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Abstract 

 

Primary biliary cholangitis is a prototypical autoimmune disease characterized by an 

overwhelming female predominance, a distinct clinical phenotype, and disease specific anti-

mitochondrial antibodies targeted against a well-defined auto-antigen. In a genetically 

susceptible host, multi-lineage loss of tolerance to the E2 component of the 2-oxo-

dehydrogenase pathway and dysregulated immune pathways directed at biliary epithelial cells 

leads to cholestasis, progressive biliary fibrosis, and cirrhosis in a subset of patients. Several 

key insights have shed light on the complex pathogenesis of disease. First, characteristic anti-

mitochondrial antibodies (AMAs) target lipoic acid containing immunodominant epitopes, 

particularly pyruvate dehydrogenase complex (PDC-E2), on the inner mitochondrial membrane 

of BECs. Next, breakdown of the protective apical bicarbonate rich umbrella may sensitize 

BECs to aberrant apoptotic pathways leaving the antigenic PDC-E2 epitope immunologically 

tact within an apoptotic bleb. A multi-lineage immune response ensues characterized by an 

imbalance between effector and regulatory activity resulting in progressive and self-perpetuating 

biliary injury. Genome wide studies shed light on important pathways involved in disease, key 

among them being IL-12. Epigenetic mechanisms and microRNAs may play help shed light on 

the missing heritability and female preponderance of disease. Taken together, these findings 

have dramatically advanced our understanding of disease and may lead to important 

therapeutic advances.  
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INTRODUCTION 

Primary Biliary Cholangitis (PBC) is an uncommon autoimmune liver disease characterized by 

progressive cholestasis, anti-mitochondrial antibodies (AMA), and histologic features of 

lymphocytic cholangitis and ductopenia(1). Its female predominance, characteristic phenotype, 

and well-defined autoantigen make it an archetypal autoimmune disease(2). Dysregulation of 

the innate and adaptive arms of the immune system occurs as a result of a distinct loss of 

tolerance to the E2 subunit of the mitochondrial pyruvate dehydrogenase complex (PDC-E2) 

resulting in a targeted immune response directed at biliary epithelial cells (BEC) (3). Disease 

specific AMAs are a hallmark of the disease and despite the ubiquitous nature of this 

autoantigen the inflammatory response in PBC is limited to the biliary epithelia(4).  

 

Genetic studies have highlighted the importance of immune regulation in the pathogenesis of 

PBC and have identified aberrant pathways involved in antigen presentation, T and myeloid cell 

differentiation, and B cell function as contributing to disease(5). The relevance of the IL-12 

signalling axis in PBC was emphasized in genome wide association surveys (GWAS) and 

reinforced by animal models(6, 7). More recently, a link between biliary injury, immune 

activation, and epigenetic regulation has been suggested which implicates loss of the protective 

biliary bicarbonate umbrella in biliary injury via downregulation of the Cl-/HCO3- exchanger AE2 

(anion exchanger 2)(8) Its seems plausible that on a permissive genetic background, exposure 

to a putative molecular mimic triggers a multi-lineage immune response targeted at BECs. 

Injured BEC’s with dysfunctional AE2 are sensitized to apoptosis leading to exposed PDC-E2 

within an apoptotic bleb that perpetuates focused biliary injury aggravated by an imbalance 

between effector and regulatory immune activity, ultimately leading to progressive cholestasis 

and fibrosis (Figure 1).    
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In this review we aim to provide an overview of the mechanisms contributing to the 

pathogenesis of PBC. A clear understanding of the biologic basis of disease is essential if 

progress is going to be made to expand the therapeutic options available to these patients with 

the aim of improving clinical outcomes.   

 

AUTOANTIBODIES 

Antimitochondrial Antibody 

The AMA response is considered the most highly directed autoimmune marker in any disease, 

yet intriguingly, despite the presence of mitochondria in all cells, only the small bile ducts are 

targeted in PBC. AMA’s are primarily targeted to the immunodominant PDC-E2 autoantigen on 

the 2-oxoacid dehydrogenase complexes (2-OADCs) located on the inner mitochondrial 

membrane(9). In addition to PDC-E2 other mitochondrial auto-antigens are also relevant 

including the E2 subunit of the 2-oxoglutarate dehydrogenase complex (OGDC-E2), the E2 

subunit of the 2-oxoacid dehydrogenase complex (BCOADC-E2), and the E3-binding protein 

