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In this article, we realize the SL2(C) character variety of he Riemann sphere �5 with five boundary
components as a 5-parameter family of affine varieties of dimension 4. We show that the action of the
mapping class group corresponds to certain action of the braid group on this family of affine varieties and
classify exceptional finite orbits. This action represents the nonlinear monodromy of the 2 variable Garnier
system and finite orbits correspond to its algebraic solutions.
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1. Introduction

The Garnier system G2 is the isomonodromy deformation of the following two-dimensional Fuchsian
system:

d

dλ
� =

(
4∑

k=1

Ak

λ − ak

)
�, λ ∈ C, (1)

a1, . . . , a4, being pairwise distinct complex numbers. The residue matrices Aj satisfy the following
conditions:

eigen
(Aj

) = ±θj

2
and −

n+2∑
k=1

Ak = A∞,

where θj ∈ C, j = 1, . . . , 4 and we assume

A∞ := 1

2

(
θ∞ 0
0 −θ∞

)
,

with θ∞ ∈ C \ {0}.
© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.
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2 P. CALLIGARIS AND M. MAZZOCCO

Fig. 1. The basis of loops for π1(�5).

The Riemann–Hilbert correspondence associates to each Fuchsian system (1) its monodromy rep-
resentation class, or in other words, a point in the moduli space of rank two linear monodromy
representations over the two-dimensional sphere �5 with five boundary components:

MG2 := Hom(π1(�5), SL2(C))/SL2(C),

also called SL2(C) character variety of �5.
After fixing a basis of oriented loops γ1, . . . , γ4, γ∞ for π1(�5) such that γ −1

∞ = γ1 · · · γ4, as in Fig. 1,
an equivalence class of an homomorphism in the character variety MG2 is determined by the five matrices
M1, . . . , M4, M∞ ∈ SL2(C), that are images of γ1, . . . , γ4, γ∞. These matrices must satisfy the relation:

M∞M4M3M2M1 = I. (2)

In this article, we assume that M∞ is diagonalizable:

eigen(M∞) = e±π iθ∞ .

As a consequence the character variety MG2 is identified with the quotient space M̂G2 , defined as:

M̂G2 := {
(M1, . . . , M4) ∈ SL2(C)|eigen(M4M3M2M1) = e±π iθ∞} / ∼, (3)

where ∼ is equivalence up to simultaneous conjugation of M1, . . . , M4 by a matrix in SL2(C).
As the pole positions a1, . . . , a4 in (1) vary in the configuration space of 4 points, the monodromy

matrices M1, . . . , M4 of (1) remain constant if and only if (see [1]) the residue matrices A1, . . . , A4 are
solutions of the Schlesinger equations [2] which in the 2 × 2 case reduce to the Garnier system G2 [3, 4].
The structure of analytic continuation of the solutions of the Garnier system is described by a certain
action of the pure braid group P4 [5] (see also [6]) that can be deduced from the following action of the
braid group B4:

B4 × M̂G2 �−→ M̂G2 , (4)

defined in terms of the following generators:

σ1 : (M1, M2, M3, M4) �→ (M2, M2M1M−1
2 , M3, M4),

σ2 : (M1, M2, M3, M4) �→ (M1, M3, M3M2M−1
3 , M4),

σ3 : (M1, M2, M3, M4) �→ (M1, M2, M4, M4M3M−1
4 ),

(5)

so that M∞ is preserved.
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 3

Our aim in this article is to classify the finite orbits of this action. In our classification, we exclude
the case when the monodromy group 〈M1, . . . , M4〉 is reducible because in this case the Garnier system
for which algebraic solutions are classified in [7] (indeed in this case the Garnier system can be solved in
terms of Lauricella hypergeometric functions [8]), and the case in which one of the monodromy matrices
is a root of the identity because in this case the Garnier system reduces to the sixth Painlevé equation [8]
for which all algebraic solutions are classified in [9]. Therefore, we restrict to the following open set:

U = {
(M1, . . . , M4) ∈ M̂G2 |〈M1, . . . , M4〉 irreducible, (6)

