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Abstract 

In recent years, there have been several advancements in energy production from both fossil 

fuels and the alternate “clean” sources such as nuclear fission. These advancements are fueled by 

the need for more efficient systems that will optimize the use of the depleting fossil fuel reserves 

and shift the focus to cleaner sources of energy. The efficiency of any power generation cycle is 

dependent on the ability of the structural material to withstand the increased peak operating 

temperatures. Advanced austenitic stainless steels have been in the focus as structural material 

for the next generation nuclear power plants, due to their strength, corrosion resistance, 

weldability and the wide range of temperatures at which the austenitic phase is stable. Alloy 709, 

a recently developed advanced austenitic stainless steel, is being investigated in this paper. In 
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this study, tensile tests were conducted on dog-bone samples of Alloy 709 in an in-situ scanning 

electron microscope (SEM) loading and heating stage, equipped with electron backscatter 

diffraction (EBSD), at various temperatures. The in-situ experiments indicated that the material 

primarily accommodated deformation by slip at lower temperatures. Void formation and 

coalescence at grain boundaries preceded slip at higher temperatures. Although crack initiation at 

all elevated temperatures was intergranular, the crack propagation through the material and the 

final fracture was trangranular ductile. Additionally, tensile tests were conducted on larger 

cylindrical samples at 550, 650 and 750 °C in air. The results of tests conducted in air and in-situ 

were found to be in agreement, at these temperatures.  

Keywords: Austenitic Stainless Steel, Alloy 709, Fractography, In-situ Scanning Electron 

Microscope, Electron Backscatter Diffraction.  

 

 

1. Introduction 

Structural materials used in the next generation nuclear power plants with improved 

efficiencies need to operate at high temperatures and withstand resultant extreme conditions. 

Therefore, superior mechanical strength, creep resistance and corrosion resistance are some of 

the desired properties in a candidate structural material. Advanced austenitic stainless steels are 

being investigated for these applications. Austenitic stainless steels are mostly Fe-C-Ni-Cr 

alloys, where the Cr is added for corrosion resistance and Ni is added to counteract the ferritic 

stabilizing nature of Cr and stabilize the austenite phase. Several austenitic stainless steels have 

been developed with variations in their chemistry and heat treatment to suit different 
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applications. These steels, specially the advanced austenitic stainless steels rely on secondary 

phases or precipitates for their characteristic strength and mechanical properties. Sourmail has 

reviewed the common precipitates observed in creep resistant austenitic stainless steel [1]. The 

316H steel is a heat resistant, higher carbon variant of the 316 Stainless Steel (18Cr-12Ni 

austenitic stainless steel) and is often used to compare the performance of newer alloys. The 

precipitates observed in this alloy are mainly M23C6, a predominantly Cr rich carbide typically at 

grain boundaries, and intermetallics such as Fe2Mo, FeCrMo and σ-phase [2]. Although, fine 

intermetallic Laves precipitate have shown to improve creep properties in an austenitic steel [3], 

after long aging times these precipitates coarsen at grain boundaries and triple points [2] 

reducing the creep strength of the alloy. High Temperature Ultrafine Precipitation Strengthened 

Steels (HT-UPS) developed by ORNL outperform the 316H steels in creep rupture life [3]. The 

strength of this 14Cr-16Ni austenitic stainless steel is attributed to the fine MC, M6C, M23C6 and 

FeTiP precipitates that nucleate on dislocations. [3] Carroll studied the fatigue properties of the 

HT-UPS alloy and found that oxidation was a major problem in these alloys when compared to 

the 316H [4]. To improve corrosion resistance, advanced HT-UPS was developed with added 

Aluminum for corrosion resistance. The passive chromium oxide in conventional stainless steels 

are vulnerable in atmospheres containing water vapor [5]. Alumina forming austenitic steels, 

specifically the advanced HT-UPS with added Al, performed better in terms of oxidation 

resistance in water vapor environments, which was further enhanced with added Nb [5,6]. HT-

UPS alloys with added Al and no Ti or V also performed better in terms of creep resistance when 

compared to other variants [7]. 