(E3BP)(10). Each complex has three subunits (E1-E3) though the E2 subunit remains most 

relevant particularly as it relates to its lipoyl domain which contains an essential lysine residue to 

which the lipoic acid cofactor is covalently attached(11, 12). All immunodominant epitopes 

contain a similar motif with the lipoic acid-lysine bond at position 173 being necessary for 

antigen recognition(13, 14) (Figure 2). T and B cell epitopes both include the lipoylated K173 

amino acid of the inner domain(15) and PDC-E2 autoreactive CD4 and CD8 T cells are 

enriched in the liver and hilar lymph nodes in patients with both early and late stage disease 

(13, 16). While AMA’s may not be independently pathogenic in vivo, in the presence of 

macrophages and BEC apotopes a burst of proinflammatory cytokines develops resulting in 

perpetual biliary inflammation(17). 

 

Antinuclear Antibodies 
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Anti-nuclear antibodies (ANA’s) are detected in 30-50% of patients with PBC and their presence 

can be important in diagnosis and prognosis(18). The pathogenic significance of ANAs in PBC 

is less clear, though PBC specific ANAs yield specific indirect immunofluorescence patterns 

based on their corresponding nuclear antigens (Table 1)(19). A nuclear rim pattern is observed 

with anti-gp210 ANA’s that recognize antigenic epitopes on the glycosylated luminal domain and 

the cytoplasmic tail of gp210 in the nuclear pore complex (20), and reactivity has been 

associated with disease progression, active histologic inflammation, and progression to 

transplantation(21). Sp-100 is a nuclear body protein that consists of three major autoantigenic 

domains recognized by anti-sp100 sera, and yields a multinuclear dot immunofluorescence 

pattern(22). Nearly three quarters of PBC patients with prior urinary tract infections (UTI) test 

positive for anti-sp100 antibodies suggesting that bacteria or their by-products may have a role 

in auto-antibody formation(23). Anti-centromere(ACA) ANAs occur in up to 10% of patients with 

PBC, independent of limited scleroderma(24), and these patients may tend towards a portal 

hypertensive phenotype (25), though this remains controversial(26).  

 

Novel Autoantibodies 

Two novel PBC auto-antigens, namely kelch-like 12 (KLHL12) and hexokinase 1 (HK1) have 

recently been identified using a hypothesis-free proteomics strategy aimed at autoantigen 

discovery(27, 28). KLHL12 is a nuclear protein essential in collagen export and regulates 

protein ubiquitination(29). HK1 resides on the outer mitochondrial membrane and catalyzes 

phosphorylation of glucose to glucose-6-phosphate, maintains mitochondrial homeostasis, and 

modulates cellular susceptibility to apoptosis(30). Whether dysfunction of HK1 leads to 

mitochondrial dysfunction, loss of immune tolerance, and cell death remains an active area of 

investigation(31).    

 

BILIARY EPITHELIAL CELLS  
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BECs line the biliary tree and participate in bile formation via apical and basolateral 

transmembrane channels and exchangers(32). Endogenous and exogenous stimuli including 

micro-organisms, xenobiotics and drugs activate BECs and modulate the inflammatory and 

proliferative response to injury and repair(33). Toll-like receptors (TLRs) respond to bacterial 

products including pathogen associated molecular patterns (PAMPs) and TLRs 1 through 5 

expressed on BECs and are upregulated in PBC (34). Expression of Major Histocompatibility 

Complex (MHC) II, CD80 and CD86 allow BECs to serve as antigen presenting cells (APCs) 

and provide costimulatory signals for T cells, attesting to their active role in disease 

pathogenesis and propagation(35).  

 

Biliary Bicarbonate Umbrella 

AE2 is the major Cl-/HCO3- exchanger expressed on BECs and regulates intracellular pH and 

biliary HCO3- secretion resulting in a bicarbonate rich “umbrella” on the apical surface of 

cholangiocytes, which protects BECs from toxic hydrophobic bile acids(36). Defective AE2 

function facilitates acidification of bile salts rendering them hydrophobic and able to cross the 

plasma membrane leading to cellular apoptosis. Downregulation of AE2 leads to and alkaline 

intracellular environment, sensed by soluble adenylyl cyclase (sAC), a conserved bicarbonate 

sensor that sensitizes cells to apoptosis(37, 38). Consistent with this mechanism, AE2 deficient 