Mi 	= ±I, ∀i = 1, . . . , 4, ∞}
/ ∼,

To explain our classification result, we firstly identify the open set U with an affine variety (see
Section 2):

Lemma 1.1 Let the functions pi, pij, pijk be defined as:

pi = Tr Mi, i = 1, . . . , 4,
pij = Tr MiMj, i, j = 1, . . . , 4, i > j,
pijk = Tr MiMjMk , i, j, k = 1, . . . , 4, i > j > k,
p∞ = Tr M4M3M2M1,

(7)

then, for every choice of p1, . . . , p4, p∞, the open set of monodromy matrices U is isomorphic to a four
dimensional affine variety:

A := C[p21, p31, p32, p41, p42, p43, p321, p432, p431, p421]/I , (8)

where I is the ideal generated by the algebraically dependent polynomials f1, . . . , f15 defined in (47)–(61).

Therefore, we think of p1, . . . , p4, p∞ as a set of parameters and of pij, pijk as an over-determined system
of coordinates on U , and we express the action (4) in terms of pi, pij, pijk as follows (see Section 3):

Lemma 1.2 The following maps σi : A −→ A, i = 1, 2, 3, acting on the coordinates

p := (p1, p2, p3, p4, p∞, p21, p31, p32, p41, p42, p43, p321, p432, p431, p421) ∈ C
15, (9)

as follows:

σ1 : p �→ (p2, p1, p3, p4, p∞, p21, p32, p1p3 − p31 − p21p32 + p2p321, p42,
p1p4 − p41 − p21p42 + p2p421, p43, p321, p1p43 − p431 − p21p432 + p2p∞,
p432, p421),

σ2 : p �→ (p1, p3, p2, p4, p∞, p31, p1p2 − p21 − p31p32 + p3p321, p32, p41, p43,
p2p4 − p42 − p32p43 + p3p432, p321, p432, p2p41 − p421 − p32p431 + p3p∞,
p431),

σ3 : p �→ (p1, p2, p4, p3, p∞, p21, p41, p42, p1p3 − p31 − p41p43 + p4p431,
p2p3 − p32 − p42p43 + p4p432, p43, p421, p432, p431,
p21p3 − p321 − p421p43 + p4p∞),

(10)

define an action of the braid group B4 on A.
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4 P. CALLIGARIS AND M. MAZZOCCO

Therefore, our problem is to find all points p ∈ A such that their orbit under the action of the pure
braid group P4 induced by the action (10) of the braid group B4 is finite. Incidentally, the action (10) can
also be interpreted as the Mapping Class Group action on the character variety MG2 .

Our approach is based on the simple observation that given p ∈ A such that it generates a finite orbit
under the action of the pure braid group P4, then for any subgroup H ⊂ P4 the action of H over p ∈ A
must also produce a finite orbit (this is a well-known fact, see for example [7]). We select four subgroups
H1, H2, H3, H4 ⊂ P4 such that the restricted action is isomorphic to the action of the pure braid group P3

on the SL2(C) character variety of the Riemann sphere with four boundary components MPVI that can
be identified with:

M̂PVI := {(N1, N2, N3) ∈ SL2(C)|N∞N3N2N1 = I,

N∞ = exp(iπθ∞σ3), θ∞ ∈ C } / ∼ . (11)

In other words, we show that in order for a point p ∈ A to belong to a finite orbit of the pure braid
group P4, it must have four projections on points q = (q1, q2, q3, q∞, q21, q31, q32) that have a finite orbit
under the pure braid group P3.

We then invert this way of thinking: since all finite orbits of the pure braid group P3 on q =
(q1, q2, q3, q∞, q21, q31, q32) have been classified in Lisovyy and Tykhyy’s work [9], we start from their list
and reconstruct candidate points p ∈ A that satisfy the necessary conditions to belong to a finite orbit. We
then classify all candidate points that indeed produce finite orbits. In order to avoid redundant solutions
to this classification problem, we introduce the symmetry group G of the affine variety (8) and factorize
our classification modulo the action of G. The action of the symmetry group G on A is calculated in the
Appendix using known results about Bäcklund transformations of Schlesinger equations [10].

