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(Dated: March 6, 2018)

The emission of neutron pairs from the neutron-rich N=12 isotones 18C and 20O has been studied
by high-energy nucleon knockout from 19N and 21O secondary beams, populating unbound states of
the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple
fragment-n-n correlations shows that the decay 19N(−1p)18C∗→16C+n+n is clearly dominated by
direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the
predominance of a 14C core surrounded by four valence neutrons arranged in strongly correlated
pairs. On the other hand, a significant competition of a sequential branch is found in the decay
21O(−1n)20O∗ →18O+n+n, attributed to its formation through the knockout of a deeply-bound
neutron that breaks the 16O core and reduces the number of pairs.

PACS numbers:

Introduction - Pairing correlations play a crucial role
in atomic nuclei and quantum many-body physics [1]. In
finite nuclei, two-neutron and/or two-proton pairing are
responsible for the odd-even staggering observed in the
binding energy of atomic masses and for the fact that
all even nuclei have a Jπ = 0+ ground state. Pairing
correlations also imply a smoothing of the level occu-
pancy around the Fermi energy surface, an enhancement
of pair transfer probabilities (see e.g. [2, 3]), as well as a
superfluid behavior in nuclear rotation [4] and vibration
[5]. When moving from the interior to the surface of the
neutron-rich nuclei 11Li [6], 6He and 18C [7], a transition
from BCS (Bardeen Cooper-Schrieffer) [8] to BEC (Bose-
Einstein Condensation) [9] pairing has been predicted to
possibly occur.

Tremendous efforts have been made during the last
decades to extract information on proton pair correla-
tions from two-proton emitters [10–15] and from the de-
cays of the unbound 6Be [16, 17], 12O [18, 19], 15Ne [20],
16Ne [21, 22] and 19Mg [21]. While the characterization
of the decay (direct or sequential) and structural informa-
tion on the proton orbitals involved were obtained with
increasing accuracy over the years, all 2p decay patterns
are subject to strong Coulomb final-state interactions
(FSI) that blur the observation of pair correlations at
low relative energies.

To circumvent the effects of the Coulomb interaction,
the study of two-neutron emission was carried out in
neutron-rich core+n+n systems that are unbound ei-
ther in their ground state (10He [23], 13Li [23, 24], 16Be
[25] and 26O [26–28]) or in excited states beyond the
two-neutron threshold (8He [29], 14Be [30, 31] and 24O
[32, 33]). The decay of excited states of 8He, 14Be and
24O, as well as the ground-state decay of 10He, all show
very convincing signatures of sequential decay through
intermediate core-n resonances. First observations of a
di-neutron decay from the ground states of 13Li [24] and
16Be [25] were claimed on the basis of the observed small
n-n energies and angles, as compared to a three-body
phase-space decay in which the emitted neutrons are free
of any interaction. However, the need to go beyond the
di-neutron simplification and use realistic n-n FSI, in di-
rect and/or sequential decays, has been pointed out in

[34]. Indeed, the attractive nature of the n-n interac-
tion gives rise to small relative n-n energies and angles,
hereby potentially mimicking a di-neutron decay.

In this Letter, we use the high-energy nucleon knockout
reactions 19N(−1p)18C∗ and 21O(−1n)20O∗ as a ‘piston’
to suddenly promote neutron pairs of 18C and 20O re-
spectively into the 16C+n+n and 18O+n+n continuum.
Dalitz plots and correlation functions are used to ana-
lyze triple correlations in these systems over a decay en-
ergy up to 15 MeV above the corresponding two-neutron
emission thresholds. An attempt is made to link these
observables to the role of the reaction mechanism and to
the configurations of 18C and 20O, where the four neu-
trons above the 14C and 16O cores may be coupled in
pairs or tetraneutron configurations [35, 36].

Experimental setup - A stable beam of 40Ar, acceler-
ated at the GSI facility at 490 MeV/nucleon, was sent on
a 4 g/cm2 Be target to induce fragmentation reactions,
in which the 19N and 21O secondary beams were pro-
duced at 430 MeV/nucleon. They were selected by the
FRagment Separator [37] and transmitted to the R3B-
LAND beam line [38], in which they were identified us-
ing their energy loss and time of flight prior to impinge
on a 922 mg/cm2 CH2 reaction target. The latter was
surrounded by the 4π Crystal Ball [39], that detected
in-flight photons (εγ ∼ 60% around 2 MeV) and pro-
tons emitted during the knockout reactions. Two pairs
of double-sided silicon strip detectors were placed before
and after the target to determine the energy loss and
track the incoming and outgoing nuclei. Nuclei from
knockout reactions were deflected by the large dipole
magnet ALADIN, and two further position measure-
ments using scintillating fiber detectors allowed for their
tracking through the dipole field. The combination with
time-of-flight and energy-loss measurements provides the
magnetic rigidity and atomic number of the fragments,
and therefore their mass and momentum.