H69 cholangiocytes demonstrate increased sAC mRNA and protein, and inhibition of sAC 

inhibits bile salt induced apoptosis(39). Recent work suggests that miR-506-3p may target the 3’ 

untranslated region (3’UTR) and downregulate AE2 in PBC with in vitro findings demonstrating 

reduction in AE2 expression, reduced Cl-/HCO3- exchange activity, as well as mitochondrial 

dysfunction, PDC-E2 overexpression and sensitization of cholangiocytes to bile salt induced 

apoptosis(40). Futher to this, an AE 2 a,b-/- mouse model was developed that demonstrated 

enhanced production of IL-12 p70 and IFN-γ, expanded CD8+ T cells, downregulated T 

regulatory cells (Tregs), AMAs and histologic evidence of mild to severe portal inflammation(41).  
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Biliary Injury, Apoptosis, and Senescence  

Cholangiocytes are the primary epithelial source of TNF-α, a pro-inflammatory signal that can 

both promote apoptosis via the caspase cascade, and activate survival pathways via the 

nuclear factor κB pathway(10). TNF-α (in combination with IL-1, IL-6 and IFN-γ) inhibits cyclic-

AMP (cAMP) mediated ductal secretion, while the IκB kinase (IKK)/NF-κB signalling pathway 

regulates inflammatory responses and protects against oxidative and cytokine mediated 

damage and death(42).  

 

Usually, apoptotic cells modify mitochondrial PDC-E2 through covalent binding of glutathione. In 

PBC, this modification does not occur and the antigenic lysine-lipoyl epitope remains 

immunologically intact within an apoptotic bleb(17). This apotope is recognized by circulating 

AMAs and the resultant antigen-antibody complex subsequently stimulates the immune system 

resulting in widespread immune activation leading to apoptosis of neighbouring cells(43).  As 

APCs themselves, cholangiocytes have been implicated in loss of tolerance via impaired 

phagocytic clearance of apoptopes(44). This aberrant mechanism of protein degradation may 

be responsible for the BEC directed injury in PBC.   

 

Senescence, the state of permanent cell cycle arrest is a protective mechanism to remove 

damaged cells from the local environment(45); though senescent cells accumulate in PBC (46). 

Furthermore, rather than being replaced by normal cells, senescent cholangiocytes transition to 

a “senescence associated secretory phenotype” characterized by secretion of diverse cytokines 

(IL-6, IL-1), chemokines (CX3CL1, CXCL8, and CCL2), growth factors, and matrix 
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metalloproteinases (MMPs) that recruit additional immune cells and act in the process or 

remodelling and repair(47).  

 

HEPATIC IMMUNOREGULATION IN PBC 

Innate Immune Response 

The innate immune response is not independently sufficient to cause a breakdown in tolerance, 

though the presence of granulomatous inflammation, polyclonal IgM production, increased 

natural killer (NK) cells, and cytokine responses emphasize its importance in the pathogenesis 

of disease(48). Microbial PAMPs, lipopolysaccharides (LPS) and lipotechoic acids in bile can 

bind to cell surface TLRs on BECs leading to biliary injury via the pro-inflammatory NF-κB 

pathway and chemokine release (IL-8 and CX3CL1)(34). CX3CL1 attracts CD8+ and CD4+ T 

cells, is upregulated in injured bile ducts and T cells with its cognate receptor are found in portal 

tracts of subjects with PBC(49).  

 

NKT cells are innate effector cells regulated by antigen presentation by CD1d(50); and an 

increased frequency of CD1d restricted NKT cells is seen in PBC with a higher proportion in the 

liver compared to peripheral blood(10). In addition, increased cytotoxic activity and perforin 

expression by NK cells has also been described in PBC(51). In another potential link between 

the innate and adaptive arms, Shimoda et al. demonstrate that at high NK/BEC ratios, NK cells 

attack BEC resulting in autoantigen release, which in the presence of APCs activate 

autoreactive T cells(52); whereas, at low NK/BEC ratios, BECs experience indirect injury, 

though IFN-γ secreted from NK cells which induces HLA II expression on BECs which are 

subsequently targeted by autoreactive CD4+ T cells(52).  
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Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells characterized by 

expression of a semi-invariant T cell receptor (TCR) chain (Vα7.2-Jα33) and restricted to MHC 

class I that can be activated independently or  by microbial products to produce pro-

inflammatory cytokines including IFN-γ, TNF-α, and IL-17(53). Recently, Setsu et al. reported 

significantly reduced numbers of MAIT cells in the blood and liver of PBC patients compared to 

controls with circulating MAIT cells demonstrating impaired production of cytokines (particularly 

TNF-α). Furthermore, despite biochemical response to UDCA, frequencies of MAIT cells 

increased but did not normalize, suggesting that ongoing biliary injury and progressive disease 

may occur despite biochemical improvement(54, 55).  

