX-M genes in different species of Kluyvera have 

been mobilised into Klebsiella spp and E.coli on different occasions and global 

locations, which gave rise to 4 sub lineages often referred to as “groups” (CTX-M-

1,2,9,&8; named after the archetypal enzymes of each group).  A phylogenetic 

analysis suggested that the mobilization from Kluyvera spp chromosomes happened 

twice for the  CTX-M-2 group, at least 3 times for CTX-M-1 whereas, CTX-M-9, CTX-

M-8 and CTX-M-25 groups all only mobilised once29. The indisputable proof of this 

evolutionary route came from work in Paris by Poirel and Naas that showed that the 

neighbouring sequences of bla CTX-M-2, bla CTX-M-5 and Toho-1 were identical to those 

in the flanking chromosomal sequences in  Kluyvera ascorbata 30. Kluyvera spp are 
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one of a number of species of bacteria that solubilize inorganic phosphate to make it 

available to plants 31.  They form part of the complex plant microbiome which is 

located in the root mycorrhizae which are comprised of a very large number of  

bacteria and fungi including the Streptomycetes and Actinomyctes bacteria many of 

which produce antimicrobial metabolites32. These bacteria are used to produce many 

of our therapeutic antibiotics.  Kluyvera ascorbata has been shown to produce a 

siderophore which allows plants to grow in the presence of nickel contamination.  

Using fluorescence staining K.ascorbata has been showed to be tightly attached to 

roots and seeds of many plants 33.  It is entirely plausible that Kluyvera.spp produce 

an inducible broad spectrum β lactamase to facilitate their survival in the mycorrhiza.  

All the species of  Kluyvera have been noted to have chromosomal copies of an 

inducible enzyme almost identical to the plasmid  mediated  CTX-M β lactamases.30 . 

Subsequently work in China showed  that another CTX-M variant, CTX-M-14,was 

more common than SHV and TEM type ESBLs, with smaller numbers of CTX-M-3 34.  

Simultaneously CTX-M-15 was described in Paris from six of isolates from New 

Delhi in India.  These two particular genotypes have assumed worldwide dominance 

with reports from studies in India and China showing these to be the dominant CTX-

M, and in the case of India CTX-M-15 being the only genotype present in the entire 

country3536 . 

 My involvement with the CTX-M β-lactamases dates from my first visit to China in 

1998 to run a course on the detection of antibiotic resistant bacteria for the WHO 

Emerging Pathogens Initiative at the First Municipal Peoples Hospital in Guangzhou.  

Dr Jian Hui Xiong had carried out a survey of resistance of Gram negative bacilli to 

various antibiotics using NCCLS methodology and approved media.  The ESBL 

production rate was 33% for E.coli and 37% for Klebsiella pneumoniae. This was an 

exceptional finding so molecular characterisation was undertaken in my laboratory in 

Leeds.. There had only been a single confirmed report of SHV-2 in Klebsiella spp. 

and Enterobacter spp. in 1994 37 A total of 15 isolates of Enterobacteriacae including 

8 E.coli and 3 K.pneumoniae from Guangzhou were fully characterised.  SHV ESBL 

genes (SHV-11 & SHV-12) were found in 8 isolates but none of the other commonly 

recognised ESBL genes, were found using PCR.  I thought this may be a rare ESBL 

gene so in view of the strong cefotaximase activity a number of consensus PCR 

primers for various rarer ESBL genes including CTX-M were designed.   We were 
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delighted to obtain product from the PCR primers for CTX-M for 13 of the 15 

isolates.34. 

Subsequent transfer of plasmids and full sequencing with cloning revealed 3 novel 

CTX-M genes for which we were allocated the genotype numbers 13,14 and 15.  

Whilst the paper was in proof it was pointed out that our CTX-M-15 was identical to 

CTX-M-9 reported by Sabate and colleagues in Spain.  We had carefully checked 

our sequence and it was one base different to that in in Genbank for CTX-M-9.  