Unbound states in 18C and 20O, produced through
knockout reactions, emitted neutrons that were detected
in the forward direction using the large area neutron de-
tector LAND [40], positioned 12 m downstream of the re-
action target and covering forward angles up to 79 mrad.
The energy resolution of the unbound states degrades
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FIG. 1: Experimental decay energy spectra of 16C+n+n
and 18O+n+n measured respectively in the proton/neutron
knockout reactions from 19N/21O (blue histograms represent
events in coincidence with known γ-rays in 16C/18O, corrected
by εγ). The corresponding locations of the 2n and 4n thresh-
olds are noted. The right panels illustrate the shell model
configuration of the 12 neutrons in each isotone.

slowly with increasing decay energy [27, Fig. 2]. The 1n
and 2n efficiencies are of the order of 90% and 70% up
to about 4 and 8 MeV decay energy, respectively, and
decrease smoothly beyond those values [27, Figs. 1,4].
The 2n efficiency, that includes causality conditions for
the rejection of cross-talk events (misidentified 2n events
induced by a single neutron), drops below 300 keV as
neutrons are emitted within a very narrow cone and can-
not be distinguished.

Excitation energies - The invariant mass Mfnn of the
fragment+n+n three-body system, that is reconstructed
from the momentum vectors of the fragment and neu-
trons, is used to calculate the decay energy Ed of the
system (Ed =Mfnn−mf−2mn) in Fig. 1. This energy
corresponds to the excitation energy of the total system
beyond the 2n threshold, since no significant excitation
of the fragment (blue histogram in Fig. 1) has been ob-
served. The 2n-emission spectra of the two nuclei are
peaked at about the same energy of 4–5 MeV, and ener-
gies up to about 15 MeV were observed. This range of
decay energies corresponds to E∗(18C)≈ 5–20 MeV and
E∗(20O)≈ 12–27 MeV. To reach such high excitation en-
ergies, deep nucleon knockout must have occurred.

At high beam energy, the deep proton knockout re-
action 19N(−1p) is expected to occur mainly through a
quasi-free mechanism [41] and preserve the structure of
the neutrons in 18C, that can be viewed as a core of
14C plus 4 neutrons in the sd shells (top-right panel of
Fig. 1). This is supported by the fact that, even if the 14C
threshold is 5.5 MeV higher than the 16C one (Fig. 1),

the former exhibits a higher yield (σ14C/σ16C∼1.8). This
reaction is therefore used here as a tool to suddenly pro-
mote neutrons to the continuum, observe their decay, and
trace back how they were correlated in 18C. By contrast,
the deep neutron knockout reaction 21O(−1n) leaves a
broken 16O core and two unpaired neutrons in the 20O
residue (bottom-right panel). In this case, we expect to
hinder the role of pairing interactions, as will be dis-
cussed in view of the present observations.

Dalitz plots - Correlations in a three-body decay are
easily revealed in Dalitz plots of the squared invariant
masses of particle pairs (M2

ij). FSI and resonances lead
to a nonuniform population of those plots within the kine-
matic boundary defined by energy-momentum conserva-
tion and the decay energy [42]. As our systems are cre-
ated with a distribution of decay energies, it is convenient
to normalize M2

ij between 0 and 1 (m2
ij) [30], so that all

events can be displayed within the same boundary, inde-
pendently of Ed. The simulations shown in Figs. 2(a–d)
display various correlation patterns as a function of the
fragment-n and n-n invariant masses, using a model that
will be described below.

In the absence of any correlation beyond phase-space
kinematics (a), the plot exhibits a relatively uniform pop-
ulation. If a fragment-n resonance were formed (b),
leading to a sequential decay, a band appears at the
corresponding value of m2

fn, that depends on the reso-

nance energy with respect to Ed (and at 1−m2
fn, since

m2
fn2
≈ 1−m2

fn1
). The direct decay of a neutron pair

induces a concentration of events at m2
nn . 0.5 (c), re-

flecting the attractive n-n interaction. If the two decay
modes coexist (d), a crescent-shaped pattern with a dip
at the center appears. Prior to comparing in detail with
any model, we can already note that the experimental
plot of panel (e) looks almost exclusively like a direct de-
cay, while that of panel (f) displays a mixture of direct
and sequential decays.