 

Adaptive Immune Response  

The role of the cellular immune response in PBC is emphasized by the presence of highly 

specific AMAs and heavy infiltration of CD4+ and CD8+ T cells in the portal tracts of patients with 

disease(13, 15). Independent of detectable autoantibody, antigen specific CD4+ and CD8+ T  

cells are enriched 100-fold and 10-fold, respectively, in the liver as compared to peripheral 

blood(16). Several other T cell subpopulations have also been implicated, including the pro-

inflammatory, pro-fibrotic CD4+  T helper (Th) 17 subclass(56), regulatory T cells (Treg) which 

modulate immunity and promote self-tolerance via suppression of inappropriate immune 

activation(57), and follicular helper T cells (Tfh) which facilitate B cell differentiation and 

antibody production in germinal centers(58).  

  

The portal tracts in PBC are rich in chemokines including CXCL10, CXCL9, and CX3CL1 which 

recruit CD4+ and CD8+ T cells bearing their cognate receptors(59). While both CD4 and CD8 T 

cells recognize similar sequences within the 2-OADC enzyme complexes, CD8+ T cells likely 

play an important role in cell death of targeted cholangiocytes(60, 61). An increase in Th17 cells 
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within the liver of patients with PBC as compared to controls has also been reported, with 

hepatic Th17 infiltration increasing, but circulating Th17 cytokines decreasing with progression 

of fibrosis(62). Disease progression is associated with skewing from a Th1 to Th17(63) 

predominant cytokine profile which congregate around damaged cholangiocytes and can further 

promote injury(60).  

 

Tregs (CD4+CD25+FoxP3+) T cells, control excessive immune responses by modulation of APC 

maturation, metabolic disruption, and secretion of anti-inflammatory cytokines(64). Anti-

inflammatory cytokines such as IL-10 and TGF-β as well as PD-L1 and CTLA-4 contribute to the 

immunosuppressive function of Tregs which are converted in the liver from naïve or effector 

CD4+ T cells. A relative reduction in the number of Tregs in peripheral blood has been observed 

in PBC patients compared to patients with controls(62) and intrahepatic Tregs are also reduced 

in PBC patients with the intrahepatic CD8/Treg ratio being higher in those with PBC compared 

to patients without bile duct damage(65). In the dnTGFβRII mouse model of PBC, Tanaka et al. 

demonstrate that murine CD4+FoxP3+ T regs possess weaker suppressive function than wild 

type Tregs(66).  

 

Follicular helper T cells (Tfh) localize to germinal centres within lymphoid follicles and provide 

requisite B cell support to produce highly antigen specific antibodies and generate B cell 

memory(67, 68). T follicular regulatory T (Tfr) have been recently described, which localize to 

germinal centres, and analogous to Tregs, suppress the humoral immune response elicited by 

Tfh cells(69). Wang et al. demonstrated increased number and function of peripheral Tfh in PBC 

and a decline in in frequency of Tfh associated with treatment response to UDCA(67). In an 

extension of this work, Zheng et al. showed significant reduction in circulating Tfr cells and the 

Tfr/Tfh ratio in PBC which negatively correlated with serum IgM levels(69).  
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GENETIC PREDISPOSITION  

The importance of genetic risk in development of disease is highlighted by several lines of 

evidence that demonstrate high concordance of disease in monozygotic twins, an increased 

prevalence in first through fifth degree relatives (FDRs) of affected probands(70), a sibling 

relative risk of 10.5, and a high prevalence of AMAs in FDRs compared to population 

controls(71-73).  While genetics play an important role, it is likely that allelic variants are not 

deterministic, but modulate important biologic processes that lead to disease. While significant 

advances have been made in our understanding of the genetic architecture of PBC, the 

functional consequences of identified variants and their relevance to important biologic 

pathways remains undefined.  