In order to produce our candidate points we use the classification result in [9] that shows that there
are four types of finite orbits of the braid group B3:

(1) Fixed points corresponding to Okamoto’s Riccati solutions [11].

(2) Dubrovin–Kitaev orbits, corresponding to algebraic solutions of type II, III and IV in [9].

(3) Picard orbits, corresponding to algebraic solutions obtained in terms of the Weierstrass elliptic
function (see [12, 13]).

(4) 45 exceptional finite orbits [9].

Remark 1.1 Orbits of type II, III and IV in [9] where first obtained by Dubrovin in [14]. Later Kitaev
showed that these solutions satisfy parametric families of the sixth Painlevé equations and re-obtained
them by the pull-back of the hypergeometric equation (see [15, 16]).

To keep down the number of pages and of technical lemmata, we restrict our classification to excep-
tional orbits, namely orbits for which the corresponding monodromy group is not reducible, none of the
monodromy matrices is a multiple of the identity and at most one projection giving either a Dubrovin–
Kitaev or a Picard orbit is allowed. Therefore, our classification does not include the solutions found by
Tsuda [17] by calculating fixed points of bi-rational canonical transformations, nor the ones found by
Diarra in [18] using the method of pull-back introduced in [15, 16], nor the ones found in [7] as they
correspond to reducible monodromy groups, nor the families of algebraic solutions obtained by Girand
in [19] by restricting a logarithmic flat connection defined on the complement of a quintic curve on P

2
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 5

on generic lines of the projective plane—indeed these algebraic solutions have at least two projections
giving Dubrovin–Kitaev orbits.

Our final classification result consists in a list of 54 exceptional finite orbits of the action (10) obtained
up to the action of the group of symmetries G (see Table 2). One orbit (element 25 in Table 2) corresponds
to an infinite monodromy group despite the fact that all of its projections to points corresponding to PVI
generate finite monodromy groups. The other 53 of these orbits correspond to finite monodromy groups.1

We believe that these 53 orbits are also interesting because even if it is obvious that for finite monodromy
groups the braid group orbits must be finite, the problem of classifying the representations of the SL2(C)

character variety of the Riemann sphere with five boundary components on finite groups is not trivial.
From the monodromy data M1, . . . , M4, it is in principle possible to recover the explicit formulation

of the associated solution of G2 using the method developed by Lisovyy and Gavrylenko in [20] of
Fredholm determinant representation for isomonodromic tau functions of Fuchsian systems of the form
(1). However, the shortest finite orbit classified in our paper has length 36, for this reason the associated
algebraic solution of G2 has eventually 36 branches, and we doubt that the expression of this solution can
have a nice and compact form.

All the algorithms necessary to produce this classification can be found in [21].

2. Co-adjoint coordinates on MG2

As explained in the Section 1, we identify the character variety MG2 with the quotient space M̂G2

defined in (3). Following [22, 23], the first step to endow M̂G2 with a system of co-adjoint coordinates
is to introduce a parameterization of the monodromy matrices in terms of their traces and traces of their
products. The following result is a generalization of a result proved by Iwasaki for the case of the sixth
Painlevé equation [24]:2

Theorem 2.1 Let (M1, . . . , M4) ∈ U , p ∈ A as in Lemma 1.1 and g(x, y, z) := x2 + y2 + z2 − xyz − 4,
then in the open set:

U (0)

jk := M̂G2 ∩ {(p2
jk − 4)g(pjk , pl, pjkl) 	= 0}, (12)

there exists a global conjugation P ∈ SL2(C) such that the matrices M1, . . . , M4 can be parametrized as
follows (up to conjugation by P):