The projections of the experimental Dalitz plots are
shown in Fig. 3 for the two systems and four Ed bins:
0–3.7, 3.7–5.3, 5.3–7.2 and 7.2–12 MeV (chosen in order
to contain similar statistics). The phase-space uniform
population of the Dalitz plot leads to bell-shaped pro-
jections (yellow histograms) with a maximum at about
0.5. They have been normalized to the data at m2

nn>0.6,
where no n-n correlations are observed. Clearly, the data
deviate significantly from phase space. In particular, an
increase towards m2

nn=0 is noticeable in all panels, as al-
ready observed in Fig. 2(e,f). It is however much stronger
in the 2n decay of 18C, which suggests stronger pairing
correlations in this system.

Concerning the fragment-n channel, which should re-
veal the degree of sequentiality in the decay, the expected
bands in the Dalitz plot of Fig. 2(b) correspond to ‘wings’
in the projection onto m2

fn. Those are clearly observed
at 0.1–0.3 and 0.7–0.9 in the three higher-energy bins
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FIG. 2: Dalitz plots of fragment+n+n decays (fragment-n vs
n-n normalized squared invariant masses). Left panels cor-
respond to 16C+n+n, right panels to 18O+n+n. The four
upper panels represent simulations of (a) phase space, (b)
sequential decay through a fragment-n resonance, (c) direct
decay with n-n FSI, and (d) a combination of the latter two.
The lower panels (e,f) correspond to the experimental data
for the decay energies noted.

of 20O. These wings and the increase of m2
nn towards 0

suggest, as was noted above, that the sequential and di-
rect decays are in competition. In order to determine the
extent of this competition, we have used a phenomeno-
logical model that contains both components.

Correlation functions - The interaction effects within a
pair of particles are, by definition, best displayed through
the correlation function C. It represents the ratio of the
measured two-particle distribution and the product of
the independent single-particle ones, that those particles
would exhibit without their mutual influence [43]. For
most particle pairs the correlation signal, including the
effects of FSI and, for identical particles, quantum statis-
tics, manifests at low relative momenta qij = |~pi− ~pj |
[44]. In the case of bosons, charged fermions or long
time scales, the signal at zero relative momentum is weak,
C(0)� 2 [45–47]. For neutrons, however, the attractive
FSI may lead to values as high as C(0)∼10–15 [43].

The experimental correlation functions Cnn of
Fig. 4(a) have been constructed for 18C (blue dots) and
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FIG. 3: Projection of the Dalitz plots defined in Fig. 2 onto
either axes for the data of 18C∗ (left) and 20O∗ (right) de-
cays. The rows correspond to the four Ed bins defined in
the text, from lower (top) to higher (bottom). The yellow
histograms represent phase space, normalized to the data at
m2
nn>0.6. The red histograms are the projections of the best

two-dimensional fit of the plots, with their direct (green) and
sequential (purple, with percentage noted) decay components.

20O (red dots) from the ratio of the measured relative
momentum distribution qnn, that contains the interac-
tion effects, and the one obtained from phase space, that
contains all other effects like kinematic constraints or the
experimental filter. These two distributions are shown in
Fig. 4(b) for the 18C case, where the effect of the n-n FSI
at qnn values below 100 MeV/c becomes even clearer. In
order to guide the eye, the experimental Cnn have been
fitted with two Gaussians. The correlation signal in 18C,
Cnn(0)∼25, is huge, actually the largest ever observed.

In order to interpret this correlation strength, the
authors of Ref. [44] propose a formulation that links
Cnn(qnn) to the size and lifetime of a Gaussian source
emitting independent neutrons. When the source of par-
ticle pairs is large and/or the emission of the two particles
proceeds through a long decay time, correlations are ex-
pected to be very weak. Within this formalism, the 18C
data would suggest a small source and a very short decay
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momentum distribution, blue points) and denominator (phase
space, yellow) of Cnn for the 18C∗ case.

time, or a very weak contribution of the sequential decay,
as was anticipated already in Fig. 2(e).

For comparison, we have added in Fig. 4(a) the cor-
relation functions obtained for two significantly different
systems. In one case (black dashed line), the source of
neutron pairs was the compound nucleus formed in the
collision 18O+26Mg [47]. The best fit of the experimental
Cnn was obtained for a sphere of R= 4.4 ± 0.3 fm and
a lifetime of τ = 1100 ± 100 fm/c. For this moderately
small source, the long decay time scale is responsible for
shrinking the correlation to Cnn(0)∼1.3, a signal about
a factor 80 smaller than the one measured for 18C.

In the second case (green dashed line), the source was
formed during the breakup of the two-neutron halo nu-
cleus 14Be [30]. Direct pair emission (τ = 0) was in-
voked to account for the strong correlation measured,
Cnn(0)∼15, at that time the largest ever observed. How-
ever, the relatively large size of the neutron pair in this
halo nucleus, with a correlation signal described by a
Gaussian source of rrms

nn = 5.6 ± 1.0 fm, accounts for a
reduction of about 40% with respect to 18C.