 

Human Leukocyte Antigen (HLA) 

HLA genes are located in the highly polymorphic MHC region, encode molecules responsible for 

antigen presentation, and are essential in establishing immune tolerance(6). Candidate gene 

and genome wide association studies (GWAS) have demonstrated robust PBC-specific 

associations at the DRB1, DQA1, and DQB1 loci with many variants mapping to antigen binding 

regions of MHC molecules possibly leading to defective antigen presentation(74). The HLA 

DRB1*08 family is associated with disease, specifically DRB1*0801 in European and North 

American cohorts, and DRB1*0803 among the Japanese, giving insight into ethnic variability of 

disease predisposition(75, 76). Furthermore, HLA DRB1*11 and HLA DRB1*13 were protective 

against disease in European cohorts, whereas DQB1*06:04 and DQB1*03:01 conferred a 

reduced risk of disease among the Japanese(77, 78). GWAS data have suggested that HLA 

subtypes may be associated with distinct immunologic phenotypes, with single nucleotide 

polymorphisms (SNPs) at the HLA-DPB1 locus associated with anti-sp100 positivity among a 
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North American and European cohort, and HLA-DRB1*0405 and HLA-DRB1*0803 being 

associated with anti-gp210 and anticentomere antibodies, respectively, in a Japanese study(79, 

80). Notably, while the strongest statistical associations in GWAS have consistently been at the 

HLA locus, these risk alleles are present in less than 15% of patients and despite statistically 

robust associations, they are lower 

than seen in many other autoimmune diseases(81).  

 

Non-HLA Risk Loci 

In the last several years, large scale GWAS efforts have identified dozens of SNPs associated 

with PBC, and have highlighted several important pathways in antigen presentation, lymphoid 

differentiation, and B cell function as contributing to disease(5). The first GWAS from Canada 

identified SNPs at HLA, IL12A and IL12RB2 as significant associations with PBC and 

highlighted the importance of the IL-12 signalling pathway in this disease(82). Another effort 

including Italian and Canadian subjects confirmed associations from the initial GWAS, and also 

identified loci that map to regions containing IRF5-TNPO3, IKZF3, and SPIB, each of which has 

an immune-regulatory function(82, 83). A large GWAS and meta-analysis from the UK 

subsequently identified 12 additional loci associated with PBC and emphasized the role of the 

NF-κB pathway, T cell differentiation, TLR, and TNF signalling, with SNPs mapping to STAT4, 

DENDD1B, CD80, IL7R, CXCR5, TNFRSF1A, CLEC16A, and NFKB1 as significant 

associations(84).  

 

Ethnic differences in genetic susceptibility were highlighted by a Japanese GWAS that 

implicated TNFSF15 and POU2AF1 as risk loci, but failed to identify associations with the 

majority of other non-HLA variants including IL12A and IL12RB2 found in predominantly 

Caucasian populations(85). A recent GWAS of the Han Chinese population replicated 14 

previously reported risk loci including IL12A but identified six novel variants at IL21, IL21R, 
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CD28/CTLA4/ICOS, CD58, ARID3A and IL15 associated with disease(86). Variants at IL21 and 

IL21R were strongly associated with disease and aberrant expression of IL21 and IL21R was 

demonstrated on immunohistochemical analysis of livers of PBC patients. Interestingly, recent 

studies have reported increased IL21 expression from Tfh cells in PBC patients, which have a 

role in mediating B cell maturation, differentiation, and antibody production, as discussed 

earlier(67).  

 

Cordell et al. performed an meta-analysis and pathway analysis in an effort to identify pathways 

most relevant to disease. In addition to identifying 6 novel PBC risk loci, several 

immunoregulatory pathways were highlighted including IL-12, IL-27, and JAK-STAT signalling, 

even after adjusting for bias associated with their HLA contribution(87). Hitomi et al. performed 

high density mapping, in silico and in vitro analysis to identify a functional variant at the 17q12-

21 risk locus, and identified rs12946510 as the SNP influencing gene expression via alteration 

of the Forkhead box protein O1 (FOXO1) binding motif(88). Disruption of the enhancer regions 

of ORMDL3 and GSDMB as a result of this variant translated into lower gene expression levels, 

suggesting a functional relevance of this susceptibility locus. Collectively, this body of evidence 

has implicated many genes in PBC, yet more than 80% of the heritability of disease remains 

unexplained, possibly related to the contribution of rare variation with strong biologic effect, non-

SNP structural changes including epigenetic modification, or gene-gene and gene-environment 

interactions(89). That said, GWAS have certainly highlighted the role of immune dysregulation 

in PBC and key among these is the IL-12 signalling axis. 