However, when we rechecked it in Genbank it appeared that the entry had 

subsequently been re-edited to the same sequence that we had, hence we amended 

our paper to refer to CTX-M-9 rather than CTX-M-15.  Ironically the number went 

back into the pool and was allocated to a bla CTX-M gene found in some Indian 

isolates characterised in Paris which is now recognised as the most common bla CTX-

M worldwide38 .  

Our identification of CTX-M-14 was the first description of what subsequently 

became the world’s second most common CTX-M ESBL.  Most importantly we 

identified ISEcp1as the likely mobilising element for blaCTX-M-14 as I knew it had been 

reported by P.D. Stapleton in an ICAAC abstract in 1999 as mobilising the 

chromosomal AmpC to become CMY-4 plasmid mediated AmpC β-lactamase 

39.Interestingly ISEcp1 was also associated with the mobilisation of blaCTX-M15
30.  Our 

Southern blots clearly showed the presence of the bla CTX-M-14 gene on both the 

chromosome and plasmids suggesting mobilisation most probably by one ended 

transposition.  We also demonstrated the migration at least in some strains to the 

chromosome of recipient strains following conjugation.  This was the first description 

of the mobilisation of bla CTX-M between replicons. It was also the first study to reveal 

the extent of the problem of ESBLs in China and to show that CTX-M-14 as the 

foremost enzyme.  The concluding sentence in our paper turned out to be prophetic: 

“the ease with which such bacteria can be isolated should be a cause for grave 

concern and indicates the need for more detailed surveillance and epidemiological 

surveys in this region, which has increasing contact with the rest of the world.”34 

 

Appearance and spread of CTX-M in UK 
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The appearance of CTX-M β lactamases in the UK occurred in a number of centres 

which perhaps supports the hypothesis of multiple introductions from  the two areas 

of the world where CTX-M β lactamases were most common, i.e. India and Pakistan 

and China.  A single isolate of Klebsiella oxytoca  producing CTX-M 9 was found in a 

patient in Leeds in May 200040 .  The first published UK outbreak was from 

Birmingham from between July 2001 and February 2002 involving 33 patients all 

infected with K.pneumoniae41 .  The start of the outbreak had been missed as a 

number of isolates of K.pneumoniae were noticed earlier in 2001 that were 

borderline susceptible to ceftazidime by disc diffusion.  It was only when the isolates 

were tested to cefotaxime and cefopodoxine that MICs of 2.0mg/L were noted and 

the recommendation was made in the publication to test either of these agents to 

detect all CTX-M genotypes41 . The genotype turned out to be the first description of 

CTM-X 26, which has only been reported from the Birmingham area and 

subsequently Israel42. 

Following the single report of CTX-M 9 isolated in May 2000 in Leeds 40 and the 

outbreak in Birmingham involving the clonal spread of a single strain of 

K.pneumoniae producing CTX-M 26 in 200141  there appeared the first published 

record of the occurrence of CTX-M-15 in the UK 43.  Prompted by our reports, The 

Health Protection Agency Antimicrobial Resistance Reference Laboratory examined 

a collection of isolates of Enterobacteriacae made in 2001 as part of a survey of 

susceptibility to piperacillin/tazobactam.  Amongst 122 cephalosporin resistant 

isolates of Enterobacteriacae 7 exhibited cefotaxime MICs at least 8-fold greater 

than the ceftazidime MIC.  These were selected and screened for the presence of 

blaCTX-M and 4 isolates of E.coli were found to carry blaCTX-M-15, 2 from one hospital in 

London, and one each from Newcastle-upon-Tyne and Belfast43 .  It was entirely 

possible  that CTX-M ESBLs had been present for some time at low levels.  

