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ARTICLE

Uncovering pseudotemporal trajectories with
covariates from single cell and bulk expression data
Kieran R Campbell1,2,4 & Christopher Yau2,3

Pseudotime algorithms can be employed to extract latent temporal information from

cross-sectional data sets allowing dynamic biological processes to be studied in situations

where the collection of time series data is challenging or prohibitive. Computational

techniques have arisen from single-cell ‘omics and cancer modelling where pseudotime can

be used to learn about cellular differentiation or tumour progression. However, methods to

date typically implicitly assume homogeneous genetic, phenotypic or environmental

backgrounds, which becomes limiting as data sets grow in size and complexity. We describe

a novel statistical framework that learns how pseudotime trajectories can be modulated

through covariates that encode such factors. We apply this model to both single-cell and bulk

gene expression data sets and show that the approach can recover known and novel

covariate-pseudotime interaction effects. This hybrid regression-latent variable model

framework extends pseudotemporal modelling from its most prevalent area of single cell

genomics to wider applications.
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Dynamic or progressive biological behaviour are ideally
studied within a longitudinal framework that allows for
monitoring of individuals over time leading to direct time

course data. However, longitudinal studies are often challenging
to conduct and cohort sizes limited by logistical and resource
availability. In contrast, cross-sectional surveys of a population
are relatively easier to conduct in large numbers and more pre-
valent for molecular ‘omics based studies. Cross-sectional studies
do not directly capture the changes in disease characteristics in
patients but it may be possible to recapitulate aspects of temporal
variation by applying “pseudotime” computational analysis.

The objective of pseudotime analysis is to take a collection of
high-dimensional molecular data from a cross-sectional cohort of
individuals and to map these on to a series of one-dimensional
quantities, called pseudotimes. These pseudotimes measure the
relative progression of each of the individuals along the biological
process of interest, e.g., disease progression, cellular development,
etc., allowing us to understand the (pseudo)temporal behaviour of
measured features without explicit time series data (Fig. 1a). This
analysis is possible when individuals in the cross-sectional cohort
behave asynchronously and each is at a different stage of pro-
gression. Therefore, by creating a relative ordering of the indi-
viduals, we can define a series of molecular states that constitute a
trajectory for the process of interest.

Pseudotime methods generally rely on the assumption that any
two individuals with similar observations should carry corre-
spondingly similar pseudotimes and algorithms will attempt to
find some ordering of the individuals that satisfies some overall
global measure that best adheres to this assumption (Fig. 1a).
Exact implementations and specifications differ between pseu-
dotime approaches particularly in the way “similarity” is defined.
When applied to molecular data, pseudotime analysis typically
captures some dominant mode of variation that corresponds to
the continuous (de)activation of a set of biological pathways1.

Pseudotime analysis has gained particular popularity in the
domain of single-cell gene expression analysis (where each
“individual” is now a single cell) in which it has been applied to
model the differentiation of single-cells2–9 (a comprehensive
catalogue of single-cell pseudotime algorithms can be obtained
from https://github.com/agitter/single-cell-pseudotime). Using
advanced machine learning techniques, these methods can be
applied to characterise complex, nonlinear behaviours, such as
cell cycle, and modelling branching behaviours to allow, for
example, the possibility of cell fate decision making and lineage
reconstruction. However, these single-cell applications were pre-
dated by more general applications in modeling cancer progres-
sion10–12, as well as other progressive diseases13–16. Examples of
such work provided early inspiration for single-cell pseudotime
methods, e.g., Monocle2. To date, there has been little cross-over
between these distinct application domains in terms of metho-
dological development due to the different contexts in which
methods are applied. However, there are interesting possibilities
that could arise by translating recent advances in single-cell
pseudotime modelling and applying these to tackling related
problems in disease progression modelling. This is the topic of the
work presented here.