Ml =
⎛
⎜⎝

pjkl−plλ
−
jk

rjk
− g(pjk ,pl ,pjkl)

r2
jk

1 − pjkl−plλ
+
jk

rjk

⎞
⎟⎠, Mk =

⎛
⎜⎝ − pj−pkλ+

jk
rjk

− ykl−yjlλ
−
jk

r2
jk

ykl−yjlλ
+
jk

g(pjk ,pl ,pjkl)

pj−pkλ−
jk

rjk

⎞
⎟⎠,

1 We are grateful to Gael Cousin for asking us this question.
2 We thank the referee for pointing out that some of these results should be known to experts in geometric invariant theory,

indeed the recent paper [25] provides an algorithm, implemented in Mathematica, SageMath and in Python, that takes a finite
presentation for a finitely presentable discrete group F and produces a finite presentation of the coordinate ring of the G-character
variety of F where G is a rank 1 complex affine algebraic group. We did not try to use this algorithm as we had already obtained
our coordinates by hands.
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6 P. CALLIGARIS AND M. MAZZOCCO

Mj =
⎛
⎜⎝ − pk−pjλ

+
jk

rjk
− yjl−yklλ

+
jk

r2
jk

yjl−yklλ
−
jk

g(pjk ,pl ,pjkl)

pk−pjλ
−
jk

rjk

⎞
⎟⎠, Mi =

⎛
⎜⎝

pijk−piλ
−
jk

rjk
− yil+yijklλ

+
jk

r2
jk

yil+yijklλ
−
jk

g(pjk ,pl ,pjkl)
− pijk−piλ

+
jk

rjk

⎞
⎟⎠ . (13)

Alternatively on the open set:

U (1)

jk := M̂G2 ∩ {(p2
jk − 4)g(pj, pk , pjk) 	= 0}, (14)

the matrices M1, . . . , M4 can be parametrized as follows (up to conjugation by P):

Ml =
⎛
⎜⎝

pjkl−plλ
−
jk

rjk
− ykl−yjlλ

+
jk

r2
jk

ykl−yjlλ
−
jk

g(pjk ,pj ,pk )
− pjkl−plλ

+
jk

rjk

⎞
⎟⎠, Mk =

⎛
⎜⎝ − pj−pkλ+

jk
rjk

− g(pjk ,pj ,pk )

r2
jk

1
pj−pkλ−

jk
rjk

⎞
⎟⎠,

Mj =
⎛
⎜⎝ − pk−pjλ

+
jk

rjk

g(pjk ,pj ,pk )λ+
jk

r2
jk

−λ−
jk

pk−pjλ
−
jk

rjk

⎞
⎟⎠, Mi =

⎛
⎜⎝

pijk−piλ
−
jk

rjk
− yik−yijλ

+
jk

r2
jk

yik−yijλ
−
jk

g(pjk ,pj ,pk )
− pijk−piλ

+
jk

rjk

⎞
⎟⎠ . (15)

Finally, on the open set:

U (2)

jk := M̂G2 ∩ {(p2
jk − 4)g(pjk , pi, pijk) 	= 0}, (16)

the matrices M1, . . . , M4 can be parametrized as follows (up to conjugation by P):

Ml =
⎛
⎜⎝

pjkl−plλ
−
jk

rjk
− yil+yijklλ

−
jk

r2
jk

yil+yijklλ
+
jk

g(pjk ,pi ,pijk )
− pjkl−plλ

+
jk

rjk

⎞
⎟⎠, Mk =

⎛
⎜⎝ − pj−pkλ+

jk
rjk

− yik−yijλ
−
jk

r2
jk

yik−yijλ
+
jk

g(pjk ,pi ,pijk )

pj−pkλ−
jk

rjk

⎞
⎟⎠,

Mj =
⎛
⎜⎝ − pk−pjλ

+
jk

rjk
− yij−yikλ+

jk

r2
jk

yij−yikλ−
jk

g(pjk ,pi ,pijk )

pk−pjλ
−
jk

rjk

⎞
⎟⎠, Mi =

⎛
⎜⎝

pijk−piλ
−
jk

rjk
− g(pjk ,pi ,pijk )

r2
jk

1 − pijk−piλ
+
jk

rjk

⎞
⎟⎠, (17)

where:

rjk :=
√

p2
jk − 4, λ±

jk = pjk ± rjk

2
, (18)

ykl := 2pkl + pjkpjl − pjpjkl − pkpl,

yjl := 2pjl + pjkpkl − pkpjkl − pjpl, (19)

yik := 2pik + pijpjk − pjpijk − pipk , (20)

yij := 2pij + pikpjk − pkpijk − pipj, (21)

yil := 2pil + pijkpjkl − pjkpijkl − pipl,

yijkl := 2pijkl − pilpjk − pipjkl − pijkpl + pipjkpl. (22)
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 7