 

4 

 

Alloy 709 is a 20Cr-25Ni advanced austenitic stainless steel developed as an 

improvement over the existing advanced austenitic stainless steels. The high Ni content provides 

increased austenite stability [8]. Sourmail et al. [9] have studied the effects of high temperature 

on the microstructure and secondary phases in the NF709 alloy. The NF709 alloy is a proprietary 

alloy of Nippon Steel & Sumimoto Steel, similar in composition to the Alloy 709 being studied 

in this paper. The NF709 alloy reported 0.05 wt.% Ti content while the Alloy 709 studied in this 

paper contains <0.01 wt.% Ti. The authors found coarse undissolved nitrides, carbides and 

carbonitrides such as M23C6 and (Nb,Ti)CN, in the NF709, after aging [9]. This precipitate 

evolution was also simulated by Shim et al [10]. NF709 possesses highest creep rupture strength 

amongst the austenitic steels. Preliminary studies performed  indicated that Alloy 709 is superior 

to the HT-UPS alloys in tensile strength, thermal stability, creep-fatigue, sodium compatibility 

and weldability [8]. The excellent creep resistance and corrosion resistance of the Alloy 709 has 

made it the ideal candidate for next generation nuclear power plants.  

In this study, in-situ scanning electron microscope (SEM) tensile tests were conducted on 

Alloy 709 to establish its yield and ultimate tensile stress at various temperatures from room 

temperature to 1000 °C. To characterize the behavior of the material and dominant deformation 

mechanisms at different temperatures and strain rates, electron backscatter diffraction (EBSD) 

was used to observe microstructural evolution and phase changes in the alloy. 

2. Experimental Setup 

A 400-pound ingot of Alloy 709 was fabricated using vacuum-induction melting (VIM) and 

electro-slag remelting (ESR) processes. 203 mm diameter round ingot from the VIM was 

homogenized at 1250°C for 4 hours. Half of this ingot was hot forged to a 203mm × 34.9 mm 
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bar at 1100°C. 1/3 of the hot-forged bar was rolled to 102mm × 20.3 mm at 1100°C. The hot- 

rolled bar was finally annealed at 1100°C for 2 hours, followed by water quenching. The 

composition of the alloy is shown in Table 1. Preliminary observations by the manufacturer 

indicated that the microstructure consists of uniform equiaxed grain structure with the ASTM 

GS# 4 to 6 (44 µm to 80 µm) Vickers hardness is found to be 176 ± 7.  

Table 1. Composition of the as received alloy, post Electro Slag Remelting (ESR). 

 

Tensile samples were extracted from the supplied plates with the longitudinal of the 

samples parallel to the rolling direction and the transverse directions respectively, using electro 

discharge machining (EDM). The dimensions of the samples designed for in-situ SEM 

experimentation had to adhere to the constraints imposed by the in-situ heating and loading stage 

(Kammrath & Weiss GmbH) and the ASTM E8 standards. The in-situ SEM setup is shown in 

Figure 1 and sample dimensions are shown in Figure 2. 

Elements C Mn Si P S Cr Ni Mo N Ti Nb B Fe 

Composition 

wt% 

0.063 0.88 0.28 <0.005 <0.001 19.69 25.00 1.46 0.14 <0.01 0.23 0.0022 Balance 
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Samples were ground beginning with 320 grit to 2400 grit, followed by ion-milling. To 

prevent any oxide formation at the surface of the sample during loading and heating to allow for 

EBSD after extended exposure at temperatures from 550 °C to 950 °C inside SEM chamber, the 

samples were sputter-coated with a thin (3.85 nm) layer of Au-Pd. 

Figure 1.(a) Image of the In-situ SEM setup- (b) Sample clamped with the heater underneath. 

Pole Piece 

EBSD 

Heating and 

Loading Stage  

Load Cell 

(a) 

Sample 

 

(b) 

Figure 2. Dimensions (in mm) of the tensile sample. 
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The in-situ SEM setup consists of Hitachi SU3500 scanning electron microscope, a 

Kammrath & Weiss GmbH heating and loading stage and Oxford Instruments Nordlys EBSD 

detector.  

The heating and loading stage is mounted in the SEM vacuum chamber and can 

uniaxially load the sample while heating it. The stage is fitted with a load cell of maximum load 

specification of 10,000 N. Samples are loaded by the means of the leadscrews. The front and the 

rear yoke move along the leadscrew simultaneously upon loading, ensuring both sides of the 

samples are loaded equally to prevent shifting of the viewed region during in-situ testing. 