We focus on a variant of pseudotime analysis that has pre-
viously been unexplored. While recent single-cell pseudotime
approaches provide powerful means for unsupervised identifica-
tion of single or multiple, branching pseudotime trajectories,
these can only be retrospectively examined for their association
with prior factors of interest. We sought to develop a statistical
model in which these factors could be explicitly incorporated into
pseudotime analysis. This capability is important as it would
provide a mechanism to account for known genetic, phenotypic
or environmental factors allowing gene expression variability to

be decomposed into different contributory factors. Doing so
would allow us to answer questions related to the interaction
between heterogeneity in these external factors and biological
progression. For example, how does cellular development differ
when cells are exposed to different stimuli? Does the evolution of
transcriptional programming in cancer depend on the histo-
pathological classification of the tumours?

We describe a novel Bayesian statistical framework for pseu-
dotime trajectory modelling that allows explicit inclusion of prior
factors of interest. Our approach allows us to incorporate infor-
mation in the form of covariates that can modulate the pseudo-
temporal progression allowing sub-groups within the cross-
sectional population to each develop their own trajectory
(Fig. 1b). Our approach combines linear regression and latent
variable modelling and allows for interactions between the cov-
ariates and temporally driven components of the model. We
believe our method to be the first integrated statistical approach
to allow for modelling pseudotime trajectories on heterogeneous
backgrounds allowing its utility in both single and non-single cell
applications.

Results
A Bayesian approach for pseudotemporal learning with
covariates. We first give an overview of our statistical method
which we call “PhenoPath”. For simplicity, our descriptions will
assume that the observed data are high-dimensional gene
expression measurements which are used throughout our
empirical experiments but we stress that the model would be
applicable to a wider range of data modalities.

The objective of PhenoPath is to provide a probabilistic
ordering of high-dimensional gene expression measurements
across objects (e.g., cells, tumours, patients, etc) (see Fig. 1a). This
is achieved by compressing the information contained within the
data on to a unidimensional axis. Our aim is to construct an axis
such that relative positions along the axis correspond to some
meaningful biological or disease progression. The novelty of
PhenoPath is to introduce the notion that our objects may have
different labels (covariates) attached to them corresponding to
different innate properties or exposure to external stimuli. These
factors might cause the objects to evolve over (pseudo)time
differently (Fig. 1b). The result is that PhenoPath simultaneously
learns a pseudotemporal axis that is common to the different
object labels, while decomposing gene expression variability into
static and dynamic components.

More specifically, PhenoPath uses a Bayesian statistical frame-
work that integrates linear regression and latent variable
modelling. The observed data (yn) for the nth individual is a
linear function of both measured covariates (xn) and an
unobserved latent variable (zn) corresponding to latent progres-
sion that we will term pseudotime.

A schematic relating the parameters in the overall model is
shown in Fig. 1c. In PhenoPath, the model involves three
components: (i) gene expression is determined by a static
component based on your covariate status (AxTn ), (ii) a dynamic
component related to how far along the biological process you are
(λzn) and the main novelty (iii) an interaction component which
allows your covariate status to change the direction of the
dynamic component of the gene expression (BxTnzn). PhenoPath
reduces down to linear regression based differential expression
analysis or factor analysis based pseudotime analysis if only the
first or second components are used respectively. Standard
models are therefore nested within PhenoPath.

In our investigations, the covariates will be binary quantities
but this is not a necessary restriction and in practice any arbitrary
design matrix that can be used for standard regression may be
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used for x (Supplementary Results). Sparse Bayesian prior
probability distributions are used to constrain the parameters
(A, B, λ) so that covariates only drive the emergence of distinct
trajectories if there is sufficient information within the data to do
so. Computational inference within PhenoPath is handled by a

fast and highly scalable variational Bayesian inference framework
that can handle thousands of features and samples in minutes
using a standard personal computer making it readily applicable
to large data sets without the use of high-performance computing
(see Methods section for details). Though variational inference of
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independent of the (unknown) fraction. f Median AUCs measuring the accuracy of different approaches to detecting covariate-trajectory interactions using
Limma Voom for differential expression analysis. As before, PhenoPath is the only algorithm for which the accuracy is independent of the underlying
fraction of genes exhibiting covariate-trajectory interactions

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04696-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2442 | DOI: 10.1038/s41467-018-04696-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


such hierarchical Bayesian models can be sensitive to hyperpara-
meters values and parameter initialisation we found PhenoPath to
be robust to such choices by fitting on over 80 combinations of
(hyper)parameter initialisation (Supplementary Results).