Proof. Consider (M1, . . . , M4) ∈ U . We only prove the statement for the open subset U (0)

jk . For the

parametrizations on the open subsets U (1)

jk and U (2)

jk a similar proof applies. Under the hypothesis that
pjk 	= ±2, there exists a matrix P ∈ SL2(C) such that the product matrix MjMk can be brought into
diagonal form:

	jk := P(MjMk)P
−1 = diag{λ+

jk , λ−
jk}, (23)

where the eigenvalues λ±
jk are given in (18), where the positive branch of the square root is chosen.

Consequently, we conjugate by P the matrices Ml, Mk , Mj, Mi as follows:

P(Ml, Mk , Mj, Mi)P
−1 = (U, V , W , T). (24)

Since, W = 	jkV−1, we only need to produce the parametrization of the matrices U, V , T . Solving
the equations Tr U = pl, Tr 	jkU = pjkl and Tr V = pk , Tr 	jkV−1 = pj and Tr T = pi and Tr TWV =
Tr T	jk = pijk we obtain the diagonal elements of U, V and T , respectively:

u11 = pjkl − plλ
−
jk

rjk
, u22 = −pjkl − plλ

+
jk

rjk
, (25)

v11 = −pj − pkλ
+
jk

rjk
, v22 = pj − pkλ

−
jk

rjk
, (26)

t11 = pijk − piλ
−
jk

rjk
, t22 = −pijk − piλ

+
jk

rjk
. (27)

We now calculate the off-diagonal elements. Since det U = 1, then the following identity holds:

u12u21 = −g(pjk , pl, pjkl)

r2
jk

, (28)

and in U (0)

jk g(pjk , pl, pjkl) 	= 0. Since P is unique up to left multiplication by a diagonal matrix D ∈ SL2(C),
we are allowed to fix u21 = 1. Then equation (28) gives us the element u12.

The system of equations Tr VU = pkl and Tr 	jkV−1U = pjl gives us a parametrization for the
off-diagonal elements of V :

v12 = −yik − yijλ
−
jk

r2
jk

, v21 = yik − yijλ
+
jk

g(pjk , pi, pijk)
, (29)

where yik and yij are defined in (20) and (21), respectively. Finally, consider the system of equations
Tr TU = pil and Tr TWVU = Tr T	jkU = pijkl, then we have the following parametrization for t12

and t21:

t12 = −yil + yijklλ
+
jk

r2
jk

, t21 = yil + yijklλ
−
jk

g(pjk , pl, pjkl)
, (30)

where yil and yijkl are defined in (19) and (22), respectively. This concludes the proof. �
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8 P. CALLIGARIS AND M. MAZZOCCO

Theorem 2.1 shows that (p1, . . . , p4, p21, . . . , p43, p321, . . . , p421) parameterize the following open
subset of U : ⋃

j>k

U (0)

jk ∪ U (1)

jk ∪ U (2)

jk . (31)

We now show that it is possible to parameterize the monodromy matrices in terms of p ∈ A also outside
of this open subset.

Lemma 2.2 Let (M1, . . . , M4) ∈ U and p ∈ A. Assume that pjk 	= ±2 for at least one choice of j 	= k,
j, k = 1, . . . , 4 and

g(pjk , pl, pjkl) = g(pj, pk , pjk) = g(pjk , pi, pijk) = 0, (32)

where g(x, y, z) := x2 + y2 + z2 − xyz − 4, then there exists at least an index l for which plk 	= λlλk + 1
λlλk

and a global conjugation P ∈ SL2(C) such that:

PMkP−1 =
(

λk 1
0 1

λk

)
, PMjP

−1 =
(

λj −λjλk

0 1
λj

)
, (33)

PMlP
−1 =

(
λl 0

plk − λlλk − 1
λlλk

1
λl

)
, (34)

PMiP
−1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λi 0

pik − λiλk − 1
λiλk

1
λi

)
, for pil = λiλl + 1

λiλl
,⎛

⎝ λi

pil−λiλl− 1
λiλl

plk−λlλk− 1
λlλk

0 1
λi

⎞
⎠, for pil 	= λiλl + 1

λiλl
,

(35)

where λs + 1
λs

= ps, ∀s = 1, . . . , 4.

