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In this article, we realize the SL,(C) character variety of he Riemann sphere X5 with five boundary
components as a S-parameter family of affine varieties of dimension 4. We show that the action of the
mapping class group corresponds to certain action of the braid group on this family of affine varieties and
classify exceptional finite orbits. This action represents the nonlinear monodromy of the 2 variable Garnier
system and finite orbits correspond to its algebraic solutions.
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1. Introduction

The Garnier system G, is the isomonodromy deformation of the following two-dimensional Fuchsian

system:
d |
k
— & = P, 1 e C, 1
5= () g
ai,...,as, being pairwise distinct complex numbers. The residue matrices .A; satisfy the following
conditions:
0, n+2
eigen (Aj) = iEj and — Z’Ak = A,
k=1

where §; € C,j = 1,...,4 and we assume

with 6 € C\ {0}.

© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.
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2 P. CALLIGARIS AND M. MAZZOCCO

¥y Vs ¥y Y
FiG. 1. The basis of loops for 1 (X5).
The Riemann—Hilbert correspondence associates to each Fuchsian system (1) its monodromy rep-

resentation class, or in other words, a point in the moduli space of rank two linear monodromy
representations over the two-dimensional sphere X5 with five boundary components:

Mg, :=Hom(m(Zs), SL,(C))/SL,(C),

also called SL,(C) character variety of Xs.

After fixing a basis of oriented loops v, . . . , ¥4, Yoo fOr 1 (Z5) such that yogl = y1-- Vs asinFig. 1,
an equivalence class of an homomorphism in the character variety Mg, is determined by the five matrices
M, ...,My, M, € SL,(C), that are images of yy, . . ., ¥4, Voo These matrices must satisfy the relation:

M M MMM, = 1. (2)
In this article, we assume that M, is diagonalizable:
+7if0

eigen(My) = e

As a consequence the character variety Mg, is identified with the quotient space Mgz, defined as:

Mg, = {(My,...,My) € SLy(O)|eigen(MsMsMoM,) = €77} / ~, 3)

where ~ is equivalence up to simultaneous conjugation of My, ..., M, by a matrix in SL,(C).
As the pole positions ay, ..., a4 in (1) vary in the configuration space of 4 points, the monodromy
matrices My, ..., M, of (1) remain constant if and only if (see [1]) the residue matrices Ay, ..., A, are

solutions of the Schlesinger equations [2] which in the 2 x 2 case reduce to the Garnier system G, [3, 4].
The structure of analytic continuation of the solutions of the Garnier system is described by a certain
action of the pure braid group P, [5] (see also [6]) that can be deduced from the following action of the
braid group By:

By x Mg, — Mg, @)
defined in terms of the following generators:

o1 (M, My,M3,My) > (Mz,M2M1M2_1,M3,M4),
0y (M, My,M3,My) +> (Ml,Ma,M3M2M3_1,M4), (5)
03 1 (M, My, M3, My) > (My, My, My, MsM3M; ),

so that M, is preserved.
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 3

Our aim in this article is to classify the finite orbits of this action. In our classification, we exclude
the case when the monodromy group (M,, ..., M,) is reducible because in this case the Garnier system
for which algebraic solutions are classified in [7] (indeed in this case the Garnier system can be solved in
terms of Lauricella hypergeometric functions [8]), and the case in which one of the monodromy matrices
is a root of the identity because in this case the Garnier system reduces to the sixth Painlevé equation [8]
for which all algebraic solutions are classified in [9]. Therefore, we restrict to the following open set:

U={M,....My) € Mg,|(M,, ..., M,)irreducible, (6)
M; #£LVi=1,...,4,00}/ ~,

To explain our classification result, we firstly identify the open set I/ with an affine variety (see
Section 2):

LeEMMA 1.1 Let the functions p;, p;;, pjix be defined as:

Pi ZTI'M,‘, i=l,...,4,
pii = TI'M,‘M/‘, l,] = 1,...,4, l>_], (7)
ik = Te MiM:M,, ijk=1,....4, i>j>k

Poo = Tr MyM3Mo)M,,

then, for every choice of py, ..., p4, peo, the open set of monodromy matrices ¢/ is isomorphic to a four
dimensional affine variety:

A = Clpa1, P31, P32, Pa1> Paz, Pa3> P3215 Paz2s Past> Paai 1 /1, (8)

where [ is the ideal generated by the algebraically dependent polynomials fi, . . ., fis defined in (47)—(61).

Therefore, we think of py, . . . , ps, P as a set of parameters and of p;;, p;ix as an over-determined system
of coordinates on U/, and we express the action (4) in terms of p;, p;, piix as follows (see Section 3):

LEMMA 1.2 The following maps o; : A —> A, i = 1,2, 3, acting on the coordinates
p = (P],Pz,P3,P4,Poo,P21,P31,P32,P41,1742,]?43,[7321,P432,P431,P42|) € CIS, C)]

as follows:

01 : P> (P2,P1,D3: Pas Poos P215 P32, P1P3 — P31 — P2DP32 + PaP3is P4,
P1P4 — Pa1 — P21Pa2 + PaPazts Pazs P321> P1P43 — Pazt — P21P432 + P2Peos

[7432,17421),

021 P> (D153, P2, Pas Poos P31, P1P2 — P21 — P31P32 + PaP321» P32, Pat» Pa3s
D2P4 — D42 — P32P43 1 P3P432, P3215 P432, P2Pa1 — Pa21 — P32P431 + P3Poos (10)
Pa31),

031 P> (P1,D2,P4s P3s Poos D215 Pat> P42, PIP3 — P31 — PaiPa3 + DaP431,
D2P3 — P32 — P42P43 + DaPasa, Pa3, P42t D432, D43l
D21P3 — P31 — Pa21P43 + PaPoo)s

define an action of the braid group B4 on A.
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4 P. CALLIGARIS AND M. MAZZOCCO

Therefore, our problem is to find all points p € A such that their orbit under the action of the pure
braid group P, induced by the action (10) of the braid group By is finite. Incidentally, the action (10) can
also be interpreted as the Mapping Class Group action on the character variety Mg, .

Our approach is based on the simple observation that given p € A such that it generates a finite orbit
under the action of the pure braid group P, then for any subgroup H C P, the action of H overp € A
must also produce a finite orbit (this is a well-known fact, see for example [7]). We select four subgroups
H\,H,,H;,H, C P, such that the restricted action is isomorphic to the action of the pure braid group P;
on the SL,(C) character variety of the Riemann sphere with four boundary components My, that can
be identified with:

My == {(N1, Ny, Ns) € SLy(C)| NooNsN,Ny =1,
Ny = exp(inbs03), 0o € C}/ ~. an

In other words, we show that in order for a point p € A to belong to a finite orbit of the pure braid
group Py, it must have four projections on points ¢ = (g1, 42, 43, 90> 421, 431, ¢32) that have a finite orbit
under the pure braid group P;.

We then invert this way of thinking: since all finite orbits of the pure braid group P; on g =
(g1, 92> 93> 405 9215 931, g32) have been classified in Lisovyy and Tykhyy’s work [9], we start from their list
and reconstruct candidate points p € A that satisfy the necessary conditions to belong to a finite orbit. We
then classify all candidate points that indeed produce finite orbits. In order to avoid redundant solutions
to this classification problem, we introduce the symmetry group G of the affine variety (8) and factorize
our classification modulo the action of G. The action of the symmetry group G on A is calculated in the
Appendix using known results about Backlund transformations of Schlesinger equations [10].

In order to produce our candidate points we use the classification result in [9] that shows that there
are four types of finite orbits of the braid group Bs:

(1) Fixed points corresponding to Okamoto’s Riccati solutions [11].
(2) Dubrovin—Kitaev orbits, corresponding to algebraic solutions of type II, III and IV in [9].

(3) Picard orbits, corresponding to algebraic solutions obtained in terms of the Weierstrass elliptic
function (see [12, 13]).

(4) 45 exceptional finite orbits [9].

REMARK 1.1 Orbits of type II, III and IV in [9] where first obtained by Dubrovin in [14]. Later Kitaev
showed that these solutions satisfy parametric families of the sixth Painlevé equations and re-obtained
them by the pull-back of the hypergeometric equation (see [15, 16]).

To keep down the number of pages and of technical lemmata, we restrict our classification to excep-
tional orbits, namely orbits for which the corresponding monodromy group is not reducible, none of the
monodromy matrices is a multiple of the identity and at most one projection giving either a Dubrovin—
Kitaev or a Picard orbit is allowed. Therefore, our classification does not include the solutions found by
Tsuda [17] by calculating fixed points of bi-rational canonical transformations, nor the ones found by
Diarra in [18] using the method of pull-back introduced in [15, 16], nor the ones found in [7] as they
correspond to reducible monodromy groups, nor the families of algebraic solutions obtained by Girand
in [19] by restricting a logarithmic flat connection defined on the complement of a quintic curve on P?
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 5

on generic lines of the projective plane—indeed these algebraic solutions have at least two projections
giving Dubrovin—Kitaev orbits.

Our final classification result consists in a list of 54 exceptional finite orbits of the action (10) obtained
up to the action of the group of symmetries G (see Table 2). One orbit (element 25 in Table 2) corresponds
to an infinite monodromy group despite the fact that all of its projections to points corresponding to PVI
generate finite monodromy groups. The other 53 of these orbits correspond to finite monodromy groups.'
We believe that these 53 orbits are also interesting because even if it is obvious that for finite monodromy
groups the braid group orbits must be finite, the problem of classifying the representations of the SL,(C)
character variety of the Riemann sphere with five boundary components on finite groups is not trivial.