Simulation study. We first developed a simulation study to assess
the performance of our model relative to existing approaches for
pseudotime estimation and differential expression analyses for
situations in which pseudotime trajectories are modulated by
covariate status. To do this we simulated pseudotemporally
regulated RNA-seq data from a nonlinear mean function with a
negative binomial noise distribution. This is an entirely different
generative process to that assumed by PhenoPath and designed to
test for robustness to model misspecification. We generated
simulated data sets containing gene sets involving 5, 10, 20, …,
50% of genes with covariate-trajectory interactions. An example is
shown in Fig. 1d where the direction of the pseudotime trajectory
depends on whether the artificial covariate x=−1 or x= 1. This
was repeated for data sets involving 200 and 500 samples, for high
and low noise regimes with 40 replicates per condition, giving 960
distinct data sets (see Supplementary Methods and Results).

We applied PhenoPath and four state-of-the-art pseudotime
algorithms: Monocle 28, Diffusion Pseudotime (DPT5), Wish-
bone7 and TSCAN3. We measured the median Kendall-τ
correlation between the inferred pseudotimes and the true
pseudotimes used in the simulations (Fig. 1e). Our results
showed that when the fraction of genes exhibiting covariate-
trajectory interactions is small (5%), all approaches perform well.
However, as expected, as this fraction increased (>10%), the
performance of PhenoPath remains consistent while the others
diminished rapidly since the latter do not account for such
interaction effects.

Next, for each data set and each pseudotime analysis, we
performed differential expression analysis testing for covariate-
trajectory interactions using Limma Voom17, DESeq218, MAST19

and Monocle 28. This gave a total of 35,520 distinct differential
expression workflows (full details in Supplementary Results). The
accuracy of each method to identify interactions was assessed
using the area under the receiver-operator curve (AUC). Again,
when the fraction of genes exhibiting covariate-trajectory
interactions is small (5–10%) then all algorithms perform well
at identifying interactions with high AUCs (Fig. 1f). However, as
this fraction increases, the AUC of all algorithms other than
PhenoPath rapidly decreases, while PhenoPath maintains the
ability to detect interactions.

Overall, our simulations showed that if pseudotime trajectories
are modulated by covariate status, then the application of
standard pseudotime algorithms may be sub-optimal if there
are a number of such interactions. For real data sets, where the
underlying fraction of covariate-trajectory interactions would be
unknown a priori, the uniformity of PhenoPath performance in
these simulations is advantageous. Furthermore, our integrated
model is more powerful than a two-stage procedure in which
pseudotime is fitted first and then standard differential analysis
applied since if pseudotime is incorrectly estimated at the first
stage, covariate-trajectory interactions will not be identified
correctly at the second stage (Supplementary Results).

An alternative analysis strategy is to fit pseudotime to subsets
of the data—one subset for each covariate value. This approach
would only be applicable for discrete covariates where there are
sufficient numbers of samples per covariate level but not
continuous covariates (PhenoPath can also use continuous
covariates). However, pseudotimes would have to be fitted to
every combination of the factor levels, resulting in an exponen-
tially increasing number of groups for pseudotime inference and

downstream analysis. Furthermore, while this could enable
accurate pseudotime estimation for each covariate group, it
would be necessary to align the pseudotime trajectories between
the groups leading to further algorithmic design and implemen-
tation choices. PhenoPath circumvents all of these issues by
providing an integrated model for deriving a single universal
pseudotime trajectory which is locally modulated for features that
vary by covariate status alleviating the requirement to align
multiple trajectories. Further discussion of this strategy is
explored in Supplementary Results.