Elongation of the sample is measured using a linear variable differential transformer (LVDT) 

and the output is recorded live and displayed on the DDS32 software. The 140 mm diameter 

ceramic heater plate is located right underneath the tensile specimen that can be controlled via 

the heater controller either manually or via the DDS software. This heater can heat the sample to 

a maximum temperature of 300 °C under atmospheric pressure and a maximum temperature of 

1000 °C under vacuum. Sample temperature is monitored by a thermocouple placed right under 

the sample. The displacement rate of the loading can be adjusted on the motor control settings in 

the DDS software and can range from 0.1 μm/s to 20 μm/s. The loading is interrupted at certain 

intervals by turning the motor off, while capturing SEM images or performing EBSD mapping. 

To ensure the safety of the critical components on stage and within the SEM chamber, the 

temperatures at various points are monitored using additional thermocouples and kept within 

acceptable temperature limits by a cooling system. 

Energy dispersive X-ray spectrometer (EDS) on a FEI Verios 460L field-emission 

scanning electron microscope (FESEM) was used on polished samples to identify the precipitates 
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and phases in Alloy 709 samples. The in- situ SEM uniaxial tensile tests were performed at room 

temperature, 550, 650, 750, 850 and 950 °C. All samples were tested along the rolling direction, 

except 4 samples tested at 750 °C – 2 of which were loaded along the rolling direction and 2 

along the transverse direction. During in-situ SEM loading, sample was heated at the rate of 25 

K/min, first to 100 °C and then to the target temperature of 550, 650, 750, 850 or 950 °C. Before 

heating is begun, the sample loaded to a constant preload of 25 N, to ensure only tensile loads on 

the sample. All the tensile tests were performed at the strain rate of 5.02×10
-3

 /min as per ASTM 

E21 standard for tensile tests at elevated temperature. One tensile test was performed at a strain 

rate of 2.61×10
-4 

/min to study the effect of strain rate. Note that fractography was performed on 

selected samples to assist the interpretation of deformation mechanisms.  

The test matrix is presented in Table 2. During the test, in addition to SEM images, 

EBSD mapping was performed to observe changes in microstructure. The results obtained from 

these small tensile specimens were compared with results obtained from standard tensile tests, 

conducted at temperatures of 550, 650 and 750 C in air. Cylindrical testpieces were utilized here 

which contain a 25.3 mm long gauge section of 5 mm in diameter, and they were machined with 

the longitudinal of the testpiece parallel to the rolling direction. The testpiece geometry adopted 

has two shoulders which allow a high temperature extensometer to be attached to measure the 

extension of the gauge section during testing. The tests were conducted under cross-head 

displacement control with a ramp rate of 610
-3 

/min. Note that the resultant strain rate is similar 

to the ramp rate of the crosshead, but it can be slightly smaller especially on the elastic 

deformation regime. The testpieces were pulled to failure in all cases. 

 Table 2. Test matrix of tensile experiments 
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3. Results 

3.1. Microstructural Characterization 

The microstructural observation showed that the alloy comprises of an austenitic matrix 

with equiaxed grains of an average size between 48-50 µm (Figure 3(a)). Room temperature 

SEM observations show some large clusters of inclusions along the rolling direction plus some 

isolated transgranular precipitates. EDS analysis was performed at room temperature to establish 

the composition of the precipitates. The compositions of the matrix and different precipitates are 

shown in Figure 3. Majority of the precipitates were found to be Nb rich with traces of other 

elements like Mo, Ti and B. The precipitates that formed the oriented clusters (Figure 3(b)) were 

(5- 10 μm) in size while the isolated precipitates (Figure 3(c)) were ~ 5 μm in size. Much 

smaller, spheroidal Nb rich precipitations uniformly distributed through the matrix were also 

observed (Figure 3(c) Circled region). Only SEM scale precipitates were identified therefore, Z-

phase and sigma phase ae not discussed in this paper. Additional analysis will be needed to 

account for the effects of these smaller precipitates. At higher temperatures, grain boundary 

M23C6 precipitation and precipitation within the grains becomes apparent. This is discussed later. 

Temperature Orientation Strain Rate 
25°C RD 5.02×10

-3 
/min 

550 °C RD 5.02×10
-3 

/min 

650 °C RD 5.02×10
-3 

/min 

750 °C RD 5.02×10
-3 

/min 

750 °C TD 5.02×10
-3 

/min 

800 °C RD 2.61×10
-4 

/min 

850 °C RD 5.02×10
-3 

/min 

950 °C RD 5.02×10
-3 

/min 
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3.2. Tensile Experiments  

3.2.1. Tensile Properties. 

 In-situ SEM tensile tests were performed at a constant strain rate of 5.02×10
-3 

/min at 25 

°C, 550 °C, 650 °C, 750 °C, 850 °C and 950 °C. The macro images of the test-pieces under 

tension at high temperatures is shown in Figure 4. The test pieces all show uniform deformation 

and fail close to the centre of the reduce section.  