Proof. Proceeding as in the proof of Theorem 2.1, we bring the product matrix MjMk into the diagonal
form. Condition (32) implies that the following equations must be satisfied (we have absorbed the global
conjugation P in the matrices M1, . . . , M4, here):

(M1)12(M1)21 = (M2)12(M2)21 = (M3)12(M3)21 = (M4)12(M4)21 = 0.

By global conjugation by a permutation matrix, we can assume that (Mk)12 	= 0 and then by global
diagonal conjugation we can put Mk in Jordan normal form. Then, since Mj = 	jkM−1

k we immediately
obtain (33). Since the monodromy group must be irreducible, one of the two remaining matrices, call it
Ml, must have non-zero 21 entry. Then since Tr(MlMk) = plk , we obtain (Ml)21 = plk − λlλk − 1

λlλk
	= 0,

and therefore (34).
Now if the last matrix is also lower triangular, by imposing Tr MiMk = pik , we obtain the first formula

in (35), and it is immediate to check that then pil = λiλl + 1
λiλl

. Otherwise, if Mi is upper triangular,
by imposing Tr MiMl = pil, we obtain the second formula (35), and it is immediate to check that then
pil 	= λiλl + 1

λiλl
. �
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Proposition 2.3 Let (M1, . . . , M4) ∈ U and p ∈ A. Assume that pjk = 2εjk for all j, k = 1, . . . , 4, where
εjk = ±1. Then, if that at least one matrix Mi is diagonalizable there exists a choice of the ordering of
the indices i, j, k, l ∈ {1, 2, 3, 4} such that the following parameterization holds true:

PMiP
−1 =

(
λi 0
0 1

λi

)
, λi 	= ±1, λi + 1

λi
= pi, (36)

PMkP−1 =
⎛
⎝ − pk−2εkiλi

λ2
i −1

− (pkλi−εki(λ
2
i +1))2

(λ2
i −1)2

1 λi(pkλi−2εki)

λ2
i −1

⎞
⎠, (37)

and for pk 	= εkipi:

PMjP
−1 =

⎛
⎝ − pj−2εjiλi

λ2
i −1

(λ2
i −1)(2εkj−pikjλi)+(pkλi−2εki)(pjλi−2εji)

(pkλi−εki(λ
2
i +1))2

− λ2
i (pkλi−2εki)(pjλi−2εji)+λi(λ

2
i −1)(pikj−2εkjλi)

(λ2
i −1)2

λi(pjλi−2εji)

λ2
i −1

⎞
⎠ (38)

PMlP
−1 =

⎛
⎝ − pl−2εliλi

λ2
i −1

(λ2
i −1)(2εkl−piklλi)+(pkλi−2εki)(plλi−2εli)

(pkλi−εki(λ
2
i +1))2

− λ2
i (pkλi−2εki)(plλi−2εli)+λi(λ

2
i −1)(pikl−2εklλi)

(λ2
i −1)2

λi(plλi−2εli)

λ2
i −1

⎞
⎠ (39)

and if pk = εkipi, then pikj(λ
2
i + 1) 	= 2λi(εkiεji + εkj) and pikl(λ

2
i + 1) 	= 2λi(εkiεli + εkl) and

PMjP
−1 =

⎛
⎜⎝

λi(pikjλi−2εkj)

εki(λ
2
i −1)

λ4
i (pikjλi−2εkj)