Single-cell RNA-seq perturbation analysis. We next examined a
time-series single-cell RNA-seq (scRNA-seq) data set of bone
marrow derived dendritic cells responding to particular stimuli20.
Cells were exposed to LPS, a component of Gram-negative bac-
teria, and PAM, a synthetic mimic of bacterial lipopeptides, and
scRNA-seq performed at 1, 2, 4 and 6 h after stimulation. Using
the capture time information, the original study was able to study
single-cell gene expression dynamics under the two exposures.
However, although capture times were measured, previous ana-
lyses have suggested this data set is more suited to a “pseudotime”
analysis as the cells respond asynchronously and heterogeneity
exists within the cellular populations at each time point4.

We conducted an analysis using PhenoPath where we encoded
the stimulant to which the cells were exposed as a binary
covariate. Each gene was therefore modelled as a combination of
static effects due to LPS/PAM exposure, dynamic effects due to
temporal variation (independent of stimulant type) and dynamic
effects that were modulated by the stimulant. We applied
PhenoPath to 820 cells using the 7500 most variable genes from
a recent re-quantification of the original data set21 using
Salmon22. The capture times were not used for PhenoPath
analysis (details of quality control and data filtering are given
in Supplementary Methods).

A principal components analysis (PCA) representation of the
PhenoPath pseudotime fit is shown in Fig. 2a. Distinct response
trajectories of the dendritic cells under either LPS or PAM
stimulation are evident, with a common cell state at the beginning
of pseudotime diverging under LPS and PAM stimulation.
Despite capture times not being used as an input, the PhenoPath
pseudotime trajectory recapitulates the physical time progression
of the cells with an R2= 0.68 (Fig. 2b) with 7500 highly variable
genes as input. We compared the ability of PhenoPath to
recapitulate the physical progression of the cells through
pseudotime inference to three state-of-the-art pseudotime algo-
rithms (Monocle 28, DPT5 and TSCAN3) across a wide range of
gene set sizes. We found that for every input gene set size
PhenoPath reported a higher correlation with capture time
(Fig. 2c) than other methods tested. Figure 2d depicts the gene
expression behaviour for four selected genes based on the original
physical capture times that display apparent time-dependent
behaviour that depends also on the stimulation applied.
PhenoPath trajectories enhance our ability to resolve these trends
by aligning the cells under LPS and PAM on to a common
pseudotemporal scale without the need to compute separate
trajectories (Fig. 2e).

We next examined the genes whose behaviour over pseudotime
were most perturbed by LPS or PAM stimulation. We uncovered
a landscape of interactions where the (pseudo)-temporal
behaviour of expressed genes depended on whether the cells
were exposed to LPS or PAM (Fig. 3a). Figure 2e illustrates four
such genes. Most notably, the tumour necrosis factor Tnf had
around twice the interaction effect size of any other gene, and its
expression decreases under LPS stimulation but increases under
PAM. Further genes exhibit differential regulation according to
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stimulant, such as Mef2c that has constant expression over
pseudotime under LPS stimulation yet shows downregulation
under PAM stimulation.

To find out whether these interacting genes would have been
identified using a simple differential expression (DE) analysis, we
used Limma Voom17 to test for stimulant-dependent differences
in expression and compared this to the interaction coefficients (β)
inferred using PhenoPath (Fig. 3b). We found that while some
genes that exhibit stimulant-pseudotime interactions can be
identified as differentially expressed genes, the majority require

the explicit PhenoPath model to resolve the relative contributions
of the static and dynamic expression components.