From the monodromy data M,, ..., M,, it is in principle possible to recover the explicit formulation
of the associated solution of G, using the method developed by Lisovyy and Gavrylenko in [20] of
Fredholm determinant representation for isomonodromic tau functions of Fuchsian systems of the form
(1). However, the shortest finite orbit classified in our paper has length 36, for this reason the associated
algebraic solution of G, has eventually 36 branches, and we doubt that the expression of this solution can
have a nice and compact form.

All the algorithms necessary to produce this classification can be found in [21].

2. Co-adjoint coordinates on Mg,

As explained in the Section 1, we identify the character variety Mg, with the quotient space Mgz
defined in (3). Following [22, 23], the first step to endow Mgz with a system of co-adjoint coordinates
is to introduce a parameterization of the monodromy matrices in terms of their traces and traces of their
products. The following result is a generalization of a result proved by Iwasaki for the case of the sixth
Painlevé equation [24]:”

THEOREM 2.1 Let (My,...,M;) €U, p € AasinLemma 1.1 and g(x,y,2) := x> +y> + 2 — xyz — 4,
then in the open set:

UY = Mg, 0 {2 — HgWis i pia) # O}, (12)

there exists a global conjugation P € SL,(C) such that the matrices M, ..., M, can be parametrized as
follows (up to conjugation by P):

_ . + o
PPN 8 PikePrPik) PPN YT
P p) P 2
_ jk r.k _ jk r.k
M, = o o , M, = BN . jr
1 . Pjki—P1 'k Ykl —Yjl 'k Pj—Pk 'k
Tk 8Pjk-PIPjkl) Tk

! We are grateful to Gael Cousin for asking us this question.

2 We thank the referee for pointing out that some of these results should be known to experts in geometric invariant theory,
indeed the recent paper [25] provides an algorithm, implemented in Mathematica, SageMath and in Python, that takes a finite
presentation for a finitely presentable discrete group F and produces a finite presentation of the coordinate ring of the G-character
variety of F' where G is a rank 1 complex affine algebraic group. We did not try to use this algorithm as we had already obtained
our coordinates by hands.
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a7t (- + U Syt
_ Pk—Pj )ij _ Yjl Ykl)‘jk Pijk—Pi )ij _ ,thJr}’z]kl)‘jk

- 2 - 2

M = Tk Tk M, = ik "k
/ iI—Ykihy PPy > Yty Pijk—pivy
) jk 7% jk TR _ Ty "k

8Pjk-PL-PjkI) Tk 8Pjk-PI-PjkI) Tjk

Alternatively on the open set:

[COIN
)

the matrices M,, ...

= Mg, N {3 — Dgp;.pi i) # 0},

, M, can be parametrized as follows (up to conjugation by P):

- ot R
Pil =Py YRV PP sWenypk)
M= " i M, = g it
= _ + | = _
YK Vjih Pk P 1 Pj=Pkh
8WjkPjPic) Tk Tjk
+ + - +
Pk—Pirj 8WjkPjPI) My Pijk —Piky Yik Vi
- . 2 . - 2
M = " ik M; = " ik
— — ’ T . — +
/ s Pk—Pj i Yik =Yij*jx _ Pijk —Pitji
Jk Tik 8Pjk-pj-Pr) Tik
Finally, on the open set:
U = Mg, N {(p}, = 8Pj-pis Piz) # 0}
koo Go ik 8Djk»> Pi» Pijk 5

the matrices M,, .

.., M, can be parametrized as follows (up to conjugation by P):

_ _ + _
Pjki—P1%ji L FYijkiH g b —Pihy ik —Vijhy
. 2 . 2
T ‘ T <
M[ — jk r]k Mk — 'k r]k
i1y A =PI ’ Vi —yiA T A >
Vil TYijkl % Pjki—PI%; Yik =Vij*jk Pj=Pk*;
&Wjk-PiPijk) Tjk 8Wjk-Pi-Pijk) Tk
+ b AT o AT
_ Pk 7Pj)hjk _ )’ij*.‘zk)‘jk Pijk p[)‘jk _ g(l’jkvpi!pijk)
T 2 P 2
— Jk r _ ik r:
]‘4]‘ — . AT ﬂ;_ b Mi —_— . Jk_)\+ s
Yij —Vik Pk—Pj*j 1 _l’zjk*l’z ik
8Wjk-Pi-Pijk) Tik Tik
where:
v 2 _a ki_ijin
ik =/ Pk > T Ty

Yu :=2pu + PixPjt = PiPjss — PkPi>
Vit '=2pji + PpPu — PrPju — DiPIs
Yie := 2pix + PPk — PiPijk — PiPk>
Yij = 2pi + PaDix — PiPix — PiDj»
Yi = 2pa + PiDji — PixDijki — PiP1s

Yijkl = 2pijkl — PiaDjx — DiPjki — PijkPi + DiDjxP1-
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 7

Proof. Consider (M,,...,Ms) € U. We only prove the statement for the open subset Z/{jio). For the
parametrizations on the open subsets uj;” and Z/{jf) a similar proof applies. Under the hypothesis that
D # E2, there exists a matrix P € SL,(C) such that the product matrix M;M, can be brought into
diagonal form:

Aj := P(MM)P~" = diag{A}, A3}, (23)
where the eigenvalues Aj*,; are given in (18), where the positive branch of the square root is chosen.
Consequently, we conjugate by P the matrices M;, M, M;, M; as follows:

P(M[’MkaﬂlﬁMi)P_l = (U, V’ W’ T) (24)

Since, W = A; V™', we only need to produce the parametrization of the matrices U, V, T. Solving
the equations Tr U = p;,, Tr AU = pjy and TrV = py, Tr AjkV_1 =pjand TrT = p; and Tr TWV =
Tr T Ajx = p;x we obtain the diagonal elements of U, V and T, respectively:

o — DA o — At
upp = p—jkl il > Uy = —p—jkl i jk, (25)
ik Tjk
e i — DAy
Vit = _P—, D > Vi = P—] Dl s (26)
ik Tk
ik — Dity ik — Didi;
= D = Pl ) Ip = i £ (27)
Tik Tik

We now calculate the off-diagonal elements. Since det U = 1, then the following identity holds:

_ 8w 1 P)
2 b
Tik

(28)

Uply =

andin L{j(ko) 8@k pi>Piur) 7 0. Since P is unique up to left multiplication by a diagonal matrix D € SL,(C),
we are allowed to fix up; = 1. Then equation (28) gives us the element u,,.

The system of equations Tr VU = py and Tr A V~'U = p; gives us a parametrization for the
off-diagonal elements of V:

Yik — Yijhi Yik = Yighi
Vip = ——zjjk, Va1 = —ij, (29)
ik g(ij,Pi,Pijk)

where y; and y; are defined in (20) and (21), respectively. Finally, consider the system of equations
TrTU = py and TrTWVU = TrTA U = pyu, then we have the following parametrization for #,,
and fp;:

Yii + yijk[)\]; Vit + Vi
n=——, hy = ———7—, (30)
Tk gPjw> P> Pjxt)
where y; and y;;y are defined in (19) and (22), respectively. This concludes the proof. O
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8 P. CALLIGARIS AND M. MAZZOCCO

Theorem 2.1 shows that (py,...,p4,P21s-..,Pa3,P3215- - -»Pa21) parameterize the following open
subset of U:

UJu v vu?. 31)

j>k

We now show that it is possible to parameterize the monodromy matrices in terms of p € A also outside
of this open subset.

LEMMA 2.2 Let (My,...,M,) € U and p € A. Assume that p; # %2 for at least one choice of j # &,
J,k=1,...,4and

g(pjk’plspjk/) = g(p]’pksp]k) = g(pjk’pi’pijk) = Oa (32)

where g(x,y,2) 1= x*> +y? + 7> — xyz — 4, then there exists at least an index [ for which py # A\, + ﬁ
and a global conjugation P € SL,(C) such that:

A 1 A —AA
PM, P! =< 0" 1 ) PM;P™! =< 0 4 ¢ ) (33)
M A
e (| (34)
Pik — AMAk — Frrrl
A 0 fi = MA ‘
Pik—)w)»k_ﬁ AL ’ P = l+m’
PM;P~! = Iy 1’11—Mll—ﬁ (35)
Plk*klkk*ﬁ s forpi, ;é )\,,')\1 + )L-;A[’
0 L ’

A
where A, + Aly =p,Vs=1,...,4.

Proof. Proceeding as in the proof of Theorem 2.1, we bring the product matrix M;M; into the diagonal
form. Condition (32) implies that the following equations must be satisfied (we have absorbed the global
conjugation P in the matrices My, ..., My, here):

(M) 12(M)21 = (M2)12(M2)21 = (M3)12(M3)21 = (Ma)12(My)21 = 0.

By global conjugation by a permutation matrix, we can assume that (M;);; # 0 and then by global
diagonal conjugation we can put M, in Jordan normal form. Then, since M; = A M, ' we immediately
obtain (33). Since the monodromy group must be irreducible, one of the two remaining matrices, call it
M,, must have non-zero 21 entry. Then since Tr(M;M,) = py, we obtain (M))>; = py — MAr — ﬁ # 0,
and therefore (34).