Decay model and results - In order to include the dif-
ferent correlations observed above phase space, we have
used the model developed in Ref. [30]. This model
does not include the microscopic structure of the initial
state, and treats the effects of FSI and resonances on the
fragment+2n phase-space decay phenomenologically (for
a detailed discussion of its applicability, see Ref. [29]).
In brief, the experimental decay energy distributions of
Fig. 1 are used to generate events with ~pf , ~pn1

, ~pn2
fol-

lowing either three-body phase space (direct decay), or
twice the two-body phase space through a fragment-n
resonance (sequential). In the latter case, a neutron and

the fragment-n resonance are generated first, followed
by the decay of the resonance. In both cases, the n-
n FSI is introduced via a probability P (qnn) with the
form of the n-n correlation function [44], that depends
on the space-time parameters (rrms

nn , τ) of a Gaussian two-
neutron source.

In an attempt to reduce the parameters of the fit to a
reasonable number, we consider that the sequential de-
cay occurs through one fragment-n resonance of energy
〈ER〉 and width 〈ΓR〉, that can be seen as an average over
individual resonances. In fact, even the fits of the higher-
energy bins only require one low-energy resonance, of
〈ER〉 ∼ 1.5 MeV, like in Fig. 2(b,d). The number of
free parameters, rrms

nn , τ , fraction of sequential decays,
〈ER〉 and 〈ΓR〉, are further reduced by equating the de-
lay induced in the neutron emission with the lifetime of
the fragment-n resonance, leading to τ = ~c/〈ΓR〉. This
was demonstrated in Ref. [29] for the well-known 7He
resonance, although in the present case the average over
several resonance energies might lead to an effective de-
lay that does not correspond well with the individual
lifetimes.

The final momenta of the three generated particles are
filtered to include all experimental effects (like energy
resolution, angular acceptance, or cross-talk rejection).
Then the different observables are reconstructed and sub-
sequently fitted to the data in the two-dimensional Dalitz
surface (Fig. 2), with a combination of direct and sequen-
tial decay modes. An example of the goodness of the
two-dimensional fit is given in the comparison between
panels (d) and (f), where both the n-n FSI and the wings
of the sequential mode are accurately reproduced. Simi-
lar agreement is found for all the Dalitz plots (not shown
here) as well as for their projections shown in Fig. 3,
further validating the different hypotheses used.

Considering the average over the four energy bins, the
fits denote a compact configuration in both systems, cor-
responding to a Gaussian source of rrms

nn = 4.1 ± 0.4 fm
for 18C and 4.3± 0.6 fm for 20O. Both values are in line
with the one corresponding to independent neutrons in a
liquid drop of A=20 (4 fm). According to the fits, how-
ever, the stronger n-n signal in 18C is due to the neutron
pair being emitted directly in 81±9% of the time, with a
sequential branch only slightly apparent in the wings of
the highest-energy bin. In contrast, 50±8% of the decays
are sequential in 20O, with wings in m2

fn that are visible
in all bins, even in the lowest energy one in which they
move towards m2

fn = 0.5 to create an enhanced central
contribution there.

Conclusions - High-energy nucleon knockout reactions
have been used to populate unbound states in the N=12
18C and 20O isotones up to 15 MeV above their two-
neutron emission thresholds. Their three-body decay was
characterized by the combined determination of the mo-
menta of the residual fragment and the two neutrons.
The experimental fragment-n and n-n invariant masses
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have been compared to those obtained from a three-body
decay model that takes into account direct and sequential
decays, as well as final-state interactions.

The decay of the core+4n isotones 18C and 21O dis-
plays significantly different features. In the former, ex-
tremely strong correlations persist up to 12 MeV, which
we propose to be caused by the large fraction (∼ 80%)
of direct emission of correlated pairs with a relatively
compact configuration. The decay of 20O exhibits much
weaker correlations, with about 50% occurring through
sequential processes. The clear contrast between these
isotones is likely due to the way they are populated: the
knockout of deeply-bound neutrons from 21O leaves two
unpaired neutrons in 20O with a broken 16O core (in this
way increasing the probability of sequential decay), while
the knockout of deeply-bound protons from 19N leaves
the neutron pairs and the 14C core unaffected.

The present study shows that the high-energy proton
knockout reaction is a tool of choice for studying neu-
tron correlations, be there of 2n or 4n origin, up to the
neutron drip line. It is hoped that the present results
will encourage theoretical calculations to interpret the
present experimental observables on a more microscopic
ground, similar to those employed in proton-rich systems
[16, 17].
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