To investigate which biological pathways are perturbed as the
cells progress under the different stimulants we performed a Gene
Ontology enrichment analysis23. Genes whose upregulation was
increased over (pseudo-)time by LPS exposure were highly
enriched for immune response (Fig. 3c), consistent with previous
results4,20 that suggest a “core” module of antiviral genes
upregulated at later timepoints in LPS cells, though discovered
through an entirely unsupervised and integrative methodology.
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We confirmed this by comparing the inferred pseudotimes of the
cells to the antiviral score based on the Id gene set from the
original publication, finding a strong relationship for both cells
stimulated under LPS and PAM (Fig. 3d). Furthermore, of the top
30 significant interactions with negative β values (indicating
stronger downregulation under LPS) 40% were present in the IIIc
peaked inflammatory module identified in the original publica-
tion, including Tnf and Malt1. In our analysis, PhenoPath was
able to successfully recapitulate previous results (obtained
through clustering and manual annotation) in an unsupervised
manner without knowledge of the capture times.

Pseudotemporal modelling in colorectal cancer. We next
applied our model in a non-single-cell setting by examining RNA
sequencing gene expression data from the TCGA colorectal
adenocarcinoma (COAD) cohort24 using microsatellite instability
(MSI) status as a phenotypic covariate. MSI is genetic hyper-
mutability that is present in ~10–15% of colorectal tumours and

is associated with differential response to chemotherapeutics and
marginally improved prognosis25. Pseudotime inference using
PhenoPath was applied to 4801 highly variable genes across 284
COAD samples (details of quality control and data filtering are
given in Supplementary Methods).

Using PhenoPath we identified a common pseudotemporal
scale but distinct development trajectories for MSI-high and MSI-
low tumours (Fig. 4a). We observed that the expression of T-
regulatory cell (Tregs) immune markers (Fig. 4b) was increased
along the trajectory and found, in a Gene Ontology (GO) analysis,
an enrichment of immune-related pathways (Fig. 4c). This
suggested that PhenoPath has ordered the tumours according to
levels of tumour immunogenicity and Tregs infiltration of the
tumours. This is consistent with Tregs acting as potent
immunosuppressive cells of the immune system and promote
progression of cancer through their ability to limit anti-tumour
immunity26. To corroborate this proposition, we used an bulk
RNA sequencing deconvolution tool, quanTIseq27, which uses
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transcriptomic profiles of immune cells to estimate immune cell
content of each tumour (Fig. 4d). We found that tumours
identified by quanTIseq as having high regulatory T cell or
immune cell content scores were most correlated with PhenoPath
pseudotime implying that PhenoPath had unbiasedly identified
an immunogenic contribution to colorectal cancer progression
through unsupervised analysis.

We next examined 92 putative covariate-pseudotime interactions
including known tumour suppressor genes (Fig. 5a). Importantly,
PhenoPath identified theMLH1 gene whose interaction effect size was
far larger than any other gene. This association provides an important
positive control since MLH1 is a well-known DNA mismatch repair
gene. Germline mutations in MLH1 are causal for hereditary non-
polyposis colorectal cancer28,29 while epigenetic silencing in sporadic
CRCs is associated with MSI.
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We performed a standard differential expression analysis to
determine differences between MSI groups using limma voom17

(Fig. 5b). Whilst many of these 92 genes are differentially
expressed between MSI groups, including MLH2 and TGFBR2
(Fig. 5c), PhenoPath is able to resolve the dynamic contribution
to these expression differences (Fig. 5d). In this case, while the
expression of these genes in MSI-low tumours is relatively
constant, in MSI-high tumours, there is a spectrum of expression
levels that linearly changes over pseudotime following the
increasing immune cell infiltration in the MSI-high tumours.