Now if the last matrix is also lower triangular, by imposing Tr M;M; = p;., we obtain the first formula
in (35), and it is immediate to check that then p; = A;A; + ﬁ Otherwise, if M; is upper triangular,
by imposing Tr M;M, = p;, we obtain the second formula (35), and it is immediate to check that then
Pit F Ak + ﬁ U
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 9

PROPOSITION 2.3 Let (M,,...,Ms) € U and p € A. Assume that py = 2¢; forall j,k = 1,...,4, where
€jx = £1. Then, if that at least one matrix M; is diagonalizable there exists a choice of the ordering of
the indices i,j,k,[ € {1,2,3,4} such that the following parameterization holds true:

_ Ao O 1
PMP™ = ( ' 1 rFEEL AN+ — =pi, (36)
Aj )\'i
Cpe=2aiki eimeq(GF4D)?
-1 _ 221 r2-1)2
PME = 1l Xilpiki—2€5) ’ (37
a2-1
and for p; # eupi:
_w . A,'z(I’k)‘i_ZGki)(Pj)‘i_25ji)+)‘i()L,'z_l)(l’[kj_kkj)‘i)
p-1 _ Al 2-1)2
PM;P— = 02 =D Qeg—pigi2)+ P ri—26x) (DA i—2657) ) (38)
(Prri—ei G2 +D)? 32-1
—1%‘1;% W2 (i i—26) (Prai =26+ 02— D (pig —2€g2)
22— - 712
-1 _ i 02-1)
PM,P™ = (A%_l)(zekl_Pikl)‘i)‘*'(Pk)“i_25ki)(.”l)‘i_2€li) Ailppi—=2eg) 39)
(Pphi—ei (A2 +1))2 22-1

and if p; = €p;, then py (A7 + 1) # 24 (ep€ji + €) and piy (A7 + 1) # 2 (€i€y; + €0) and

AP i—2€7) 2
%—;71)1 AiPig(A; + 1) — 24 (ei€ji + €4))
i (A
PMP~' = s (40)
/ WP hi—265)> — 265 €2 P hi—2ek) 02— D+ 2 1) 2egicjini G2 —D)—a3 (pyidi—2eg)
()»,2*1)zli(Z)Li(fkieji+€kf)*Pikj()~,2+1)2) Eki()‘l‘zfl)
A Pikihi—2€r1) 2
w AP (Af + 1) — 24 (€€ + €n))
1
PM,P" = 41
1 piggri=2e)* =26 €23 piggi—2e) G2 =D+ - 1)? 2egiegii(OF =)= (Pirghi—2€x) “1)
02 =122 @xi(eiegi+er)—pin O +D?) &G =)

If none of the monodromy matrices is diagonalizable, then there exists a choice of the ordering of the
indices i,j, k,l € {1,2,3,4} such that the following parameterization holds true:

_ € 1 _ e O
pmp = ¢ . PMpT = 7 : 42)
0 €; 4€ij Gj
Pijk—2€ik€j—2€jk €i+2€€j€p €jk—€j€k
-1 _ 4ejj 2¢jj
PMkP - ) 2€p€j+2€j,€;+8€jj€p —2€ €€ —pijx (43)
(€ir — €i€r) g
Pijl*2€i15j*2€jl€i+2€i€jfl €j1—€j€]
—1 4eji 2¢jj
PM,P~ = i i (44)
26”6j+2€j16i+8€ijel—26i€jel—piﬂ
2(en — €i€1) ] 3¢ ]

Proof. First let us assume that at least one matrix M; is diagonal and work in the basis in which M;
assumes the form (36) with A; # +1.
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10 P. CALLIGARIS AND M. MAZZOCCO

Letj # i, then we have a set of linear equations in the diagonal elements of M;:
Tr (Ml]%) = 2€jia Tr]‘lj = Dj, €ji = Zl:l,
that it is solved by:

pj — 2€;ik
A1

ri(pihi — 2e€j;
L (M = P 250 4s)

(M) = — T

forj=1,...,4,j #1i.

Since the monodromy group is not reducible, there is at least one matrix My, k # i such that in the
chosen basis, (M}),; # 0, then we use the freedom of global diagonal conjugation to set (M}),; = 1.
Since det(M;) = 1, we obtain the formula (37).

We now deal with the other two matrices in the case p;, 7# €;;p;—Wwe only need to find the off-diagonal
elements of these matrices. To this aim we use the following equations for s = j, I:

Tr(MMy) = 2¢€g., Te(M;MM,) = piks.

which, combined with (45) lead to (38) and (37). One can treat the case p;, = €;;p; similarly, we omit the
proof for brevity. This concludes the proof of the first case.

To prove the second case, assume none of the matrices My, ..., M, are diagonalizable, then
eigen(M;) = {€;,¢;}, Vi = 1,...,4, where ¢, = =*1. Let us choose a global conjugation such that
one of the matrices M; is in upper triangular form as in (42).

Now, since the monodromy group is not reducible, there exists at least one j such that (M;),; # 0.
From Tr M;M; = 2¢;;, we have 2¢;€; + (M;),, = 2¢;;, so that (M;),; # 0 implies €;¢; = —¢;;. We perform
a conjugation by a unipotent upper triangular matrix to impose (M;);» = 0, so we obtain the second
equation in (42).

For all other matrices, we use Tr M;M; = 2¢;; and Tr M;M, = 2¢;,, s = k, [ to find:

€js — €€
(My)21 = 2(€i5 — €;€), M) = ———
26,']'

s

From Tr M, = 2¢, and Tr(M;M;M,) = pjj,, we find the final formula (43) for s = k and (44) for s = I,
respectively. g

In the following Theorem characterizes the space of parameters as an affine variety in the polynomial
ring

Clp1,P2, D3> Pas P21> P31 P32, Pa1» Pa2s P43s P3215 Pa32, P31 Pazt ] (46)
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM

THEOREM 2.4 Consider m := (M,,...,M,;) € U.

11

(i) The co-adjoint coordinates of m defined in (9) and (7) belong to the zero locus of the following 15

polynomials in the ring (46):

Si(p) := pnpaipn +P§2 + P§1 +P§1
— (p1p3a1 + pap3)ps2 — (P2p3a1 + Pip3)Pan
— (p3p31 + Pip2)P12 + 3 + D3 + DL+ Doy + Pspapipan — 4,
) = popupa + pi + iy + 3y
— (P1pa21 + P2P)Pa2 — (P2Pa21 + P1Pa)Par
— (papart + P1p2)P12 + Pi + D5 + Py + Pooy + Papapipat — 4,
£(P) = pupapsi + pi; + piy + 5
— (P1Pa31 + P3pa)Paz — (P3Pas1 + P1Pa)P4r
— (papas1 + P1p3)P1s + pi + D3 + P+ Piay + Papapipast — 4,
f+(p) := psspaps: + pis + Doy + P
— (Papaz2 + p3pa)Pas — (P3Paz2 + Papa)Pa
— (Papaza + Pap3)P2s + Py + D3 + D3 + Disy + Papapapan — 4,
f5(p) = —2poc + P1p2p3P4s + P1Paz2 + P2Pazt + P3Pazt + P32ils
T+ P21P43 + PPa1 — P1P2P43 — P1PaP32 — PaP3P41 — P3PaPai
— P42P31,
J6(p) := pap3ps — px2Ps — pup3Par + P21Pat — P3Paz + Pipapaz
— P31Pa21 — PaPas + pauPast + 2Pazy — PiPoos
f1(p) == —p1ps + 2pa1 + p21ps2 — paPa21 + P31Pa3 + P21p3apa3
— D2P321P43 — P3Pa31 — PaP3Paz + PxniP4az2 + PaPiPoo
— DP32Poos
J3(p) := —p\pap3 + paips + papai + 1P — 2P + papaipas
— Pa21P43 — PaPaP431 + PaaDa31 — PaiPa32 + PaPocs
Jo(P) := —p1p2 + 2pa1 + paip32 — P3P321 + PaPar — PaPan
+ P32Da1P43 — P32PaPazt — Pa3PaiPaze + Pa3iPaz2 + P3PaPoo
— P43Poos
S10(p) := —p1papa + p2pa + papar + P1Paz — 2pant + p1P3aPas
— P321P43 — P32Pa31 — P1P3Pax2 + P31Pax2 + P3Poos
Jit(p) := p1p3ps — P31p4 — PuPnP4 + P2P321P4 — P3Pa1 — P321P42
+ papaat — P1pas + 2pas1 + Paipaz2 — PaPeos
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12 P. CALLIGARIS AND M. MAZZOCCO

S12(p) := —paps + papar + 2ps0 — piPaai + PPz — PrniPasi

— P3DPa3 + P31Poos (58)
S13(p) := p1p3 — 2p31 — PP + PaP31 — PaiPas + PaPasi
+ Pa21P432 — Pa2Poos (59)

J1a(p) 1= paps — paip31 — 2p32 + Pipaan — PaPaiPa3 — Pal43
D1P421P43 + P21PaPa3zt — Pa2iP431 + PaPazr — PiPaPoo
+ P41Poos (60)
Sis(p) := —p3p4 + p31pa1 + Pa1p3par — PaP3iPar + PuPa
— P1P3paat + P32Pan + 2Pas — Pipast — PaPaz2 + P1P2Poo
— D21Pco- 61)

(i) For every given generic py, . .., P4, Poo, the affine variety A defined in (8) with I = (fi,...,fis), is
four-dimensional.

Proof. To prove the relations (47), ..., (61), we use iterations of the skein relation:
TrAB+ TrA™'B=TrATrB, VA, B € SL,(C), (62)

together with (2).
To prove statement (ii), we used Macaulay2 [26], in order to compute the dimension of the affine
variety defined in (8). The result is that (8) has dimension four. O

COROLLARY 2.5 The quantities (pyy, . . . , P43, P321s - - - » Pa21) give a set of over-determined coordinates on
the open subset &/ C Mg, defined in (6).

Proof. Thanks to Theorem 2.1, Lemma 2.2 and Proposition 2.3 the quantities p;, p;;, p;x parameter-
ize the monodromy matrices up to global conjugation. Thanks to Theorem 2.4 for every fixed choice
of pi,p2,p3, P4, Do Only four among the quantities py, p;x for i,j,k = 1,...,4 are independent. This
concludes the proof. O

3. Braid group action on Mg,

We start this section by proving Lemma 1.2.