The engineering stress-strain curves are shown in Figure 5(a) and (c) . The elastic region of the 

curves is elaborated in Figure 5(b). The drops in the curves corresponds to instances the tests 

Figure 3. A. EBSD Euler maps showing microstructure of as polished samples. B. Room 

temperature SEM with Backscatter Electron(BSE) image of clusters of Nb rich precipitates along 

Rolling Direction (RD). C. Isolated Nb rich precipitates.  Table showing the compositions generated 

by EDS. Circled-nanoscale Nb-rich precipitates. 

 

(a) 

 

(b) 

1 

 

(c) 

2 

3 
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were interrupted for SEM imaging or EBSD mapping. The results of the experiments conducted 

have been tabulated in Table 3. 

 

  

  

Figure 4. Test-pieces under tension at 550, 650, 750, 850 and 

950°C. 

550°C 

650°C 

750°C 

850°C 

950°C 

1 cm 
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 Table 3. Tensile Properties of the Alloy 709 at various temperature along Rolling Direction (RD). 

 

 

 

 

Temperature 

(°C) 

Orientation 0.2 (MPa) Ultimate Tensile 

Strength (MPa) 

Maximum 

Strain 

25 RD 251 624 51% 

550 RD 227 594 44% 

650 RD 168 519 36% 

750 RD 174 368 32% 

850 RD 160 269 27% 

950 RD 132 132 32% 

(a) (b) 

(c) 

Figure 5. (a) Engineering stress-strain curve of Alloy 709 under tension at 25°C-950°C along RD. (b) Zoom in 

of the elastic region of the same. (c) Engineering stress-strain curve of sample at 800° at 2.61×10
-4

 /min strain 

rate. 
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 It is observed that the modulus of elasticity varies slightly at different temperatures 

(Figure 5(b)). However, there is a major decrease in the yield stress of the material from room 

temperature to 950˚C, with the yield Stress at 650 °C being an outlier to the general trend over 

the various temperatures. At lower temperatures (RT, 550 and 650 °C), the material experiences 

work hardening. This phenomenon is due to the increased density of dislocations and is 

represented in the form of the gradual increase in the stress between yield strength and ultimate 

strength. At 550 and 650 °C thermal softening due to dislocation mobility comes into play but is 

dominated by the work hardening. At higher temperatures (≥ 750 °C), the thermal softening due 

to increased mobility of dislocations is able to cancel the effects of work hardening resulting in a 

decrease in the ultimate strength. The Engineering Stress-Strain curve of the sample at 950 °C 

shows that the sample reaches a maximum stress of 132 MPa at yield. The plastic region, at this 

temperature, is represented by a plateau or a very gradual drop. This decrease is because work 

hardening is completely dominated by thermal softening.  

 The engineering stress-strain curve of the tensile test conducted at a constant strain rate of 

2.61×10
-4

 /min at 800 °C is shown in Figure 5(c). This strain rate provides extended exposure to 

high temperature.  

Table 4. Tensile properties of Alloy 709 at 750 °C along rolling (RD) and transverse direction(TD). 

 

 

At 750 °C, further experiments were conducted to understand the effect of rolling 

direction on the mechanical properties of the material (Figure 6(a) and (b)). The samples along 

transverse rolling direction show only a slight decrease in yield stress and maximum elongation. 

Temperature 

(°C) 

Orientation Pre-crack 0.2 

(MPa) 

Ultimate Tensile 

Strength (MPa) 

Maximum 

Strain 

750 RD No 174 368 32% 

750 TD No 138 327 27% 
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Serrations were observed in the plastic region of the tensile stress-strain graphs of Alloy 

709 (Figure 7 and Figure 8). These are characteristics of dynamic strain aging and an indication 

of the work hardening as a result of interaction between solute atoms and mobile dislocations. In 

samples tested at 550˚C and 650 °C (Figure 7), the serrations are more prominent due to the 

dominating work hardening. Rodriguez [11] classified such serrations into 5 types – Type A, B , 