However, they certainly were not present before 1991, as an examination of a 

collection of 3,951 non-duplicate isolates of Enterobacteriacae from 96 hospitals 

across the UK collected in 1990-1991 only identified  five ESBL  producing isolates 

which were  all SHV ESBLs44 .  Subsequent screening of these isolates with CTX-M 

PCR primers failed to identify any blaCTX-M genes (Hawkey unpublished data).  The 

speed and diversity of genotypes with which CTX-M  β-lactamases penetrated the 

UK resistome at this time was illustrated by a study of the faecal carriage of CTX-M 
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in the faecal flora of 1000 individual outpatients at York District Hospital.  A total of 

17 isolates of E.coli, Enterobacter cloacae, Klebsiella spp. Citrobacter freundii 

produced CTX-M β-lactamases (5 blaCTX-M-15, 3 blaCTX-M-14, 9 blaCTX-M-9),
45 .  In a study 

of the earlier isolates found at the Health Protection Agency and other isolates 

submitted to the Reference Laboratory at Colindale it was established that CTX-M-

15 was the most frequently encountered genotype in the UK and that the earliest 

isolate in that collection was from May 200146 .  This was challenged by a study from 

Bristol which  reported a single isolate of E.coli producing CTX-M-15 from an 

abscess in an Indian lady made in May 2000 who had visited India in 199947.  

However, results from one  of our PhD students in Birmingham showed that CTX-M 

producing E.coli  well established in Birmingham in 2000 which with a  substantial 

population from South Asia suggests prior importation48 .  Nineteen isolates of E.coli  

producing CTX-M 15, all from the Queen Elizabeth Hospital, were made in 2000, the 

earliest being in July 2000, the majority (15) coming from ITU and Hepatology wards 

(see figure 1).  RAPD strain typing showed 7 isolates to belonged to one strain and 5 

to another distinct strain the rest were distinct strains.  In 2001, 10 isolates of E.coli 

were made largely from the original wards but now including an associated hospital 

and the first community isolate.  In 2002 the situation dramatically changed with 80 

isolates being recovered from patients in  all clinical specialties in the hospital and as 

well as 2 wards at a local orthopaedic hospital.  Only 2 isolates were cultured from 

the patients on the Liver and General Intensive Care Unit which was the first ward 

affected by the outbreak in 2000.  Significantly 9 isolates came from community 

patients suggesting the genes had now spread into the wider community.  The 

genotype distribution became much more complex (see figure 1) with CTX-M-15 

producing Klebsiella and  E.cloacae being  identified as well as CTX-M-14 and CTM-

M 26 which had caused on outbreak in 2001 at City Hospital on the west side of 

Birmingham, some 8 miles away from the Queen Elizabeth Hospital.  

 CTX-M-15 is the dominant genotype in the UK which has been ascribed to its strong 

association with the pathogenic clone of E.coli O:25b-ST131 following early 

recognition of this clone in an outbreak in Shrewsbury in 2003 in the West Midlands. 

The strain was designated strain A49 and  possessed the characteristics of the 

internationally dispersed E.coli phylogenetic group B2, serotype O:25 and sequence 

type ST131 recognised by Nicolas-Chanione and colleagues in 200750 .  They 
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identified these clonally related strains of CTX-M positive multi drug resistant virulent 

E.coli clonal group with highly homogeneous virulent genotypes and subgroups 

exhibiting highly similar PFGE profiles suggesting its recent emergence.  Three 

years after the initial study by Woodford in April-May 2006 we carried out a study of 

294 clinically significant ESBL positive  isolates of Enterobacteriacae from 11 

hospitals across the West Midlands of which 232 were E.coli that produced CTX-M 

β-lactamases51 .  Two hundred and eighty four produced CTX-M-15, the remaining 

10 isolates producing CTX-M-14(4), 9(2), 2(2) and 26(2).  Whilst strain A (ST 131) 

was the dominant clones 30% of isolates producing CTX-M-15 were of different 

sequence types.  This suggests there is a greater diversity of E.coli ESBLs 

producing infections in the UK than is often thought.  Recently an analysis of 95 

complete E.coli genomes of phylogroup B2 confirmed two earlier studies that North 