Proof. First we prove that that action (10) is well defined, or in other words thatthe I = (F) = {fi, ..., fis}
is invariant under the action (10). To this aim, we need to show that for each generator o;, i = 1,2, 3,
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 13

o;(I) = I. We carry out the computation for o; only, the other computations are similar.

fior1(p) = fi(p), f(01(p)) = f2(p), F(01(p) = fa(p),
Ja(01(p)) = f2(p) + (P21pa2 — P2P22)f6(P) + (P21Paz1 — P2Poo)f11(P)
+(p2p321 — pap32)fiz(p),
Ss(o1(p)) = f1(p) — paf1(p), Je(o1(P)) = fs(p) — pufa(p),
FoP) =) +p2fop),  fo(or1(p)) = f5(0) — pafa(p),
Js(01(P)) = fa(p) — pafa(P) — pazaf(P) + P32fo(P),
fio(o1(p)) = =f7(p), fulo1(p)) =fs(p) — pufr(p),
Szlo1(p)) = —2(p), fia(o1(p)) = —fo(p),
Si3(01(p)) = —=paifo(P) + fio(P), Sis(o1(p)) = fu(p) + pif7(p).
Similar formulae can be proved for all other generators of the braid group. This shows that the action
(10) is well defined on A.

In order to prove that o; for i = 1,2, 3, defined in (10), is indeed an action of the braid group By, we
recall that the braid group B, in Artin’s presentation is given by:

B, =(01,...,04_1 ] 010410; = 0410,0111, 1 <i<n—2,

0,07 = oj0;, |i — j| > 1), (63)
so, we need to prove that the following relations are satisfied:
o103(m) = 0301(m),  010201(m) = 0,0102(m),  02030,(m) = 030,03(m). (64)

The first relation is straightforward, while the last two follow from the fact that polynomials (57)—(60)
are zero for every p € A. O

This lemma allows us to reformulate our classification problem as follows:
classify all finite orbits:

Or,(p) ={B(P)IB € P4},
where p is the following 15-tuple of complex quantities:

D = (D1, P2, D3, P> Poos P21 P31 D325 Dals P42, P43, P321> P432, P43 Pan1) € CIS,

defined in (7), and P, is the pure braid group Py = {Ba1, B31, B3z, Ba1, Baz, Ba3) Where:

2 -1 2 2
B = o, Bz = 0, 0,0, B = 0,, (65)
— -1 _2 — 2 2
Bu =050y '0lo0s,  Bun=0;"'0505,  Pu =07,
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14 P. CALLIGARIS AND M. MAZZOCCO

and the generators satisfy the following relations:

Bijs ifj<s<r<i,
ors<r<j<i,
B.BiBy' =By BBy s<j=r<i, (66)
B, By BiBB» j=s<r<i,

By By BiBBiby By ByBy s <i<r<i.

4. Restrictions
In this section, we select subgroups H C P, such that the restricted action is isomorphic to the action of
the pure braid group P; on the quotient space (11).

THEOREM 4.1 The following four subgroups H; C P, withi=1,...,4:

H, := (B3, Bs3, Pu), Hy = (Ba3, B31, Ba),
H; = (Ba1, Baz, Ba1), Hy = (Bar, B, Ba1),
where the generators B, 1 < k < j < 4, are defined in (65), are isomorphic to the pure braid group Ps.

Moreover given any ordered 4-tuple of matrices (M, M,, M5, My) € U,each H;, fori=1,...,4, acts as
pure braid group P; on a certain triple of matrices (N, N,, N3) € Mpy; given by:

Hy: Ny =My, Ny =M, Ny = My, Noo = (MsM5M>) ™", (67)
Hy: Ny =M, Ny =M;, Ny =M, Noo = (MyM3My) ™", (68)
Hy: Ny =My, Ny = My, Ny = My, Noo = (MuMoM,) ™, (69)
Hy: Ny =M, Ny = My, Ny = M3, Noy = (MsMoM,) ™. (70)
Proof. To prove thateach H;,i = 1,...,4 is isomorphic to P; we need to prove that its generators satisfy

the relations (66), for n = 3. This can be checked by direct computations.
We now prove the second statement explicitly for the subgroup Hj, for the other subgroups a similar
proof applies. First of all, thanks to (2) we have immediately:

NoNsNoNy =1,

sothatn = (N 1 Nz, 1%) e M pvi- To show that the subgroup H, acts as pure braid group P; on M pyi, WE
use the fact that the generators of H, are defined in terms of generators o, and o3 of the full braid group
By, soitis enough to prove that o, and o3 act as generators of the braid group B; on M pyr. Consider (67),
then the following relations hold:

or(m) = (Ml,Ma,M3M2M3_1,M4) = (Nz,Nzﬁlﬁz_l,]%) = Ul(PW)(VAl),
o3(m) = (My, My, My, MiMsM; ") = (N}, N3, NsNoN7 ) = 07" (7). (71)

This concludes the proof. g
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TABLE 1. Matching using traces: elements on the same columns must be equal

Pr P2 DP3 P4 Poo P21 P31 P32 Par Pa2 P43 P31 P42 P43t P

H, 9 @ g g g g oo
HZ é] ‘_12 ‘_]3 EIZ] 531 532 éoo
H3 ZII éZ é% 2221 é}l Z132 ZIoo
H4 él éZ é3 éZl 531 2132 600
We now consider the action of the subgroups H; for i = 1,...,4 in terms of co-adjoint coordinates
on MPVI:
é = (al’ 629 é3’ aoo’ éZl’ a3ls 632)9 q = (éls éZ? é3s éoos é2l’ éSl’ é32)9

= (!Vll,glz,%,éw,zlzl,zl3|,5132), !} = (511,6?2,1?3,5100,5121,2131,5132), (72)

<

where g; = Tr ]V,- fori=1,2,3,00 and gy = Tr](/j](lk forj > k, j,k = 1,2,3 and similar formulae for g,
¢ and g. Then identifications (67)—-(70) imply the identities summarized in Table 1, where p;,p;.p; are
defined in (7) and elements in the same column are identical.

We define the following four projections:

a7 A Mpy, (73)
as follows

7 (p) := (P1, P2, P3>P3215 P21, P31, P32) = ¢
7 (p) := (P2, D3> P4> Pa32s P32, P42, Pa3) = G
7T () := (P1,P2s Pas Pa21> P21, P> P42) = G
7T (p) := (P1,P3, Pas P431, P31, P41, Pa3) = G- (74)

Viceversa, given four 7-ples 4,4,4,q, such that they satisfy the equalities in the columns of Table 1, we
can lift them to a point p € A, in which the value of p, can be recovered using relation (56). We call this
matching procedure.

5. Input set

The classification result by Lisovyy and Tykhyy produced a list of all finite orbits under the action of the
braid group B; modulo the action of the group F4 of Okamoto transformations acting on M py;. However,
points g that are equivalent modulo the action of the group F, of Okamoto transformations, and of the
pure braid group P3, don’t necessarily produce candidate points p that are equivalent modulo the action of
the symmetry group G of the Garnier system G, nor by the action of the pure braid group P,. Therefore,
we need to expand the list of input points g by considering all images under F4 and P;. In this section,
we define an expansion algorithm that applies the action of F; and P; to the 45 exceptional orbits of [9].
Thanks to the fact that the action of F, over these 45 finite orbits is finite, the result is a finite set that
we call E,s. This set does not include points that correspond to solutions of Okamoto type nor solutions
corresponding to Picard or Dubrovin—Kitaev orbits—we will deal with these points in Section 6.
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16 P. CALLIGARIS AND M. MAZZOCCO

5.1 The classification result by Lisovyy and Tykhyy
In order to expand Lisovyy and Tykhyy list of 45 finite orbits (see Table 5 in [9]) it is best to introduce

the following quantities:

W1= G190 T 43q2,  ©21= Qoo T G391, 03 1= @30 + 241, (75)
w0y = @+ G+ @+ + Brqi1ge

The group F4 of Okamoto transformations of the sixth Painlevé equation acts as K, xS; on (wy, . . . , w4)
[9]. Extending this action to the g;s, namely acting on (w1, . .., w4, @21, g31, ¢32) it is straightforward to
prove the following:

PropoOSITION 5.1 The group F, of the Okamoto transformations of the sixth Painlevé equation is generated
by the following transformations that act on (wy, . . . , W4, @21, g31, g32) as follows:

5i(q21, @31, g3, 01, 2, W3, 03) = (G215 G31, 32, V1, W2, W3, y), i = 1,2,3,00,8,

r1(qa1, @31, 432, @1, W2, W3, W1) = (—qa1, —q31, G32, W1, —W2, —@3, Wy),

r2(qa1, 431, 432, W1, W2, W3, W) = (—q21, 431, —q3, —W1, Wy, —W3, W),

r3(qa1, @315 432, @1, W2, W3, W) = (G21, —q31, —q32, — D1, —W2, @3, Wy),

P13(q21, g31, g3, 01, 02, 03, W4) = (g32, W2 — G31 — 21432, G21, W3, W2, W, W),

P3(qa1, @31, @32, 01, W2, 3, ) = (@2 — G351 — G21932, 421, G532, W1, W3, W), W1).
Proof. The proof of this is a consequence of the results of [10, 27]. U

In particular we observe that Pj3 and P,; are elements of the braid group B;—since we act only
on points that have finite orbits under the action of the braid group, the action of the whole group F,
produces a finite set of values. All these values will be in the form (wy, . .., ®4, 21, ¢31, ¢32); in order to
extract gy, g2, ¢z and g, we use the fact that we can consider the relations (75) as a system of equations
in g1, ¢», g3 and g, and that each ¢, has the form:

gi=2cosmb;, i=1,2,3,00.