C, D and E. The serrations observed in Alloy 709 samples at 550, 650 are a combination of Type 

A and Type B, and a combination of Type A and Type C at 750 and 800 °C.  In austenitic 

stainless steels, the serrations are due to the interaction of the mobile dislocation with solute 

atoms such as C, N, as indicated by the type B serrations, and diffusion of Ni and Cr in the alloy 

[12,13] at higher temperatures as indicated by Type C serrations. Previous work on 316LN, a 

low carbon, nitrogen enhanced austenitic stainless steel, has shown similar serration types [14–

(a) (b) 

Figure 6. (a) Engineering stress-strain curve of Alloy 709 under tension at 750°C along RD and TD. (b) Zoom 

in of the elastic region of the same. 
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16]. The serrations were observed in samples tested along both the rolling direction and 

transverse direction.  

 

 

 

Figure 7. Type A and Type B serrations at 550°C ,650°C. Insets showing 

a zoom in of the engineering stress-strain curve at different strains. 

550°C 

550°C-2.5% 

550°C-15% 

650°C 

650°C-15% 

650°C-4.2% 
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Although precipitate growth occurs in austenitic steels at temperatures greater than 600 

°C, serrations are evident at 650 °C, indicating that there are free solute atoms interacting with 

800°C 

800°C-2.6% 

800°C-15% 

750°C 

750°C-5.6% 

750°C-15% 

Figure 8. Type A and Type C serrations 750 °C at 5.021×10
-3 

/min and at 800 

°C at 2.608×10
-4 

/min. Insets showing a zoom in of the engineering stress-strain 

curve at different strains. 
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the mobile dislocations. This interaction also contributes to the work hardening observed at 550 

and 650 °C. The duration of the serrated period shortened with an increase in temperature. At 

550 °C and 650 °C, the serrations are observed from the critical strain till failure, while at 750 

°C, they disappear at 15% strain. Mannan et al[12], concluded that serrations can be correlated to 

the precipitation activity in the material. At higher temperatures, there is a decrease in the 

availability of free solute atoms due to significant precipitation growth, as observed in the 

sample tested at 950 °C, resulting in decrease in the serrations and their eventual disappearance. 

Growth of carbide precipitates deplete the interstitial solute atom carbon from the alloy, 

preventing interaction between solute atoms and mobile dislocations [12]. This results in the 

serrations being further apart and in reduced intensity of Type B serrations, and eventually in 

serrations disappearing as in the case of 750 °C after 15% strain. At 850 and 950 °C, no 

serrations were observed.  

 

4. Discussion 

550 and 650 °C: 

In-situ SEM images of the sample surface provide insights into deformation regimes in 

the sample, the nature of crack propagation and changes in grain morphology. The behaviour of 

the alloy at room temperature and 550 °C are closely similar. At 550 °C and 650 °C, the plastic 

deformation is primarily accommodated via the formation of slip bands at all strain levels 

(Figure 9(a) & (b)). By increasing strains, the density of the slip bands increases, and multiple 

slip systems are observed in some grains. Elongation and slight rotation in larger grains is 

observed in the EBSD inverse pole figure (IPF) maps at 550 °C (Figure 9(c), (d) & (e)). Colour 
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gradation in the IPF plots indicates misorientation. In the samples tested at 550 °C, there is 

significant colour gradation especially in the larger grains. This is also an indication of slip bands 

in the grain, since constrained slip bands result in such misorientation. In addition to slip, creep 

mechanisms such as intergranular void nucleation and coalescence are observed in the samples 

tested at 550 and 650 °C, observed at 17.8% strain and 10.9% strain respectively. Since the 

interrupted tensile tests take 4-5 hours, some degree of creep interaction can be expected at 

elevated temperatures.  

Intergranular crack initiation sites were observed in the edges of the sample, in all tensile 

tests at temperatures greater than 550 °C. At 550 °C, these cracks were first observed at 31% 

strain. These crack initiation sites convert into transgranular cracks which propagate through the 

width of the sample till they reach the intergranular sites on the other edge. At the interface of 

the intergranular and transgranular region, slip bands are observed (Figure 9(f) & (g)). 