America was the likely location for the emergence of ST131 52.  CTX-M-15 is 

particularly associated with Clade C2 (also referred to a H30-Rx) which is one of the 

3 subclades identified in ST131 which are typically resistant to fluoroquinolones 

which have been suggested as a selective factor in the clade’s success.  The 

authors suggested that clade C diverged from B in about 1980 with the emergence 

of C2 in 1987.  Whilst acquisition of fluoroquinolone resistance was associated with a 

global rise in the C2 clade it was the prior acquisition of a variety of virulence factors 

that was a prerequisite for its global success.  Although acquisition of the CTX-M-15 

gene carried on plasmids in C2, this property in itself does not explain the success of 

ST131 as the population expansion occurred in both C1 (lacks CTX-M-15) and C2.  

The group also showed that the plasmids that carry CTX-M-15 are typically diverse 

with considerable variation in their DNA sequences 52.  In an extensive study of the 

CTX-M ESBL plasmids in a broad ranging study of isolates of ST131 E.coli collected 

in the UK that carried CTX-M-15 the plasmids were found to be mainly of the  

IncFIA4 and Inc FIA1 groups which includes the originally described UK CTX-M-15 

carrying plasmids which are similar to pEK499 53.  The spread in the UK of blaCTX-M-15 

was therefore attributed not just to clonal expansion but also to the horizontal 

dissemination of related plasmids. 

 

Global Distribution of Genotypes  
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There is a striking occurrence of particular genotypes in certain regions of the world 

e.g. CTX-M-14 in China, CTX-M-15 as the only genotype in India/Pakistan, CTX-M-3 

in South America, CTX-M-1 in Poland, Russia and Italy/Libya.  In a review  this 

geographical clustering was summarised using a world map with pie charts 

representing the proportions of genotypes reported 54. The hypothesis was advanced 

that an emergence in particular locations of CTX-M was favoured by high rates of 

antibiotic usage and poor health infrastructure (particularly sewage treatment).As the 

plasmid mediated CTX-M genes evolved by mobilisation from the chromosome of 

Kluyvera spp. Each mobilisation from a different species and geographical location 

gave rise to the locally prevalent genotype(s).  The subsequent spread of those 

evolved genotypes was then via the movement of people, demonstrated by the same 

genotypes appearing in countries with clear cultural/historical connections e.g. India 

and UK; Italy and Libya. The widespread movement of the Chinese often carrying 

with them CTX-M-14 and people from South Asia( India ,Pakistan, Bangladesh and 

Sri Lanka) with CTX-M-15 seemed to be the driver for the global spread of these two 

globally dominant  CTX-M genotypes.  In addition to the first recognition of CTX-M as 

the dominant ESBL in China 34 and CTX-15 in India35  we have undertaken  

genotyping surveys in  other countries.   

There were very few data from Arabian Gulf countries so we collaborated with 

microbiologists in Kuwait.55 .  The CTX-M-15 genotype was found to be totally 

dominant (27/29 isolates the remaining only two being CTX-M-9).  This finding could 

be explained by the very large numbers of guest workers, largely from India and 

Pakistan.  We also found CTX-M ESBLs to be more common in non- Kuwaiti Arabs 

with a history of recent travel.  Although very close geographically and culturally to 

the UK the first genotyping study in Ireland demonstrated some significant 

differences between the two countries 56. A total of 812 isolates of Enterobacteriacae 

from throughout Ireland were collected of which 506 from 462 patients harboured  

ESBL’s.  A single isolate from each patient was studied in more detail and all were 

subjected to PFGE analysis, a total of 371/462 being detected by our PCR method 

for CTX-M. Each PFGE type had a representative isolate genotyped by dHPLC for 

bla CTX-M genotype.  bla CTX-M15 was found in 177 isolates, bla CTX-M-14  in 78 isolates 

and with  3 isolates harbouring  bla CTX M-9 and a single isolate  bla CTX-M-1.  The 

occurrence of CTX-M-14 was much higher than in the UK which may reflect the 
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greater involvement of the population in beef and milk production.  In England CTX-

M-15 and CTX-M-14 are roughly equally distributed in cattle according to  the  UK 

Veterinary Laboratory Agency 57. 