One particular solution of equations (75) is listed in [9] in terms of 6, 6,, 65, 64, for each point in the
Table 5 in [9]. We can then compute all other solutions g1, ¢», g3 and g, by using the following:

LEMMA 5.2 Suppose w;, w,, w3, w4 are given and consider system (75) in the variables g, g2, g3, ¢, then
this system admits at most 24 solutions. Any two such solutions are related by the following elements

of Fy:

id, o, ﬂ’ Y, a',B» oy, ﬁys

a-B-y S5 a - ss, B - ss, Y - Sss a-f-ss,
a-y-ss, By -ss, a-B-y-ss, 5581, o - S5 Sy,
B-ss- s, Y-S5 8 a-BsseS;, @-y-Ss-S,

By -ss-Su, a-B-y-ss-si.
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 17

where «, 8, y, 55, 51 act as follows on the parameters 6;:

a(9|’929937000) = (1 +917 1 +92? 1 +03’ 1 +900)
B(01,0,,05,05) = (0,,01,0, — 2,03), v (01,0,,05,05) = (03,000 — 2,0,,0,)

O+ 646+ 6y

‘98(91992793’900) = (9] - 8792 - 8’03 - 87 900 - 8)7 ) 2 s

$1 (915 029 937 600) = (_915 927 937 900)
Proof. 1t is an immediate consequence of Proposition 10 in [9]. 0

This lemma allows us to calculate all the solutions of the system (75) in terms of the given wy, w,, w3, w4
starting from only one solution ¢, ¢», g3 and g,.. We are therefore able to set up our expansion algorithm:

Algorithm 1 For every line of Table 5 in [9], take the values (wy,...,ws, q21,q31,¢32) and the
corresponding (g1, g2, q3, o) given in [9].

(1) Apply to (w1, ...,ws,q21,931,q32) all 48 transformations of the group K, x S;. For each new set
of values (v}, . .., ®}, g5, 45> 45,) obtained in this way, compute the corresponding (g, ..., q,,) as
the result of the same transformation on (g1, g2, 43, Goo)-

(2) For every element (v, ..., w5, ¢, g4, gs,) Obtained in step 1, generate their orbit under the action
y 1 459215931 932 pl.g
of the braid group Bj. For each new set of values (o, ..., ), 45,44, q5,) obtained in this way,
compute the corresponding (¢/, ..., gL ) as the result of the same braid on (¢, g5, g5, q.,)-

v

(3) For every element (w7, ...,w},q5,,45.49%) and (¢, ..., g% ) obtained in step 2, find all other solu-
tions (¢, 45, 45 » q,) of the system (75) for («f, . . ., ;) by applying the transformations in Lemma
52t0(q),....q5%)-

(4) Merge (41,45, 45. q5,) and (¢35, 43, q3,) into:

q" =4y, 4. 4% 3 431 45)-

(5) Generate the P3-orbit of ¢”" and save the result in the set Eys

Once this algorithm ends, the set E4s will contain only a finite number of orbits. This set contains
86,768 points.

6. Matching procedure

In this section, we propose a procedure to construct all candidate points p € A:

DEFINITION 6.1 A point p such that its four projections ¢, g, g, ¢, defined in (74), generate finite orbits
under the action of P; and such that at most one projections is a Picard or Dubrovin—Kitaev orbit, is said
to be a candidate point.

Note that, to generate a candidate point p, it is not necessary to know all four projections ¢, 4, g, g.
Indeed, looking at Table 1, we see that if we give three projections, then only the value of p., and one

Downl oaded from https://academ c. oup. conli ntegrabl esystens/article-abstract/3/1/xyy005/5032871
by University of Birm ngham user
on 20 July 2018



18 P. CALLIGARIS AND M. MAZZOCCO

value p; will be undetermined, but we can calculate these values from (51) and by choosing appropriately
one of the four relations fi, . . ., fi, defined in (47)—(50), respectively. So, in order to obtain the set C of
all candidate points, we can set up three matchlng procedures, each of them based on the knowledge of
only three pl‘O]CCthHS We denote by C, C, € and C the sets obtained by matching three projections and
missing g, g, g or g, respectively. L

In order to construct the set C, the union of all the above four sets C ,C,C,C must be taken:

C=CUCuUCuUC. (76)

As we are going to show in the next Lemma, it is enough to know only one of the sets C,C,C,Cto generate
the whole set C:

LEMMA 6.1 Consider m € U and the permutation 7234, that acts on the co-adjoint coordinates of m as
follows:

7T(1234)(P) = (P4,P1,172,173,[70071741,]?42,[)21,P43,P31,P32,P42|,P321,P432,P431),

then:

ﬂ<1234)(é) =C, TT(1234) ) =C, T24(C) = C, ﬂ(1234)(é) =C. (77)

Proof. We only prove the first of (77), the other relations can be proved in a similar way. Thanks to
Theorem 2.1, a point p € g parameterizes a quadruple m of monodromy matrices m := (M, M,, M3, M,)
up to global diagonal conjugation. Analogously, the three projections g, g, g € Moy, parameterize three
triples of monodromy matrices 7, 11, i1 € Mpys, such that, up to global diagonal conjugation:

Ny = My, Ny = M3, Ny = My, Ny, = (MsMsM,)™",
Ny =M, Ny = Ms, N; = My, Now = (MaM3M)™!
Ny =My, Ny =M, Ny = My, Nog = (MaMyMy) ™
Now take the point p’ = 7(1234)(p), this parameterizes the triple m' = 11234, (m) up to global diagonal

conjugation. Consider now the three projections ¢, ', g’ € Mpy; of p'. They parameterize three triples
of monodromy matrices 7', ', i’ € M pyy, such that, up to global diagonal conjugation:

N| =M}, =M,, Ny = M} = My, N} = M, = M;,
= (MMM3) ™" = (MsMMy) ™,
N| =M, =My, N, =M, = My, N; = M, = M,
= (MiM;Mi)fl = (MsM>My)™',
N| =M, =M, N, =M, =M,, N; = M} = M,,
= (MiMiM}) ™" = (MoM M) ™!
These relations show that

~!

- , ~ - v
n=mn, n =7"mqgx3N, N =7TqwN,
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where

a3 (q) = (3,91, 92, Goo> G325 G215 G315

Now since 7, 71(123)11 Tt € M pvi» this shows that p’ € C. Viceversa, we can prove in a similar way
that given p’ € C, then p = n(1234)p e C. This concludes the proof. O

We are now ready to describe how to implement the matching algorithmically.

6.1 Matching with the PVI 45 exceptional algebraic solutions

In this section, we give an algorithm that produces the finite set Cg s x5 <, Of all candidate points p such
that three over four projections g, ¢, g, ¢, defined in (74), are in the set Eys.

Algorithm 2

(1) Consider (q,q,q) € Ess x Ey45 x Eys.

(2) Check if g, g, g satisfy relations given by the columns of Table 1, then go to the next step, otherwise
go to Step 1.

(3) Determine the two roots pgl , for i = 1,2, using equation (47).
Foreachi =1,2:
(4) Calculate the values of p using equation (51).
(5) Use Table 1 to determine all the other components of p®.
(6) If p satisfies equations (52)—(61) then go to the next Step, otherwise go to Step 1.
(7) Save p in the set C~'E45 «EgsxEq5» €liminate (g, ¢, g) from E4s x Ess x Eys and go to Step 1.

Since Eys is a finite set, this algorithm terminates and produces a finite set (?54st4st45. Finally the
big set CE4st4st45 can be generated by Lemma 6.1 as follows:

3

0 i g
CE45 xEys5xBqs — CE45 xEq5xEys U T (1234) (CE45 XEy5xEys)-
i=1

The Algorithm 2 together with the action of the permutations producing the set Cg,sxg,sxg,s can be
found [21]. This set contains all candidate points p € A such that three projections (74) are in the set Ey4s
and consists of 3,355,200 points.

6.2 Matching with Okamoto’s Riccati solutions

We call Okamoto-type solutions the algebraic solutions of the PVI equation belonging to Okamoto’s
Riccati solutions. The set O of all finite orbits corresponding to Okamoto-type solutions is an infinite set,
therefore to construct candidate points with projections in this set is not a straightforward adaptation of
Algorithm 2.
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20 P. CALLIGARIS AND M. MAZZOCCO

DEFINITION 6.2 A point p is called not relevant if the associated monodromy group is reducible or there
exists an index i = 1, ...,4, 00 such that M; = £I. A point p is called relevant otherwise.

In this subsection, we are going to prove a few lemmata that show that in order for p to be relevant, the
number of projections corresponding to solutions of Okamoto type is limited. We will then characterize
these projections and formulate algorithms that exploit these characterizations to classify candidate points
with projections of Okamoto type.

PROPOSITION 6.2 If a point p € A is such that any three of its four projections g, g, g, g are in the set O
of all finite orbits corresponding to algebraic solutions of Okamoto type then the point p is not relevant.

Consequently, all points p satisfying hypotheses of Proposition 6.2 will be irrelevant to our
classification (and then excluded from it).
Before proving this result, we will need the following two definitions:

DEeFINITION 6.3 The set Opp is the set of all the g € O such that the associated triple of monodromy
matrices n € Mpy; admits one matrix equals to 1.

DEFINITION 6.4 The set Oggp is the set of all the ¢ € O such that if we consider the associated triple of
monodromy matrices n € Mpy; then the monodromy group (N;, N,, N3) is reducible.