Fractography shows that the nature of the fracture is transgranular ductile, with dimples of 

varying sizes (Figure 9(h) & (i)). This is observed in samples at 550 and 650 °C. The network of 

fine dimples is due to particle decohesion around the small Nb precipitates, and larger ones 

around the larger Nb rich carbides and carbonitrides. There are voids in the fracture surface, 

which indicates the creep void nucleation and growth at grain boundaries and around 

precipitates. The voids are more prominent at 650 °C due to greater extent of creep interaction 

(Figure 9(i)). 
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Figure 9.(a) and (b) Surface of sample at 550 °C showing slip bands at 8.6 and 25% strain (c), (d) and (e). 

IPF maps (parallel to ND) showing elongation and color gradation within grains (circled region) with 

increasing strain. (f) Intergranular crack initiation (at 35.4% strain) and (g) Corresponding region in the 

fracture surface. (h) and (i) Dimpled fracture surface of sample under tensile at 550 °Cand 650 °C. 

σ, RD 
(a)  550°C, 8.6% strain (b) 550°C,25.18% strain 

(h) 550°C 

 

(i) 650°C 

15µm 

550°C,3% strain (c) 550°C,11.7% strain (d) 550°C, 32% strain (e) 

 

(f) 650°C, 35.4% strain 

 

 

(g) 650°C 
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750 °C: 

At 750 ˚C and above, there is a shift in the deformation mechanism. The void formation 

and coalescence, observed beginning at 9% strain, precede the activation of the slip bands 

(Figure 10(a)&(b)). The voids are formed due to creep interaction. It was observed that the 

sample along transverse rolling direction exhibited similar deformation mechanism as the ones 

along rolling direction and showed shift from void formation and coalescence at lower strains to 

slip band activation at higher strains.  

The fractographic images of the sample tested at 750 °C along the rolling direction are 

shown in Figure 10(c). The fracture surface features a network of smaller and larger dimples 

with inclusions at the bottom, similar to sample at 550 °C and 650 °C. At higher temperatures as 

the thermal softening begins to counteract the work hardening and precipitates coarsen, larger 

dimples are observed. In samples along transverse rolling direction, the effect of the oriented 

clusters of precipitates can be seen (Figure 10(d)). The dimples around these clusters is relatively 

shallow. This indicates that the crack growth is accelerated upon contact with these clusters, with 

reduced plasticity. 
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850 °C and 950 °C: 

At 850 °C in addition to the surface features observed at 750 °C, there were small cracks 

originating near the grain boundaries growing in to the grain (Figure 11 (a)). This can be due to 

debonding around nanoscale, needle shaped precipitates at grain boundaries growing into the 

grains. These cracks were observed throughout the surface of the sample but did not appear to 

grow significantly across the grains or alter the fracture path. Intergranular crack initiation sites 

and transgranular propagation to failure was observed, similar to samples tested at lower 

temperatures. 

Due to a large amount of thermal softening and necking at 850 °C and 950 °C, the sample 

shows a narrow fracture surface indicating a major reduction in cross-section (Figure 11(e) & 

Figure 10. (a) & (b). Surface of sample at 750 °C at 8.9% and 20% strain showing a shift from void 

nucleation and coalescence to slip bands. (c) and (d): fractographic images of the samples along 

rolling and transverse direction. 

 

(c)  750°C, RD 

 

 

R
D
 

Precipitates oriented along RD 

(d)  750°C, TD 

 

50µm 

(a) 750°C, 8.9% strain 

 

(b) 750°C, 20% strain 

 

50µm 

RD 
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(f)). There is still ample ductility at 850 °C in the samples as indicated by the presence of the 

dimples. On the surface, the creep-like void formation and coalescence was dominant until the 

onset of slip bands, and eventual failure. The numerous large voids on the fracture surface 

corroborate the surface observations. Grain boundary cracks were observed to grow more 

transverse to loading directions and these are the elongated voids seen in Figure 11(e).  

Crack initiation at 950 °C was also intergranular at the edges. As the crack propagates, it 

is observed that the material around the crack begins to lose its crystallinity (Figure 11(b)). This 

loss of crystallinity is observed on the fractured surface and occurs due to a combination of the 

high temperature and stress around the crack.  

 In-situ SEM setup allowed EBSD mapping at temperatures up to 950 °C. The IPF maps 

along normal direction show that there is no significant elongation in the grains up to 4% strain 

(Figure 11(c)&(d)). There is also a lack of colour gradation within these grains, corresponding to 

the delayed activation of slip bands in samples tested at higher temperatures. Precipitation 

growth was observed on the surface of the sample at this temperature.  