 

We have now updated the global genotype map in a recent review58 .  Much more 

data are now available and some interesting recent changes can be observed 

(Figure 2).  China has previously been dominated by CTX-M-14 and CTX-M-9 since 

the first studies in the 1990s but in 2004/5 a study from Changsha in Hunan province  

CTX-M-15 emerged in 17.4% of CTX-M positive isolates presumable as a result of 

importation probably from South Asia59 .  A further study of Chinese CTX-M 

producing isolates from Changsha in 2013/14 showed that they now comprised 

27.5% of isolates.  They were mainly E.coli O:25bST131 but some  carried the 

previously undescribed fimH41 gene, which had presumably been acquired by 

recombination and has never been reported  from this clade60.  A single locus variant 

of CTX-M-15, CTX-M-55, has also become more common in China.  The other 

significant shift in genotypes has been the rise of CTX-M-27, which originally was 

described in France in 2003 as a single locus variant of CTX-M-14 with a D240G 

mutation which enhanced ceftazidime hydrolysis 61.  It has been increasing in 

frequency in China, Japan, South East Asia, North America and Europe58. 

 

FAECAL CARRIAGE OF CTX-M PRODUCING BACTERIA 

The natural habitat for many species of the Enterobacteriacae such as E.coli and 

Klebsiella spp. is the mammalian gut, so estimating the rates of colonization and 

antibiotic resistance is very important.  This was encapsulated by the concluding 

remarks of Naomi Datta in one of her papers nearly 50 years ago.  “Any measures 

which may be introduced to control or eliminate the spread of R factors will be 

assessable only if their incidence is followed over a period of years in normal 

intestinal bacteria as well as enteric pathogens” 12.  

 There are widely differing rates of CTX-M production in E.coli and Klebsiella, which 

is assumed to relate to the interplay between high levels of antibiotic  use in man and 

animals and the lower availability of safe sewage disposable and clean drinking 

water in countries with high  rates of ESBL carriage.  Worldwide surveillance for 

resistance in Enterobacteriacae has been poor prior to the institution by the WHO of 
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the GLASS programme.  The most comprehensive and established data  comes 

from the SMART programme supported by Merck & Co. Inc which surveys  the 

antibiotic susceptibility of Enterobacteriacae causing intra-abdominal infection.  Data 

from the Asia Pacific region for 2008 showed that ESBL rates in E.coli were 61% 

India,  59% China, 53% Thailand, 12.3% Singapore and 2.9% Malaysia which 

supports this hypothesis62.  Visitors to areas with high resistance rates acquire 

ESBLs and of the genotype dominant in that location, as was shown by  a recent 

study that 75% of those traveling to South Asia  acquired faecal carriage of ESBLs 

which were overwhelmingly of the CTX-M type 63.  Rates have been rising in all 

WHO regions since 2002 with the fastest growth occurring in the South East Asia 

and Eastern Mediterranean 64.  We investigated the rate of carriage of CTX-M 

producing E.coli in different sections in the community in Birmingham to ascertain 

what the degree of penetration of ESBLs was into the UK healthy population faecal 

resistome.  We examined 732 faeces samples in 2010 from individuals in the 

community  that had submitted samples for the investigation of GI illness65 .Using  

the Origins Info (Experian Ltd., Nottingham ,UK) software to identify the individuals’ 

cultural, ethnic and linguistic origins when  applied to the personal and family name 

of the patient. Selective culture and PCR/DNA sequencing was used to identify 

blaCTX-M genogroups and types.  Eighty CTX-M producing isolates were identified 

from 723 patients. Carriage rates in those of European origin was 8.1% and for those 

of Middle East and South Asia origin 22.8%,who also carried a statistically 

significantly higher proportion of CTX-M 15 producers65. 