 

IL-12 in PBC 

IL-12 is heavily involved in development of TH1 responses, a key feature of autoreactivity in 

PBC(90). The IL-12 cytokine family (IL-12, IL-23, IL-27, IL-35) is associated with bidirectional 

immune regulation and IL12A and IL12RB2 are the strongest non-HLA risk loci associated with 
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PBC in large scale genetic efforts(91). Functional IL-12 interacts with its CD4+ T cell surface 

receptor to activate a TH1 response via JAK-STAT signalling; and genes regulating downstream 

components of this pathway including TYK2 and STAT4 have been associated with disease in 

GWAS(92). Engagement of IL-12 with its receptor also modulates the immune response via 

IFN-γ which inhibits proliferation of pro-inflammatory TH17 cells by IL-23, a negative regulator 

which blocks TH1 and TH17 development and supports proliferation of Tregs(93).  

 

GWAS have also implicated pathways upstream of IL-12 in PBC. Interferon regulatory factor 5 

(protein product of IRF5) interacts with NF-κB to activate TH1 cytokines, including IL-12, and 

transcription factors encoded by IRF8 bind to IL12 promotors to regulate IL-12 and IFN-γ 

production(94). Despite absence of statistical associations with IL12 loci in the Japanese 

GWAS, genes including TNFSF15 were implicated and their protein products interact with death 

receptor 3 to promote TH1 and TH17 expansion and interact with IL-12 to promote IFN-γ 

production(85). With this data in hand, Ustekinumab, a monoclonal antibody targeting the p40 

subunit shared by IL-23 and IL-12 was an attractive therapeutic target in PBC. Unfortunately, in 

a proof of concept phase II study, while nearly half of patients had a decline in ALP by more 

than 20%, no patient reached the predefined primary endpoint of the study(95).  

 

EPIGENETICS and MICRORNA 

MicroRNAs in PBC 

MicroRNAs (miRNA) are small RNA molecules that are important in post transcriptional 

regulation of gene expression and modulate diverse biologic processes(96). Differential 

expression 35 hepatic miRNAs in PBC has been shown with targets predicted to affect cell 

proliferation, injury, and cell death(96). An association between miR-506 and AE2 regulation is 

an intriguing potential pathophysiological link in PBC in light of the integral role AE2 plays in 
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maintenance of the protective bicarbonate rich layer on the apical surface of cholangiocytes(40). 

In fact, miR-506 is increased in PBC livers and upregulated in intrahepatic bile ducts in PBC 

compared to other chronic cholestatic liver disease. Over expression of miR-506 in PBC is 

associated with decreased AE2 expression and activity in human cholangiocytes (likely via 

binding to the 3’UTR of AE2 mRNA) and improvement in AE2 activity is seen after transfection 

with anti-miR-506(40). Futheremore, pro-inflammatory cytokines stimulate miR-506 gene 

expression in cholangiocytes and this overexpression inhibits AE2 leading to widespread 

dysregulation of multiple biologic processes particularity related to mitochondrial 

metabolism(97). Type III inositol 1,4,5-triphosphate receptor (InsP3R3) is a major intracellular 

calcium release channel located in the endoplasmic reticulum of cholangiocytes and also 

promotes biliary bicarbonate secretion, and miR-506 has also been shown to be a regulator of 

this gene (InsP3R3)(98).  Interestingly, miR-506 is an x-linked microRNA localized at Xq27.3(99); 

that aberrant epigenetic X-inactivation and resultant miR-506 upregulation could relate to the 

female predominance of disease, remains an intriguing hypothesis.  

 

MiRNAs have also been linked to immune. MiR-92a is downregulated in PBC, is inversely 

associated with Th17 populations, and is co-expressed with IL-17A in PBMCs suggesting its 

potential involvement in upregulation of this cell subset(100). Downregulation of microRNAs 

related to CD4+ T cell receptor signalling have also been implicated, in particular those that 

target N-Ras, which has an important role in T cell activation(101). Microarray and quantitative 

real-time polymerase chain reaction (qRT-PCR) analysis have shown decreased miR-425 

associated with induction of proinflammatory IL-2 and INF-γ via N-Ras mediated upregulation of 

TCR signalling(101). 

 

 

Sex Chromosomes and Epigenetics 
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Incomplete concordance of PBC between monozygotic (MZ) twins emphasizes that factors in 

addition to genetics must play a role in disease onset, and epigenetic mechanisms including 

DNA methylation, histone modification, and non-coding RNA’s are being investigated for their 

potential role(102). Abnormal methylation patterns in PBC were reported in a unique cohort of 3 

discordant MZ twin pairs and eight sister pairs of similar age and demonstrated 60 and 14 

differentially methylated regions in MZ and sister pairs, respectively, with hypermethylation 

observed in the PBC proband and 85% of methylation regions localized to the X chromosome in 

MZ pairs(103). Despite absence of significant associations in GWAS, the CD40-CD40L system 

has long been postulated to be relevant in PBC as it is X-linked, essential in T cell priming, 

immunoglobulin class switching and peripheral B cell tolerance, and has been associated with 

elevated IgM levels in immunodeficiency syndromes associated with mutations of the CD40L 

gene(104); indeed, Lleo et al. demonstrated reduced DNA methylation of the CD40L promotor 

in CD4+ cells in PBC patients which was associated with increased CD40L expression(105). 