Proof of Proposition 6.2: In order to prove the statement, we distinguish three cases:
(i) Assume p has three projections in Opp. It is enough to consider m € My, and the following three
projections:

n= (M13M29M3)9 ;l = (M23M39M4)9 h = (Ml’M29M4)9 (78)

because all other cases differ from this case only by a permutation of the matrices M;, see Lemma 6.1. If
any of M; = %I, then we conclude. If not, we are left with the following case:

~ A v

Ny = MsMuM, = €, Ny = MMsM, = €I, N, = M,M)M, = &I,
where €, €,¢ = 1. Combining these relations we obtain:
M, = EEM,, M; = EéM,, and therefore M; = €EM,, M, = é€EM 2,

so that finally m = (M, €€EM | 2 &M, éeM;) which is reducible. Therefore p is not relevant.

(i1) Suppose p is such that three projections over four are in the set Oggp. Again it is enough to consider
the three projections (78). Since the three monodromy groups defined by the triples 7, 7, 11 are reducible,
these triples have each a common eigenvector, let us denote them ¥, ¥ and v, respectively. Now the matrix
M, that appears in all the three projections, has three eigenvectors v, v and v, which implies that one of
the following identities must hold: v =7 or Vv =7vor ¥ = V. Therefore the monodromy group is
reducible and the point p is not relevant.

(iii) When there are three projections in O, not all of the same type, we apply Lemma 6.3. This concludes
the proof.
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one projection is in the set Orgp, then such point p is not relevant.
Proof. Consider m € Mgz and the following two distinct generic projections:

(Mi7]‘4jaMk)eolD7 l>]>k» i’jak=15-"747 (79)
(M,*/,%/,Mk/) (S ORED7 i’ >j, > k,, l'/,j,,k, =1,...,4. (80)

If either M;, M;, M, is equal to &I, then we conclude. Otherwise suppose:
MMM, = £I. (81)

Moreover, suppose the monodromy group associated to the triple (My, My, My ) is reducible, then the
matrices My, My, My have a common eigenvector v. In (79) and in (80), at least two indices i, j, k that are
equal to two indices ', 5, k', without loss of generality, suppose i # i’, j = j’ and k = k’, then equation
(81) implies M; = j:(Mj/Mk/)*l, which shows that v is also an eigenvector for M; and therefore the
monodromy group (M;, My, M;, My) is reducible as we wanted to prove. O

LEMMA 6.4 Let p be a relevant point such that one of its projections q is in the set Opp, then ¢ satisfies:

g =*q3, @31 =Eq, gn==Fq, goo=F2. (82)
Proof. Consider the triple of matrices n = (N, N, N3) determined by g € Oyp. If any of the N; is equal
to £I, by the matching procedure, we end up with a point p that is not relevant, therefore, we avoid this
case. Otherwise, assume N,, = N3N,N; = =1, then:

Ny = £(N3N,) ™!, Ny = £(N1N3) ™, Ny = £(NoNy) (83)

By taking the traces we obtain (82). This concludes the proof. g

LEMMA 6.5 Let g be the co-adjoint coordinates on M pvi- If g is in the set Oggp, then g satisfies:

qij = %(qlqj - GiEjSiSj), i >j, l,] = 1,2,3,

I (84)
doo = 7(q192q3 — €1€2515:q5 — €1€35153G2 — €2€35253q1)

where s, = /4 — g7 for some choice of the signs ¢, = £1 fork = 1,2,3.

Proof. Consider the triple of matrices n = (N;, N,, N3) determined by g € Oggp, they define a reducible
monodromy group. Therefore, we can choose a basis in which they are all upper triangular. Then their
diagonal elements are given by their eigenvalues eigenv(V;) = exp (¢;76;), where €, = %1, so that:

Tr(N;) =2cosnb;, i=1,2,3,00, (85)
Tr(N;N;) = 2 cos(m (€,0; + €;0)), i,j =1,2,3, i > ], (86)
Tr(N3;NoNy) = 2 cos(m(€,0) + €26, + €363)). (87)
Applying trigonometric identities we obtain relations (84). This concludes the proof. g
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22 P. CALLIGARIS AND M. MAZZOCCO

An obvious consequence of this result is:

LEMMA 6.6 Suppose p € A is a relevant point such that any two of its four projections ¢, ¢, g, g, defined
in (74), are in the set Ogrgp. Denote by g one of the remaining projections, then there exists a couple of
indices (i,7),(7,j’) with one index in (i, j) equal to one index in (7', ') such that:

4+ G+ 4 — 4599, —4 =0, i>j,0,j=12.3,

vy (88)
ql-z,j,+qi2,+qj2,—q,-/j/q,vq/—4=0, r>],1,] =1,2,3.

Lemmata 6.4, 6.5 and 6.6 lead to the development of additional matching algorithms in order to
complete our classification for the cases when these points are included. Thanks to Lemma 6.3, in order
to complete our classification of candidate points, we need to construct only the following four sets:
Ce,4s 0 <0y » the set of all candidate points with at least two projections in Oyp and one in Eys, the set

E45xOrep xOrep» the set of all candidate points with at least two projections in Oggp and one in Eys,
CE45><E45><OID’ the set of all candidate points with at least two projections in E4s and one in Opp, and
the set of all candidate points with at least two projections in E4s and one in Oggp. The set
turns out to be empty.

E45xE45xORED
E45 xORED XORED
To construct the set CE45X01DX01D, we proceed as follows: firstly we construct the set C~E45X01DX01D,
where one over the three projections g, ¢, g is in the set E45 and two of the remaining projections are in
the set Oyp, then, applying Lemma 6.1 we generate the whole set Cg,5 xop x0pp -

The set éE45xOmem is the union of the following three sets of candidate points p:
(A2.1) Crysxop w0y candidate points p with §,§ € Orp, G € Eus.
(A2.2) C~E45><OID><OID: candidate points p with ¢, g € Oy, ¢ € Eys.

(A2.3) Ciysxop o candidate points p with g,§ € Orp, § € Ess.

Here, we state only the algorithm that generates the subset (A2.1), the other algorithms for the subsets
(A2.2) and (A2.3) can be derived in a similar way. The algorithm is based on the following result, which
is an obvious consequence of Lemma 6.4:

LEMMA 6.7 If a point p € A, is such that g, ¢ € Oyp, then g must satisfy:
G = €€q1, g3 = €€qs1, (89)
and p is such that:

D1 = q1, P2 = €1, P3 = €€q1, P4 = 3, P21 = €G3, P31 = Ga1, P = €3,
Ps1 = 6_131, Pa2 = 56_11, P43z = ééfhl’ P42 = é2, P43t = z]ooa P21 = €2. (90)

Algorithm 3

(1) Take g € Eys.
(2) Check if g satisfies:

g» = €€q, and gxn = €€qzy,

then go to the next Step, otherwise go to Step 1.
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(3) Determine the components of p involved in identities (90).
(4) Determine the values pg’gl, for i = 1,2, using equation (47).
Foreachi =1,2:
(5) Calculate the values of p using equation (51).
(6) Use identities given by the columns of Table 1 in order to determine the other components of p®.

(7) If p satisfies equations (52)—(61) then go to the next Step, otherwise Step 1.

(8) Save p in the set éE45XOIDXOID’ and go to Step 1.

When Algorithm 3 and the algorithms for subsets (A2.2) and (A2.3) end, the following set is obtained:

CE45 xOpx0p = CE45 %O xOp Y CE45 O x0p Y CE45 xOp xOp >
then, by Lemma 6.1, we generate the set Cg,5 o, xop a5:

3

_ i g
CE45><OID><OID - CE45 xOrp xO1p U T(1234) (CE45 XO[DXOID)’ oD

i=1

where permutation 7 ;234 is defined in Lemma 6.1. This set contains 6,385 points and Algorithm 3 can
be found in [21].

We proceed in a similar way to construct the set Cg s x5 xoggp, Of all candidate points p € ./\>lg2 such

AAAAA

in the set E4s. We give here only the algorithm such that ¢, € Eys, ¢ € Oggp—all other cases can be
derived in similar way.

Algorithm 4

(1) Consider g, q € E4s x Egs.

(2) Check if g, g satisfy relations given by the columns of the first and third rows of Table 1 then go to
the next step, otherwise go to Step 1.

(3) Calculate p3; and p43; using Table 1 and conditions (84).
(4) Determine the values pg’gl, for i = 1,2, using equation (47).
Foreachi =1, 2:
(5) Calculate the values of p(o’g using equation (51).
(6) Use identities given by the columns of Table 1 in order to determine the other components of p®.

(7) If p' satisfies equations (52)—(61) then go to the next step, otherwise Step 1.
(8) Save p® in the set C:E45><E45><ORED’ and go to Step 1.

When Algorithm 4 and the analogous algorithms for ¢,§ € Eus, ¢ € Ogep and for ¢,g € Eus,
g € Ogep, respectively end, the set CE45><E45><ORED is obtained. Then, as before, the set CE45><E45><ORED is
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given by:

3

el i 5
CE45 xE45xORgD — CE45 xEy5xORED U T (1234) (CE45 xE45xORED )-
i=1

This set contains 342,368 points and Algorithm 4 can be found in [21].

We now produce the algorithm that generates the set Cg,, «,s <oy, Of all candidate points p € A such
that one projection is in the set O;p and two of the remaining three projections are in the set E;s. We give
here only the algorithm such that g, ¢ € Eys, g € Opp - all other cases can be derived in similar way. This
is a simple adaptation of Algorithm 4 in which we substitute Steps (2) and (8):

Algorithm 5
(1), (2), (4), (5), (6), (7) see Algorithm 4.
(3) Calculate p;; and P31 using Table 1 and conditions (82).

(8) Save p in the set Cg,;xk,sxop» and go to Step 1.