 A much larger, carefully stratified studied of CTX-M carriage in Enterobacteriacae 

across England was then undertaken66 .  Faeces from healthy individuals in the 

community were obtained from 2430 individuals from 4 distinct geographic locations 

together with a detailed questionnaire about their lifestyle and medical history.  

Marked geographic variation was seen.  The overall rate of carriage was 7.3% but 

the results for individual locations were as follows:  Shrewsbury 4.9%, Southampton 

9.2%, Newham (London) 12.7% and Birmingham 16.0%.  Particularly high rates 

were seen in those born in South Asia (25.0%) and in travellers in that region in the 

last year (38.5%).  The authors suggested that patients presenting with sepsis with 

these risk factors should be treated with antibiotics active against ESBLs, which is 

supported by recent UK national guidance 67. 
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THE ROLE OF FOOD ANIMALS IN ANTIMICROBIAL RESISTANCE 

Food is the major vector for the transmission of antibiotic resistant gastrointestinal 

pathogens and in the case of Salmonella enterica producing CTX-M β-lactamases 

particularly from poultry the genotypes encountered sometimes correspond with the 

locally common human genotypes 68.  In areas of the world where CTX-M β-

lactamases are common the genotypes carried by commensal E.coli in food animals 

often are the same as human ones  69 .  A survey of E.coli producing  CTX-M β-

lactamases isolated from UK retail chicken breasts in 2006 showed that  CTX-M-2, a 

genotype common in Brazil but rare in the UK was found in samples from 4/10 

imported Brazilian chicken breasts. Only 1/62 samples from  UK produced chicken 

were positive for CTX-M 1, showing that UK produced chicken meat  was not a 

major source of CTX-M-15 producing E.coli70.  There has been considerable debate 

as to whether such foods can lead to colonization of the human gut with AMR 

Enterobacteriacae, it being argued that animal E.coli strains are poorly adapted for 

survival in the human gut71.  However work by Professor M H Richmond and 

colleagues in the 1970s showed that antibiotic resistant E.coli could be acquired 

from normally cooked chicken particularly if antibiotics were being taken by the 

individual 72. 

A comprehensive study of a small town in the Netherlands led by  Dutch 

collaborators together with our group was undertaken  to ascertain the distribution of 

CTX-M genotypes and sequence types of E.coli  amongst food samples, patients 

with bacteraemia and faecal samples obtained on admission to hospital. The  study73  

demonstrated that the same genotypes that were most common in the human 

subjects  were present in the chicken and other meat and that those strains caused 

bacteraemia. CTX-M-1 was also the dominant (58.1%) genotype in chicken samples 

and the same genotype was also responsible for 28% of bacteraemias. Whilst we 

could not make an absolute link between the individual strains this study stimulated 

further studies. 

A study was undertaken in Guangdong Province, China in 2010 to look at retail fish 

prior to consumption for both the presence of bla CTX-M and plasmid mediated 

quinolone resistance.74 Relatively low numbers of bla CTX-M were found but all of the 

genotypes were those seen frequently in the Chinese population namely bla CTX-M-14 
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and bla CTX-M-79.,with  19/112 strains carrying ESBL genes. Very high rates of plasmid 

mediated quinolone resistance (PMQR) were found,  in 59 of 80 strains picked from 

non-selective media.  This was the first study to demonstrate the existence of high 

levels of PMQR genes in farmed fish in China as well as the presence of bla CTX-M 

ESBL genes. 