More recently, the X chromosome methylation profile of CD4, CD8, and CD14 cells from PBC 

patients were reported (106), and hypermethylation of FUNDC2 in CD8+ cells and 

hypomethylation of CXCR3 in CD4+ cells was associated with increased CXCR3 expression, 

intriguing in light of the integral role of CXCR3 in in leukocyte trafficking(106). The complexity of 

epigenetic regulation in PBC beyond promotor methylation status was emphasized by a study of 

3 discordant MZ twins which showed consistent downregulation of CLIC2 and PIN4 genes in 

affected twins, but for both genes, promotor methylation was partial, variable, and did not 

predict transcript levels or X chromosome inactivation(107). 

 

 

 

ENVIRONMENTAL RISK 
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Variable risk in families, regional differences in prevalence, and reproducible epidemiologic 

associations between disease and environmental agents suggest that exposures are likely 

requisite for PBC to develop. Molecular mimicry is presumed to be the mechanism whereby T 

and/or B cells primed against cross-reactive antigenic mimics lead to loss of self-tolerance to 

the mitochondrial PDC-E2 autoantigen (108). While a variety of exposures have been 

described, bacterial infections, xenobiotics, and smoking history, have been the most robustly 

studied (Figure 3)(109).  

 

Large scale studies of patients with PBC report higher rates of incident and recurrent UTI and 

demonstrate an increased frequency of bacteruria compared to controls(110, 111). On a 

molecular level, protein motifs are strongly conserved among species and in fact, human and 

E.coli PDC-E2 share the molecular sequence (ExDK) essential for recognition by autoreactive 

PDC-E2 specific CD4+ T cells. Furthermore, sera from patients with PBC react with both human 

and E.coli PDC-E2(112). Novosphingobium aromaticus (N. aro), a xenobiotic metabolizing 

bacteria identified through a search for PDC-E2 homologues, contains lipoylated proteins that 

are up to 1000-fold more reactive with PBC patient sera than even E.coli, making this pathogen 

another potential etiologic trigger(113). Associations between PBC and several other pathogens 

including Helicobacter pylori(114), Chlamydia pneumoniae(115), Mycobacterium 

gonordae(116), and Lactobacillus delbruekii have been reported, though many of these 

associated have not been reproducible(117).  

 

Xenobiotics, or foreign chemicals that can alter self proteins, have also been implicated in PBC. 

Epidemiologic associations between use of nail polish, smoking history and residence adjacent 

to toxic waste sites are supportive of their role (109). 2-octynoic acid (2-OA) is present in 

cosmetics and food additives and is a putative candidate showing enhanced reactivity with PBC 

sera in a structure-activity relationship analyses(118). The role of 2-OA as a relevant xenobiotic 
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was further studied by immunization of 2-OA-bovine serum albumin complexes into C57BL/6 

mice and, indeed, high titer AMAs, increased CD8+ T cell  hepatic infiltration, and upregulation of 

TNF-α and  IFN-γ was observed(119). Similarly, in the NOD.1101 model, in addition to high titer 

AMAs, portal granulomas typical of human PBC were noted(120). 2-nonyamide has an optimal 

chemical structure for xenobiotic modification of PDC-E2 resulting in enhanced reactivity with 

AMA positive sera(121). An association between PBC and exposure to volatile organic 

compounds (including benzene) is based on studies demonstrating clustering of cases adjacent 

to open-air toxic waste sites(122) and higher rates of disease among subjects exposed to 

cigarette smoke, including through indirect exposures(123, 124). In fact, halogenated benzene 

can mimic PDC-E2 and reacts with AMA positive PBC sera(118). 

 

 

SUMMARY 

PBC is a classic autoimmune disease, characterized by auto-reactivity against a well described 

and highly conserved mitochondrial antigen. In a genetically susceptible host, exposure to an 

environmental mimic of PDC-E2 may incite a promiscuous immune response targeted to the 

biliary epithelia. Biliary injury and an alkaline intracellular environment attributed to defective 

AE2 function may sensitize BECs to apoptosis, leaving an immunogenic epitope in tact within 

an apoptotic bleb and resulting in focused biliary injury despite an otherwise ubiquitous antigen. 