When Algorithm 5 and the analogous algorithms for g, ¢ € Eus, g € Orp and for g, g € Eys, ¢ € O,
respectively end, we obtain Cg 45 xE45x0Opp» then as before:

3

—C i g
CE45 xE45x0p — CE45 xEg5x01p U T (1234) (CE45 xEys5 xOpp )

i=1

This set contains 245,760 points, and Algorithm 5 can be found in [21].
Finally the set of all candidate points is:

C= CE45 xEy5xEgs CE45 *Opp xOp Y CE45 xE45xORgp CE45 xEg5xOpp * 92)

This is a finite set consisting of 3,461,273 points (duplicated points are erased). We re-define this set by
throwing away all points that produce M,, = %I, so that the resulting set C has 3,287,140 elements.

7. Extracting finite orbits
Now, we need to determine which points in C lead to a finite orbit of the P4-action. The following result

is fundamental to achieve this:

LEMMA 7.1 Let p € C a candidate point, then its orbit is finite if and only if B(p) € C for every braid
B € P,.

Proof. Suppose B(p) € C forevery 8 € P, then the orbit is finite since C is finite too. Vice versa, suppose
p has a finite P4-orbit, then for every B, f(p) must have a finite orbit. Hence, B(p) must be an element
of C. O

Therefore, to select the finite orbits is equivalent to find the subset Cy C C such that:

Co={peC|B(p)eC, BePs 93)
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To construct the set Cy, we use the following:
Algorithm 6

(1) Consider p € C.
(2) Apply to it all the generators (65) of P;.

(3) If there exists an i = 1,...,6 such that p” ¢ C then delete p from the set C and go to Step 1,
otherwise save p in C, and go to Step 1.

This algorithm is designed in such a way that points already considered are not considered again, or
in other words, we order points in C and proceed in order. This algorithm ends when in the set C there
are no more elements to delete. The final set C, contains 1,270,050 points and Algorithm 6 can be found
in [21].

Note that Cy contains only elements that generate finite orbits under the P,-action. In fact, assume by
contradiction that p € C has an infinite orbit. Then there exists a braid 8 such that 8(p) & C. Now every
braid B € P4 can be thought as an ordered combination of generators S;;:

B =By .. By o4
———

n

where n indicates the length of the word. Let us introduce the following notation:

p” =p, pV=B;p),....p" = Bm) =By @"") =By ... B; D). (95)
N—— ——’

n

Since we supposed p™ ¢ C, Algorithm 6 deletes p”~? from the set C. In the next iteration it deletes p©~2

and so on, till when p©® = p is deleted from C, and therefore p is not in Cy, contradicting our hypothesis.

8. Extracting non-equivalent orbits

In this section, we quotient the set C, of all points p giving rise to a finite orbit with respect to the action
of the pure braid group, so that we select only one representative point for every finite orbit, and by the
action of the symmetry group G of Mg, described in the next theorem proved in the Appendix.

THEOREM 8.1 The group

G := (P13, Py, P34, P, signl, cees Sigﬂ4,ﬂ(12)(34),ﬂ(1234)> (96)

where
Pi3(p) = 0207 o5 (p), ©7)
Py(p) = 0y0, 0, 'o] om0, oy (p), (98)
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Py (p) = 0302017102710371020]71027103020]71(p),
P1oo(P) = (=Poos P2, P3: Pas —P1: P2Poc — Pa2P21 + Pa3P1 — Pasts
D3Poo — Pa3P321 + PaPa1 — D421, P32, P321s P42, Pass
DP32Doo — Pax2P321 + PaP1 — Pai> D432, Da1s
PaP321 — PaPar + P3P — Pa),
sign; (p) = (—P1, P2, P3: Pas —Poos —P21> —P315P32s —P41, P42, Pazs —P3215 Pa32s
— Pa31, —Paa1)s
sign, (p) = (P1, —P2:P3> Pa» —Poos —P215 P31 —P32> Pats —P42, Pa3> —P321, — P32,
P31, —Pa21),
sign; (p) = (P1, P2, —P3 Pa> —Poos P21> —P31s —P32, Pats P42, —Pa3> —P321, — P32,
— Pa31, Pa21)s
signy(p) = (P1,P2, P35 —P4s —Poos P21s P31 P32, —Pats —P42, —Pa3s P21 —Pazas —
— D431, P421)-
24 (D) = (P2, P15 P4, P35 Poos P15 P42, P41 P32, Pats Pa3s P421s P31, P32, P321)s
71234 (P) = (P4> P15 P25 D3> Doos Pa1s Pa2s P15 P43 P31 P32, P42t P32t P43z, Pa3t)-

is a group of symmetries for Mgz.

8.1 Points belonging to the same orbit

In this subsection, we explain how to take the following quotient:
C 1= C() / P 4.
Algorithm 7 For every p € Cy:

(1) Calculate Op, (p).
(2) Save p € C; and delete Op, (p) from C .

99)

(100)

(101)

(102)

(103)

(104)

(105)
(106)

Since the set Cy is finite, the algorithm ends. This algorithm produces the set C;, that contains 17,946

finite orbits of the P4-action.

8.2 Quotient under the symmetry group G

Our aim is to quotient C; by the action of the symmetry group G, see Appendix. Note that G is an infinite
group; however, it acts as a finite group on (py, p2, P3, P4, Poo) and preserves the length of a P,-orbit.

Thanks to this fact we are able to set up a finite factorization algorithm.
We proceed as follows: we factorize by the action of the finite subgroup:

(sign,,...,signy, Tyaa, Tas) C G,

to obtain the set C;.
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Algorithm 8

(1) Consider p € C;.

(2) Remove from C; the set Op, (p) and save p in the set C;.

(3) Apply to p all transformations in (Sign1 N sign4) and save the result in the set Ag.
For every p’ € Ay:

(4) Apply to p’ all transformations in <71(12)(34), T 1234)) and save the result in the set A;.
For every p” € A;:

(5) If p”isin C,, then Op,(p) and Op, (p”) are equivalent. Remove Op, (p”) from C;. If p” is not in C,,
apply again the current Step to the next p” in A;.

(6) If all possible choices of p” in A; are exhausted go to Step 1.

This algorithm ends when all choices of points p in the finite set C; are exhausted. The set C}, created
in this way, contains 122 points, therefore this factorization reduces dramatically the number of orbits to
be processed from 17,946 to 122.

Next, we subdivide the set C; into subsets that contain orbits of the same length and have the same
(1, P25 P3»> P4> Po) modulo change of signs or permutations. This is useful because, since the action of
G preserves the length of an orbit and that the (p1, p2, p3, P4, Poo) emain invariant up to permutations
and sign flips under the G action, only points within the same subset can be related by a transformation
in G.

Algorithm 9

(1) Consider p € C;, with |Op,(p)| =N, N € N.
(2) Save pinasetAy.
(3) Remove p from Cj.
For every p’ € C}:
(4) If p’ is such that:

* 10p, (@) =N.
*  (p1,P2,P3,P4:Psc) and (P}, p5, P5, Pa» Do) differ by change of signs or permutations.

Save p’ in Ay and remove p’ from C;, otherwise apply again this Step to another p’ € C;.

Since the set C} is finite, this algorithm ends when there are no more elements in C;. This algorithm
generates a finite list of 54 subsets Ay, where N is such that for every p € Ay we have |Op, (p)| = N and
(D1, P2, P3,P4:Poo) and (P, ph, p5, pi, D) differ by change of signs or permutations.

Then, within each subset Ay, for all the elements in the subset, we apply a transformation in G in
such a way that every element p in the subset will have the same ordered (p1, p2, p3, P4, Poo) and check if
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there is a P, transformation linking the points in the same Ay. This is done in the following:
Algorithm 10 For every subset Ay:

(1) Choose a point p € Ay and save it in the set C,.
(2) Remove p from Ay.

(3) Act with G on each element in the set Ay, producing a new set A}, in such a way that every element
p' in A}, will have:

(P> D3 D3> Pas Pos) = (P15 D2 D3> Pas Poc)-

For every p’ € A}:

(4) Generate the orbit of p’ under the action of (P13, P23, P34); if p is in this orbit, then Op, (p) and Op, (p")
are equivalent, otherwise save p’ in C, and apply again this Step to another p’ € Aj},.

(5) When all choices of p’ € A), are exhausted, go to Step 1.

Since the number of subsets Ay is 54, and each subset has a finite number of elements, this algorithm
ends when there are no more subsets Ay to process. It turns out that for each set Ay there is only one
class of equivalence under the action of the group G. This completes our classification of all finite orbits.
We summarize the content of the set C,, in Table 2.