More recently the abuse of antibiotics in fish farming has been highlighted in China 75 

and  globally 76The recent recognition of  plasmid mediated resistance to colistin in 

China presents incontrovertible evidence of the  linkage between the usage of 

antibiotics in animals and the selection of resistance in human strains of E.coli  

carried in the gut. Gut carriage of E.coli has been suggested to be a route for the 

national and international movement of AMR genes in Enterobacteriaceae77.  Colistin 

is not licensed for use in humans (nor has it been used) in China whereas 

substantial amounts are used in poultry, pig and fish production.  A study78, in 

Southern China, in 2014 showed that 28.0% of E.coli from chicken and 22.5% from 

pork carried the  mcr-I gene conferring resistance to colistin.  Despite no human 

usage 13 of 902 (1.4%) of clinical isolates of E.coli carried mcr-I 78.  Recent work 

from China shows mobilisation of mcr-I by ISEcp1 and ISApl1 into 10 different 

families of plasmids including the broad host range plasmids belonging to IncF1, 

IncF1b and IncFII79.  Consequently we can, therefore, expect mcr-1 to become 

widely distributed and, if associated with other antibiotic resistance genes, co-

selected by other agents use thus compromising one of the few remaining agents for 

use against AMR Enterobacteriacae.   

 

AMR GENES FROM MAN AND ANIMALS IN THE ENVIRONMENT 

Antibiotic resistant Enterobacteriacae are different from other AMR bacteria because 

of their unique ecology.  Unlike other resistant bacteria such as  MRSA, 

Acinetobacter spp, Streptococcus pneumoniae, AMR Enterobacteriaceae pass from 

our faeces into the environment in large numbers where they can persist and migrate 

into different parts of the ecosystem only to return to colonize and infect humans.  

This all occurs on a global scale, particularly with the increased in movement of 

people, animal and food around the world.  We therefore have a circular 

amplification pathway with antimicrobial use causing selection at different parts of 

this resistome cycle driving resistance levels upwards, as depicted in figure 3. This 
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encapsulates the wider impact of my interest in the gut resistomes in humans and 

animals which is summarised in a recent review 80. In developed countries human 

sewage is processed in waste water treatment plants (WWTPs).  Working with 

colleagues at the University of Warwick, we have examined the impact WWTPs have 

on the resistome cycle.  In a study to estimate the occurrence of CTX-M producing 

Enterobacteriacae in the river sediment upstream and downstream of the WWTP in 

Coventry we demonstrated a dramatic increase in bla CTX-M-15 downstream of the 

WWTP.  Ten novel genetic contexts for the gene were identified in 

Enterobacteriacae including E.coli ST131 and indigenous aquatic bacteria such as 

Aeromonas media 81.  Further work on the site has demonstrated that class I 

integrons were widely distributed together with ARM genes in both human derived 

strains and aquatic bacteria. We also found high boron levels (a detergent marker) 

downstream of the WWTP and observed that 75% of CL1s had intact QAC genes 

conferring resistance. Quaternary ammonium compounds (QACs)which  are widely 

used  and pass into sewage.  Laboratory experiments showed successful transfer of 

AMR genes from these strains using QAC as the sole selective agent82 . 

This raises the question as to what the impact this route has on AMR in humans.  As 

yet we do not have clear data on these ecosystems and further research is needed80 

.  However, a recent study of people exposed to bathing waters had a higher rate of 

colonization with CTX-M producing E.coli than controls, 6.3% versus 1.5% (risk ratio 

4.09, p=0.05)83 . 

 

CONCLUSIONS AND FUTURE PROSPECTS 

AMR in Gram negative bacilli is very similar to climate change in that both are the 

result of human activity, both have a global impact and likely interventions will need 

to be made on a massive scale without results becoming immediately apparent or 

even being certain of success. 

The development of new antimicrobial agents has been the mainstay of ensuring 

effective treatment of infections caused by Enterobacteriacae.  The succession of 

agents described in this lecture from aminopenicillins to aminoglycosides, extended 

spectrum cephalosporins, carbapenems, polymxins and now diaza-bicyclo-octane β-

lactamase inhibitors is driven by the successive spread of resistance to each class.  