At 950 °C, dimples as observed at lower temperatures are not seen anymore. The fracture 

surface is incredibly narrow and features very large voids, some as large as 100 µm (Figure 

11(f)). These voids appear like large cavities with pulled edges due to the great extent of thermal 

softening at the temperature. 
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Grain boundary M23C6 precipitates, Nb rich precipitates within the grains were seen very 

prominently on the surface Figure 12(a). Some extent of debonding at the precipitate-matrix was 

observed (Figure 12(b)) but did not appear to grow significantly before sample failure. Phase 

changes in the Alloy 709 during heating and loading are also observed using in-situ SEM and 

Figure 11. (a). In-situ SEM images of sample under tensile at 850 °C – showing cracks growing into grain 

boundary into the grains; and (b) 950 °C-showing loss of crystallinity around the crack propagation. (c) & 

(d): IPF (parallel to normal direction) of Alloy 709 sample at 950 °C. (e) & (f): Fractographic images of 

samples at 850 and 950 °C. 

  

(d)  950°C,3.9% 

strain 
(c) RT, 0 

strain 

σ, 

 

(a) 850°C 

 

(b) 950°C 

(e) 850°C, RD (f)  950°C,3.9% strain 

Cracks originating at grain 
boundaries. Directed into grains 
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EBSD. There is an increase in BCC ferrite content at elevated temperatures, as shown in Table 5. 

The increase in the BCC ferrite is significantly larger at 950 °C when compared to 650 °C, even 

at lower strains. Such ferrite formation at the grain boundaries have been observed in 316H, and 

were found to be associated with creep cavitation. [19] 

 

Table 5. Increase in BCC iron content due to temperature and loading. 

Temperature/Strain 0% (at 25°C) 3.9% strain 12.1% strain 

650 °C 0.15% Fe-BCC - 0.32% Fe-BCC 

950 °C 0.15% Fe-BCC 2.25% Fe-BCC - 

 

800 °C at 2.61×10
-4

 /min : 

Due to the slow loading rate and consequent longer exposure to the temperature, 

significant creep interaction can be expected. The surface deformation is like that observed at 

750 °C and 850 °C, with greater macrocrack growth and grain boundary separation than that in 

the faster strain rate tensile experiments (Figure 13(a) & (b)). Series of SEM images of the same 

region, through increasing strains, were processed using MATLAB and binarized. These 

binarized images (Figure 14) emphasize the micro and macro cracks at grain boundaries, 

concentration of plastic deformation and eventual grain boundary separation at higher strains. At 

(a) 

Nb-rich Precipitates within 

the grain 

GB M
23

C
6
 

precipitation 

Precipitates growing into 

the grains 

 

No cracking 
observed around 

these precipitates 

Small trangranular 

cracks 

 

(b) 

Figure 12. Grain boundary and transgranular precipitation growth observed in Alloy 709 sample 

under tension at 950°C. 
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lower strain there is grain boundary void formation and increasing strains these voids begin to 

grow (Figure 14(a)). At 15 and 18.9% strain, we see that these grain boundaries begin to separate 

plastically (Figure 14(c)). Figure 13(c) also shows the grain boundary cracks separating 

plastically ahead of the final transgranular crack propagation.  

 

The fracture surface of the sample under 2.61×10
-4

 /min tensile loading at 800 °C shows 

similar features as discussed previously. Along the direction of crack propagation, after the 

intergranular crack initiation region, an area of small but shallow dimples is observed indicating 

that at low strain creep mechanisms are dominant. Towards the end of the crack propagation, the 

Figure 13. (a) & (b): SEM images comparing cracks growing from grain boundary into grains at 

800°C (2.61×10
-4

 /min) and 850°C (5.02×10
-3

 /min). (c) Plastic separation of grain boundaries 

ahead of the crack tip. (d) Fracture surface of the sample. 

C
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ck
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Plastic separation at 

grain boundaries 

 

(c) 800°C, 2.61×10-4 /min  

Cracks growing 

into grains 

Voids around precipitates 

(a) 800°C,2.61×10-4 /min  

 

Lamellar region 

Microcracks 

Small dimples 

(d) 800°C, 2.61×10-4 /min  

 

 

(b) 850°C, 5.02×10-3 /min  

Cracks growing 
into grains 



 

26 

 

mode changes to lamellar/step like regions accompanied by dimples (Figure 13D- inset). A 

closer look at the lamellar region reveals alternating modes of transgranular region with 

microdimples and fast transgranular fracture. 