8.3 Finite monodromy groups

Here we show that solution 25 in Table 2 corresponds to an infinite monodromy group and there is
no symmetry mapping it to an orbit with finite monodromy group. We also calculate the order of the
monodromy groups generated by all other orbits. The results about monodromy group orders are resumed

in Table 3.
To prove these statements, we calculate the monodromy matrices by using the parameterization
formulae in Section 2 with the corresponding values of p;, i = 1,...,4,00 and p;;, i,j = 1,...,4 from

Table 2. Since none of our groups are cyclic and they are subgroups of SL,(C), by Klein classification
result only binary polyhedral and binary dihedral group are allowed. The order of the binary polyhedral
groups is bounded by 120, therefore we wrote a C* program that generates group elements up to 121
distinct elements. In this way we characterize the orders of the monodromy groups associated to all orbits
except the 25th one. Since for orbit 25 all generating matrices My, ..., M, are not diagonalizable and
therefore not idempotent, the group is automatically infinite. This property is clearly preserved by the
action of the symmetry group G defined in Theorem A.5. For completeness we list here the monodromy
matrices associated to the 25th orbit (in the basis of M3M, diagonal):

1-if2: 5 (5-V5)

s/ 2
l 1+l m

M1:
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TABLE 2.
# sz.  pr D2 D3 D4 Doo D2 D31 D32 Da1 D42 Da3
1 36 1 0 V2 0 0 -1 0 V2 0 V2 1
2 36 1 0 1 0 0 1 0 1 1 0 1
3 40 -1 1 V2 1 V2 -1 =2 0 1 1 V2
—14+/5 =145 1+5 —1+/5 1+/5 1-45 1-/5 1-/5
4 40 J2r J2r +2 jZL +2 2 0 1 2 2 0
1+/5 1+/5 145 1-/5 1-/3 —1+/5 1+5 1+5
5 40 -2 -Ee R 5R e =R e R ] 1 -1
6 45 =I5 145 V5 145 1+4/5 15 1-V/5 145 1 —14+v5 =145
2 2 2 2 2 2 2 2 2 2
1445 1445 1+4/5 1+4/5 —1+5 1+4/5 1445
745 +§ +§ +§ _%T_ ; 45 1 Jﬁ 1 2 1
8 48 2 0 0 0 V22 -1 V2 0 0 1
9 72 0 0 —1 0 0 V2 =2 1 -1 0 0
10 72 =2 0 0 -1 =2 0 -1 -1 V2 =2 0
—1+4/5 1-v5 —1+/5 1+4/5 —1+/5 1-5
S e e e e e -1 = -1 0
1+5 1+/5 14+V/5  —1+5 1+4/5 1-/5 1445
L e e Bt e e e et o) B 1
13 96 2 0 0 0 0 1 -2 V2 1 -2 V2
14 96 =5 1-5 1-5 1-5 1-v/5 1-v/5 14v5  1=45 1-/5 1-/5 1-/5
2 2 2 2 2 2 2 2 2 2 2
1445 1445 1445 1445 1445 1+/5 1+4/5 1+4/5
15 9% - +2 - +2 +2 - +2 - +2 +2 +T - +2 2 1 -1
16 96 0 0 1 0 -1 2 0 0 -2 V2 -1
1445 1+4/5 —1+4/5 1+4/5 1445 1445 —14+4/5
17105 === 1 == -1 =% -5= -1 5= 5 P
1-5 1-5 1+4/5 1-/5 1-v5 1+4/5
R e e e e e el s E
1445 1445 1445 1+4/5 1+/5 1-/5 1+/5
19108 == 1 —55 -55 5 5 50 -5 =2 0 2
—1+/5 1-/5 —14+/35 1-/5 1—/5 —1+/35 1=+/5
20 108 == =5 =5 L e e A S
21 120 1 0 -1 0 -1 0 -1 V2 =V2 -1 0
—1+4/5 1-v5 1-v5 —1+/5 1-/5 1-/5 145
22 144 =5 O e e e e B e e e
1+4/5 145 1445 1445 —1+/5
23 144 -1 -5 ¥ LS 1 L3 1 1 =3 1
24 144 0 1 0 0 V2 0 2 0 1 V2 -1
1-/5 —144/5 1+4/5 1445
25 192 2 2 -2 -2 -2 LB -1 v b L 1
26 192 0 0 0 0 0 V2 =2 =2 -1 V2 -1
-5 1+/5 1-v/3 —14/5 —/5 -5 —1+J5
27 200 0 e R e el L i w
1+4/5 —14+4/5 1445 1-/5 1+4/5 1445 1+4/5
28 200 == 0 0 i S S S
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TABLE 3.
Orbits Group order
1,3, 8,9, 10, 13, 16, 21, 24, 26, 30 24
2 12
25 Infinite
All others 60
_i(3+V5) 2425-i4/2(5++5) +iy/10(5++5)

Mo — V2(G+5) 4(V5-3)
2 i(4i(2+5)+/2(5+V5) +4/10(5+5)) |4 _iG+V5)
; iNzEe]

i(3+5+i4/2(5+V5)) —14/5-i4/2(545)

NoG=o) 2(59)

M; = i(=2i(14v/3)+34/2(5+5) +4/10(5+V5) ) i(3+v5)
1 i(v5-3) —14+v/5+42i/2(5++/5) =i/ 10(5++/5)
e — WG] 2
T (H1v5-2i/2(5+5) +in/10(5+5)) i(=3+v5+i/2(5+V5))
4 A2(5+5)

9. Outlook

From the parameterization results of Section 2, it is clear that we could reconstruct all monodromy
matrices (up to global conjugation) by matching only two points, and therefore completely reconstruct
the candidate point in that way. This means that we could in fact classify all finite orbits up to two
projections to Picard or Dubrovin—Kitaev orbits. This computation is theoretically possible but extremely
technical and would require covering so many sub-cases that we felt it is best to postpone it to further
publications.

Another direction of research is to classify all finite orbits of the pure braid group P, on the moduli
space of SL,(C) monodromy representations over the n + 1-punctured Riemann sphere for n > 4, or
in other words all algebraic solutions of the Garnier system G, _,. We expect the matching procedure to

3
be satisfied in order to produce a candidate point. We have seen that for n = 4, we start from an extended
list of 86,768 to produce only 54 orbits. As n increases, the starting list is the same, but the number of
necessary conditions increases—therefore we expect that there will be less and less exceptional orbits as
n increases.

work in this case too: now there will be ( ) restrictions to PVI, so many more necessary conditions to
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A. The symmetry group G of Mgz

The general theory of the bi-rational transformations of the Garnier systems was developed in [28], where
Kimura proved that the symmetric group S5 acts as a group of bi-rational transformations on the Garnier
system (see also [17, 29, 30]). These bi-rational transformations map algebraic solutions to algebraic
solutions with the same number of branches. This means that the corresponding action on the co-adjoint
coordinates maps finite orbits to finite orbits with the same number of points. To compute this action, we
use the following result proved in [10]:

LEMMA A.1 The symmetric group Ss giving rise to Kimura’s bi-rational transformations of the Garnier
system acts on Mg, as the group (P3, P23, P34, P1) where the transformations P)3,P,3,P34 act on the
monodromy matrices as follows:

Pz (M, My, M3, M,) — (Ml_le_lM3M2M1,MQ,M2M1M2_1,M4),

Py o (My, My, M3, My) — (M5 'M;M>My) ™' MMy ' MsMoM,,
(MyMy) ™' MsMuMy, My, My),

P3y : (My, My, M3, My) — (M_M,M,M,(M_M,M,)"", M,,
(MMM M;")"M,(M;M,M M5 "), M), (A1)

while transformation P, acts on the monodromy matrices as:
P : (My, My, M5,M,) —(—Ci\MC;', Cy'M,Cy, Cy' M5y,
Cy'MLCy), (A.2)

where C, is the diagonalizing matrix of M.

COROLLARY A.2 The group (P13, P23, P34, P1oo) acts on the co-adjoint coordinates as in (97)—(100).

Proof. This is a straightforward computation relying on the definition of the co-adjoint coordinates and
the skein relation. O

We wish to extend the class of transformations satisfying this property by adding to (P13, P23, P34, P1co)
the following set of transformations that also map finite orbits to finite orbits with the same number of
points (see Theorem A.5):

(1) Sign flips, or transformations that change signs to matrices M; fori = 1, ..., 4, corresponding to the
so-called Schlesinger transformations introduced by Jimbo—Miwa in [31]:

Sign(el,ez,e3,e4) : (M13M29M33M49Moo) = (€1M1’62M2’63M3’€4M49
e1626364(MuMsMoM,) ™), (A.3)

where ¢; = =1 fori=1,...,4.
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(ii)) Permutations of the matrices M; fori = 1,...,4 generated by:

(A4)
(A.5)

TT(12)(34) - (M19M29M39M4’M00) = (M;l9M;l’M;l’M;]7M2M1M4M3)7
Tao3ay - My, My, M3, My, M) — (M4, M, M», M5, (M3M2M1M4)71)-

The following two results give the action of the sign flips and permutations on the co-adjoint
coordinates and can be proved by straightforward computations:

ProposITION A.3 The sign flips are invertible maps generated by the four basic elements:

sign, :=sign_, ), sign, :=signg ., (A.6)

signg = sign ;) Sign, 1= signg

that act as follow on the co-adjoint coordinates (9) as in (101)—(104).

PROPOSITION A.4 The generators 771234y and 71234, act on the co-adjoint coordinates (9) as in (105) and
(106).

Finally, we characterize the group G of symmetries of Mgzz

DEFINITION A.1 A symmetry for Mgz is an invertible map & : Mgz — Mgz such that given an element
pE J\;lg2 and its orbit O(p), the following is true:

1O(@ ()] = [0P)I. (A7)

THEOREM A.5 The group

G = (P13, Py3, P34, Pioo, SigN, . . ., SIENy, TT(12)34)TT (1234)) (A.8)

is a group of symmetries for Mgz.

Proof. The statement is true for the subgroup (P3, P23, P34, P1s) by construction. We now prove that
each generator @ in (sign,,...,sign,, 7234 T234)) satisfies (A.7). It is straightforward to prove the
following relations:

o;sign, = sign,oy, o0ysign; = signyoy, o0ysign, = sign,o,

0,8ign, = sign,0,, 0,8ign, = sign;0,,  0,8ign, = sign,oy,

0,sign, = sign,0,, o3sign, = sign,03, 038ign, = sign,os,

o3sign, = sign,03, 03sign, = sign,o;.
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so that all sign flips are indeed symmetries. Regarding the permutations, it is straightforward to prove the
following relations:

-1
0270 (1234) = (123401, 011234 = T(12)34)01 >
3 -1
02134y = T4 (1234)°0203, o34y = TT(12)(34)03 >
-1 _—1
O170(1234) = T(1234)7T (12340, O ,  027(1234) = TT(1234)01,

037T(1234) = T7(1234)02.

This conclude the proof. 0
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