The rate of emergence of resistance to an agent is highly unpredictable and picking 
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which gene(s) are going to be successful is almost impossible.  The rise of different 

carbapenemase genes following the widespread use of carbapenems to treat 

infections caused by ESBL  producing Enterobacteriacae is well documented with 

the KPC ,NDM and OXA enzymes being most common currently 77.  When 

carbapenems were first used it was the IMP metallo-β-lactamases which were most 

common, particularly in Japan.  The first carbapenemase genotype to be described 

in China was IMP-4 in a single isolate of Citrobacter in 1998 84 and would have been 

expected to spread.  Initially IMP-4 was absent from surveys of Enterobacteriacae  

for many years, before appearing  in  Australia in 2004 where it spread rapidly in 

different species and was associated with different mobile elements to become the 

most important carbapenemase in Australia85 .  Recently, whole genome  

sequencing of the original plasmid from China  showed it to have a completely 

different evolutionary origin to those seen in Australia, an unexpected finding 86. 

The interventions that are likely to have an effect are not particularly novel but 

require implementation across the globe.  The disparity in the size of reservoirs of 

AMR Enterobacteriacae is driven by high levels of human usage of antibiotics, so  

the implementation of good practice for treatment  and infection control recently 

published for the UK are to be commended 8767.  Translating those for use in other 

parts of the world is difficult but not impossible.  Action by highly influential countries 

which is then scaled up has been suggested to be a feasible model to achieve global 

action over AMR 88.  The UK’s actions through the G7 and other world fora together 

with continuing leadership in this area is very important.  China has, through national 

surveillance, shown that E.coli bacteraemia caused by CTX-M producing ESBLs has 

reached very high levels of 55% of those acquired in the community 89 .There is a 

determination in government in China to address AMR. A recent analysis has 

identified barriers such as perverse incentives to prescribing (i.e. linking prescribing 

to income) as well as poor prescribing practices.  The review  also suggested policy 

changes which, if implemented, could greatly improve the situation 90.  Possibly the 

biggest problem, and if solved the biggest opportunity for success, is in dealing with 

the agricultural use of antibiotics.  Agricultural systems for food production 

particularly in India and China have become industrialised and globalised which at 

the moment demands the extensive use of antibiotics. The rise of the use of 

supermarkets globally as personal incomes rise91 has had and will continue to drive 
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the increased rise in the industrial  production  of food which will have to be 

addressed.  

As molecular microbiologists we now have the tools to investigate the multiple 

genetic events occurring in the gut which are involved in the spread of antibiotic 

resistance.  A recent study of the transfer of bla CTX-M-1 in strains of E.coli in a patient 

receiving multiple antibiotics revealed a dramatic diversity of strain/plasmid 

combinations92 .Clearly the relationship that  bacteria have with their resident R 

plasmids and they with  its host bacterium is unique and was shown by a recent 

study that the fitness cost for plasmid carriage varies according to the host 

bacterium93 . 

Antibiotics have been widely used in large amounts for the last 70 years, but we 

have witnessed a plethora of genes emerge to encode resistance to each new 

antibiotic active against the Enterobacteriacae. Moreover the core plasmids carrying 

these genes appear to be capable of evolving and staying at the forefront of the 

selection battle.  Indeed the plasmid carried by a K.pneumoniae strain from China 

encoding bla CTX-M-14 originated from R100, a plasmid identified in the 1960s 94. 

We have the tools at our disposal to understand the biology of AMR 

Enterobacteriacae and have sufficient knowledge of the interventions likely to reduce 

AMR. The only real question remaining is whether we have the political will to act to 

sustain effective treatment for patients suffering from infections due to this important 

group of bacteria.  
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Figure 1 Occurrence of CTX-M producing Enterobacteriaceae and 

genotype isolated at the Queen Elizabeth Hospital 2000 – 2002 48. 
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Figure 3 The resistome cycle-diagram outlining the transfer pathways for 

 antibiotic resistance genes/bacteria between humans,animals,food and 

the environment95
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Figure 2 Proportions of genotypes of  CTX-M producing  

Enterobacteriacae from country studies ,* indicates only genotype group 

determined58.  
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