 

A summary of the crack initiation, propagation and final fracture observed for the lower 

temperatures (550-650 °C) and higher temperatures (750-950 °C) has been shown in Figure 15. 

Comparison between in-situ SEM tensile tests and conventional tensile tests: 

The results of tensile tests conducted in air are presented in Table 6. Despite differences 

in environment (vacuum vs. air), testpiece geometry (thin strip vs. cylindrical), limitation of 

heating area (local vs global), all tensile properties including yield stress, intimate tensile 

strength and elongation measured from in-situ SEM tests are closely similar to those that tested 

in the conventional way, which also demonstrate the same trend with respect of temperature 

dependence. Although in-situ SEM experiments tested a smaller volume of material, both sample 

geometries have a significant number of grains within the gauge sections, hence lead to similar 

properties. It is also observed that environment has little influence on deformation mechanisms 

in Alloy 709, which is dominated by microvoids coalescence. Fractographs of cylindrical sample 

tested at 750C is shown in Figure 16.   

Figure 14. SEM images binarized using MATLAB highlighting grain boundary void nucleation and 

coalescence leading to cracking and plastic separation (c) at 800°C, 2.61×10
-4

 /min . 

(a) 6.19% strain 

100µm 

(b) 15% strain 

Grain boundary 

crack growth 

100µm 

(c) 18.9% strain 

Slip bands 

100µm 
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 Low Temperature- 5.02×10
-3

 /min  High Temperature – 5.02×10
-3

 /min  
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propagation 
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crack 

propagation 

with plastic 

separation at 

the grain 

boundary 

cracks. 

 

 

The fracture surface demonstrates a typical cup and cone appearance, with plastic 

deformation relatively uniformly spread across the whole gauge before localized and failed 

toward the end of tensile tests. The microvoids seen in this sample are closely similar to the ones 

Figure 15. Summary of the In-situ SEM tensile experiments. Low temperatures: 550-650 °C. High 

temperature: 750-950 °C. 

 

35% strain 

 

30% strain 

50µm 
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found on the in-situ SEM tensile test at 750 C (Figure 10(c)). Inevitably, in-situ SEM testing is 

prone to encounter larger scatters due to the complexity for setup, this is unlikely to result from 

material variations, rather experimental variables and the need to interruption for imaging. 

Table 6. Comparision of tensile properties between in-situ SEM and standard laboratory tests. 

Temperature 

(C) 

0.2 (MPa) UTS (MPa) Elongation (%) 

In-situ 

SEM 

Standard In-situ 

SEM 

Standard In-situ 

SEM 

Standard 

550 227 170 594 565 44 43 

650 168 168 517 472 36 39 

750 174 165 368 324 42 47 

 

 

5. Conclusions 

In-situ SEM tensile experiments were conducted to investigate tensile properties and 

deformation mechanisms of the Alloy 709 in a temperature range of room temperature to 950C. 

Following conclusions can be drawn: 

 Alloy 709 shows typical stress-strain curves of austenite stainless steels with an excellent 

work hardening capability up to a temperature of 650C and a superb ductility at all 

temperatures.  

Figure 16. SEM fractographs of a cylindrical testpiece after testing at 750°C: (a) 

cup and cone fracture surface appearance; and (b) details of the microvoids 

formed in the center of the testpiece. 

  

(b) (a) 
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 Serrated stress strain curves were observed at 550, 650 and 750 °C under the faster strain 

rate applied. At the 2.61×10
-4

 /min strain rate, serrated plastic deformation was observed 

to extended to 800 °C.  

 The deformation mechanism was slip dominated up to 650 °C. At high temperatures, 

creep mechanisms are observed in the sample in the form of intergranular void formation 

and micro crack growth. With increase in temperature, the slip activation is observed at 

higher strains, with void nucleation and coalescence observed at lower strains. 

 Samples tested at all temperatures failed via transgranular crack propagation, even though 

crack initiation was intergranular in nature. Orientation of the sample did not affect the 

deformation mechanism. 

 Phase transformation was observed in the samples tested at high temperatures. At 650 °C, 

ferrite content (primarily at the grain boundaries) in the sample increased with increased 

exposure to the temperature during loading. The ferrite content was significantly larger at 

950 °C. This could accelerate the creep cavitation at the ferrite-austenite interface. 
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