We next sought to uncover whether the other genes exhibiting
interactions between the immune response and microsatellite
instability displayed a concerted action in any cancer-related
pathways. We took the top 20 genes by interaction effect size and
performed an unsupervised pathway enrichment analysis using
Reactome30. At an FDR <5% we found these genes were enriched
for RUNX1/RUNX2 regulates genes involved in differentiation of
myeloid cells. This enrichment was due to the presence of the
gene LGALS331 that was found to exhibit interactions by
PhenoPath. The protein Galactin-3 is encoded by LGALS3 and
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altered expression of galectins in human gastrointestinal tissues as
being implicated in colorectal cancer progression32.

Pseudotemporal modelling in breast cancer. We finally per-
formed a pseudotemporal analysis of the TCGA breast cancer
cohort using estrogen receptor (ER) status as a phenotypic cov-
ariate. Approximately 60% of breast cancers are estrogen receptor
positive33, which is typically associated with improved prognosis
and a longer time to recurrence34.

We applied PhenoPath to 1135 breast cancers over 4579 highly
variable genes and identified distinct ER status specific pseudo-
temporal trajectories (Fig. 6a). Details of quality control and data
filtering are given in Supplementary Methods. We found that
markers of vascular growth pathways or angiogenesis—a well-
known and uncontroversial hallmark of cancer development35,36

- showed common pseudotemporal progression independent of
ER status. This included fibroblast growth factor-2 (FGF2) and
vascular endothelial growth factors C and D (VEGFC/VEGFD)
(Fig. 6b). A GO enrichment analysis indicated that the genes
driving the inferred pseudotemporal trajectory were indeed
enriched for vascular growth pathways (Fig. 6c). Through
unsupervised analysis, PhenoPath had ordered the breast
tumours and measured breast tumour progression in terms of
angiogenic development. Survival analysis using stratified (by ER
status) Cox proportional hazards modelling with covariates
suggested that the pseudotime covariate was significant (p=
0.0032). This gave evidence that increasing pseudotemporal
progression in these breast tumours conferred reduced overall
survival rates (Supplementary Results; Supplementary Fig. 17).

In order to understand how angiogenic development differs by
ER status, we examined the landscape of genes exhibiting
covariate-pseudotime interactions (Fig. 7a). We identified 1932

genes (42%) affected by an interaction between the pseudotem-
poral trajectory and ER receptor status. The large percentage was
expected given the heterogeneity of breast cancers and the strong
stratification power of ER status in breast cancer subtyping24.
Encouragingly (and to be expected), the Estrogen Receptor 1
(ESR1) was identified as one such gene. This positive control
provided reassuring evidence that PhenoPath was discovering real
interactions. Furthermore, the expression of fructose-1,6-bipho-
sphatase (FBP1) and forkhead transcription factor C FOXC1 also
showed pseudotemporal dependence that was dependent on ER
status (Figs. 6a and 7d). In the ER− regime, FBP1 is upregulated
along the trajectory while in the ER+ regime it is downregulated.
Intriguingly, FBP1 has been identified as a marker to distinguish
ER+ from ER− subtypes and its expression has been shown to be
negatively correlated with SNAIL as the Snail-G9a-Dnmt1
complex, is critical for E-cadherin promoter silencing, and
required for the promoter methylation of FBP1 in basal-like
breast cancer37 (Supplementary Fig. 18). Similarly, FOXC1 which
is known to be involved with ERα mediated action in breast
cancer38 shows no regulation in the ER− regime yet is strongly
upregulated in the ER+ case.

To complement this analysis, we performed a pathway
enrichment analysis using Reactome30 to discover whether any
of the top 20 interacting genes (by β value) converge on a cancer-
related pathway. We found (at a FDR <5%) enrichment for
Unfolded protein response and ATF6α activating chaperone
genes. Previous studies have shown that knockouts of ATF6α
blocked estrogen induction of the antiapoptotic chaperone BiP,
which in turn inhibited ER-stimulated cell proliferation39.
Therefore PhenoPath analysis suggests a relationship between
the ER status of the tumour to the (vascular) growth via pathway-
specific action mediated by ATF6α. The interaction gene set was
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further enriched for TFAP2 family regulates transcription of
growth factors and their receptors. TFAP2 has previously been
shown to directly interact with an estrogen receptor promoter40

and provides one of the key regulators of hormone responsiveness
in breast cancers41. In particular, TFAP2 has been shown
experimentally to regulate some of the key genes we find as
significant interactions, including ESR1 and FOXA142.