A resultant multi-lineage response involving both innate and adaptive immune responses may 

further propagate biliary damage and is aggravated by an imbalance between intrahepatic and 

peripheral effector and regulatory cells. Genome wide efforts have failed to identify disease 

specific pathogenic variants but have highlighted several important immune regulatory 

pathways, key among them being IL-12 signalling. Moving forward, expanding on these insights 

to further dissect the molecular pathogenesis of this complex disease remains essential with the 

aim to develop novel therapies targeted and the most relevant biologic pathways. 
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Research Agenda 
 
• Future genetic efforts should concentrate on determining the functional biologic relevance of 

identified variants and use technologies that decipher important cellular regulatory networks 
• The role of environmental triggers in contributing to disease onset needs to be thoroughly 

investigated   
• Collection of detailed clinical, immunologic, and histologic data from well characterized 

cohorts will enable molecular characterization of clinically relevant sub-phenotypes of 
disease 

 

Practice Points 
 
• Disease development requires a permissive genetic background and exposure to an as yet 

undefined environmental trigger 
• Aberrant apoptotic pathways produce an immunogenic apoptotic bleb that likely confers liver 

specific injury despite an otherwise ubiquitous autoantigen 
• An imbalance between effector and regulatory immune activity results in self-perpetuating 

biliary injury which manifests clinically as progressive liver disease   
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Figure 1.  
 
Figure 1. Pathophysiology of PBC.  

Exposure to an microbial or environmental mimic of PDC-E2 leads to a multi-lineage immune 

response targeted to the biliary epithelial cells. Biliary injury and defective AE2 leads to 

disruption of the bicarbonate biliary umbrella, sensitizing biliary epithelium to apoptosis. 

Aberrant apoptotic pathways due to lack of covalent binding of glutathione leaves the 

immunogenic epitope in tact within an apoptotic bleb resulting in perpetual and focused biliary 

epithelial injury. A promiscuous immune response involving the innate and adaptive arms further 

propagates biliary injury and is characterized by an imbalance between effector and regulatory 

immunity ultimately resulting in continuous inflammation leading to cholestasis and biliary 

fibrosis.  Illustration By: Qingyang Chen 
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Figure 2.  Conserved Lysine-Lipoic Acid motif. 

PDC-E2 and E2 subunits of other mitochondrial autoantigens contain an essential lysine residue 

within the lipoyl domain to which lipoic acid is covalently attached. This lipoic-lysine bond at 

position 173 is highly conserved across species and is necessary for antigen recognition. 

Illustration By: Qingyang Chen 
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Figure 3. Aggregate factors result in disease manifestation 

Clinical manifestation of disease is a result of an aggregate of factors that result in pathology. It 

is likely that a permissive genetic background, requisite environmental trigger and non structural 

genetic influences including epigenetic regulation are required within a host that elicits a 

dysregulated immune response culminating in biliary injury and clinical disease.  Illustration By: 

Qingyang Chen 
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Table 1. Autoantigens and autoantibodies in Primary Biliary Cholangitis (PBC)* 

        PREVALENCE   

Autoantibodies  Location IF pattern Target AMA positive (%) AMA negative (%) 

Anti-mitochondrial antibody inner mitochondrial membrane   PDC-E2     

      OGDC-E2     

      BCOADC-E2     

      E3BP     

Anti-nuclear antibodies       47–48 68–85 

  nuclear pore complex nuclear rim gp-210 16–18 15–45 

      p62     

  nuclear body  multinuclear dot sp100 24–31 38–54 

      PML     

Anti-centromere antibodies centromere anti-centromere CENP 14–20 14–23 

Anti-kelch nuclear protein   KLHL12 42 35 

Anti-hexokinase outer mitochondrial membrane    HK1 53 22 

*adapted from reference 10 Abbreviations: BCOADC, branched-chain 2-oxo-acid dehydrogenase complex; CENP, centromere 

protein; E3BP, E3-binding protein; gp210, glycoprotein 210; OGDC; HK1, hexokinase 1;  KLHL12, kelch like 12; oxoglutarate 

dehydrogenase complex; sp100, nuclear body speckled 100 kDa; PDC, pyruvate dehydrogenase complex; PML, promyelocytic 

leukemia; 2-OADC, 2-oxo-acid dehydrogenase complex. 
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