Many of these genes exhibit a convergence—they have
markedly different expression at the beginning of the trajectory
based on ER status yet converge towards the end. We derived a
mathematical formula to infer such convergence points and
calculated these for all genes showing significant interactions
(see Supplementary Results for details). Remarkably, the vast
majority converge towards the end of the trajectory (Fig. 7c),
implying a common end-point in vascular development for both

ER+ and ER− cancer subtypes. This effect can be seen in the
trajectory plots in Fig. 6a, where the ER+ and ER− tumours
converge at the end of their trajectories. This suggests that while
there exist low levels of angiogenesis pathway activation, ER
status dominates gene expression while as angiogenesis pathway
activation increases it comes to dominate expression patterns
over ER status. This finding might have implications for the
application of angiogenesis inhibitors in breast cancer treatment.

Discussion
PhenoPath provides a novel contribution to the existing arsenal
of pseudotemporal analysis algorithms developed across a range
of application areas including single cell ‘omics and cancer. Using
a statistical model that allows for covariate-modulated
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pseudotemporal trajectories, PhenoPath generalises pseudotime
analysis to a wider range of applications where genetic, pheno-
typic or environmental contexts may vary between samples and
be influential in the trajectories. We have demonstrated its utility
in an application to single-cell transcriptomics involving external
stimuli and there is potential usage in high-throughput single-cell
CRISPR experiments that are as yet unexplored43,44. We also
demonstrated applications to The Cancer Genome Atlas using
PhenoPath to model disease trajectories in colorectal and breast
cancer. The trajectories identified were consistent with pre-
existing knowledge concerning tumorigenesis in these diseases.
Importantly, PhenoPath was able to identify covariate-pathway
interactions that might be driving specific trajectory differences
recovering known associations as well as novel genes. We showed
that these behaviours cannot be readily determined with standard
differential expression analyses without taking into account the
latent disease progression. An assumption made by PhenoPath is
that features evolve linearly with respect to pseudotime. We tested
this assumption in a number of single cell data sets and found this
approximation to be surprisingly accurate (Supplementary
Results). However, it cannot be discounted that nonlinear effects
may occur and checks should be conducted to verify that Phe-
noPath model fits are consistent with the data. Gaussian Pro-
cesses offer a means of providing a more flexible nonlinear
framework and further work in this area is anticipated. In sum-
mary, PhenoPath provides a powerful and scalable pseudotime
analysis framework for modelling latent progression in a variety
of experimental settings. Future work will expand the ability of
PhenoPath to handle complex mixtures of continuous and dis-
crete covariates in high-dimensional settings.

Methods
We summarise the model specification and inference algorithms below. Further
details are reported in Supplementary Methods.

Statistical model. We begin with an N ×G data matrix Y where yng denotes the
nth entry in the gth column for n ∈ 1, …, N samples and g∈ 1, …, G features. Such
a matrix would correspond to the measurement of a dynamic molecular process
that we might reasonably expect to show continuous evolution such as gene
expression corresponding to a particular pathway. It is then trivial to learn a one-
dimensional linear embedding that would be our “best guess” of such progression
via a factor analysis model:

yng ¼ λgzn þ ϵng ; ϵng � N 0; τ�1
g

� �
; ð1Þ

where zn is the latent measure of progression for sample n and λg is the factor
loading for feature g which essentially describes the evolution of g along the
trajectory.

However, it is conceivable that the evolution of feature g along the trajectory is
not identical for all samples but is instead affected by a set of external covariates.
Note that we expect such features to be “static” and should not correlate with the
trajectory itself.

Introducing the N × P covariate matrix X with the entry in the nth row and pth
column given by xnp, we allow such measurements to perturb the factor loading
matrix

λg ! λng ¼ λg þ
XP
p¼1

βpgxnp; ð2Þ

where βpg quantifies the effect of covariate p on the evolution of feature g. Despite Y
being column-centred we need to reintroduce gene and covariate-specific
intercepts to satisfy the model assumptions, giving a generative model of the form

yng ¼ ηg þ
XP
p¼1

αpgxnp þ λg þ
XP
p¼1

βpgxnp

 !
zn þ ϵng ; ϵng � N 0; τ�1

g

� �
: ð3Þ

Our goal is inference of zn that encodes progression along with βpg which is
informative of novel interactions between continuous trajectories and external
covariates. Consequently, we place a sparse Bayesian prior on βpg of the form
βpg � N 0; χ�1

pg

� �
where the posterior of χpg is informative of the model’s belief that

βpg is non-zero. The complete generative model is therefore given by

αpg � N 0; τ�1
α

� �

λg � N 0; τ�1
λ

� �

zn � N qn; τ
�1
q

� �

βpg � N 0; χ�1
pg

� �

χ�1
pg � Gammaðaβ; bβÞ

τ�1
g � Gammaða; bÞ
μg � N 0; τ�1

μ

� �

ϵng � N 0; τ�1
g

� �

yng ¼ μg þ
P
p
αpgxnp þ λg þ

P
p
βpgxnp

 !
zn þ ϵng ;

ð4Þ

where τα, τλ, a, b, aβ, bβ, τq are fixed hyperparameters and qn encodes prior
information about zn if available but typically qn= 0 ∀i in the uninformative case.

Inference. We perform co-ordinate ascent mean field variational inference
(see ref. 45) with an approximating distribution of the form

q znf gNn¼1; fμggGg¼1; fτggGg¼1; fλggGg¼1;
�

fαpggG;Pg¼1;p¼1fβpggG;Pg¼1;p¼1fχpggG;Pg¼1;p¼1

�

¼ QN
n¼1

qz znð Þ|fflffl{zfflffl}
Normal

QG
g¼1

qμðμgÞ|fflffl{zfflffl}
Normal

qτðτgÞ|fflffl{zfflffl}
Gamma

qλðλgÞ|fflffl{zfflffl}
Normal

QP
p¼1

qαðαpgÞ|fflfflffl{zfflfflffl}
Normal

qβðβpgÞ|fflfflffl{zfflfflffl}
Normal

qχðχpgÞ|fflfflffl{zfflfflffl}
Gamma

: ð5Þ

Due to the model’s conjugacy the optimal update for each parameter θj given all
other parameters θ−j can easily be computed via

q�j ðθjÞ / exp E�j½logpðθjjθ�j;X;YÞ�
n o

; ð6Þ

where the expectation is taken with respect to the variational density over θ−j. The
precise form of the variational updates can be found in Supplementary Text.

Ranking covariate-pathway interactions. For each gene g and covariate p we
have βpg that encodes the effect of p on the evolution of g along the trajectory z. We
would like to identify interesting interactions for further analysis and follow-up.
The variational approximation for βpg is given by

qβpg � Nðmβpg
; sβpg Þ: ð7Þ

which after (approximately) maximising the ELBO will give estimates m̂βpg
and ŝβpg

for every gene and covariate. We classify or label an interaction as of interest if

m̂βpg

���
���

ŝβpg
> k; ð8Þ

where k is a positive constant. In other words, the interaction is not of interest if
βpg= 0 falls within k posterior standard deviations of the posterior estimate of the
mean of the interaction. This is equivalent to a decision theoretic loss criteria
governing whether the true value for β lies in the tails of the posterior marginal or
not.

Data availability. We provide an R implementation of our method PhenoPath at
https://bioconductor.org/packages/release/bioc/html/phenopath.html.
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