2−2εkjεjiλ
2
i (pikjλi−2εkj)(λ

2
i −1)+(λ2

i −1)2

(λ2
i −1)2λi(2λi(εkiεji+εkj)−pikj(λ

2
i +1)2)

λi(pikj(λ
2
i + 1) − 2λi(εkiεji + εkj))

2εkiεjiλi(λ
2
i −1)−λ3

i (pikjλi−2εkj)

εki(λ
2
i −1)

⎞
⎟⎠ (40)

PMlP
−1 =

⎛
⎜⎝

λi(piklλi−2εkl)

εki(λ
2
i −1)

λ4
i (piklλi−2εkl)

2−2εklεliλ
2
i (piklλi−2εkl)(λ

2
i −1)+(λ2

i −1)2

(λ2
i −1)2λi(2λi(εkiεli+εkl)−pikl(λ

2
i +1)2)

λi(pikl(λ
2
i + 1) − 2λi(εkiεli + εkl))

2εkiεliλi(λ
2
i −1)−λ3

i (piklλi−2εkl)

εki(λ
2
i −1)

⎞
⎟⎠ (41)

If none of the monodromy matrices is diagonalizable, then there exists a choice of the ordering of the
indices i, j, k, l ∈ {1, 2, 3, 4} such that the following parameterization holds true:

PMiP
−1 =

(
εi 1
0 εi

)
, PMjP

−1 =
(

εj 0
4εij εj

)
, (42)

PMkP−1 =
⎛
⎝ pijk−2εikεj−2εjkεi+2εiεjεk

4εij

εjk−εjεk
2εij

2(εik − εiεk)
2εikεj+2εjkεi+8εijεk−2εiεjεk−pijk

4εij

⎞
⎠ (43)

PMlP
−1 =

⎛
⎝ pijl−2εilεj−2εjlεi+2εiεjεl

4εij

εjl−εjεl
2εij

2(εil − εiεl)
2εilεj+2εjlεi+8εijεl−2εiεjεl−pijl

4εij

⎞
⎠ (44)

Proof. First let us assume that at least one matrix Mi is diagonal and work in the basis in which Mi

assumes the form (36) with λi 	= ±1.
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10 P. CALLIGARIS AND M. MAZZOCCO

Let j 	= i, then we have a set of linear equations in the diagonal elements of Mj:

Tr
(
MiMj

) = 2εji, Tr Mj = pj, εji = ±1,

that it is solved by:

(Mj)11 = −pj − 2εjiλi

λ2
i − 1

, (Mj)22 = λi(pjλi − 2εji)

λ2
i − 1

, (45)

for j = 1, . . . , 4, j 	= i.
Since the monodromy group is not reducible, there is at least one matrix Mk , k 	= i such that in the

chosen basis, (Mk)21 	= 0, then we use the freedom of global diagonal conjugation to set (Mk)21 = 1.
Since det(Mk) = 1, we obtain the formula (37).

We now deal with the other two matrices in the case pk 	= εkipi—we only need to find the off-diagonal
elements of these matrices. To this aim we use the following equations for s = j, l:

Tr(MsMk) = 2εsk , Tr(MiMkMs) = piks,

which, combined with (45) lead to (38) and (37). One can treat the case pk = εkipi similarly, we omit the
proof for brevity. This concludes the proof of the first case.

To prove the second case, assume none of the matrices M1, . . . , M4 are diagonalizable, then
eigen(Mi) = {εi, εi}, ∀i = 1, . . . , 4, where εi = ±1. Let us choose a global conjugation such that
one of the matrices Mi is in upper triangular form as in (42).

Now, since the monodromy group is not reducible, there exists at least one j such that (Mj)21 	= 0.
From Tr MiMj = 2εij, we have 2εiεj + (Mj)21 = 2εij, so that (Mj)21 	= 0 implies εiεj = −εij. We perform
a conjugation by a unipotent upper triangular matrix to impose (Mj)12 = 0, so we obtain the second
equation in (42).

For all other matrices, we use Tr MiMs = 2εis and Tr MjMs = 2εjs, s = k, l to find:

(Ms)21 = 2(εis − εiεs), (Ms)12 = εjs − εjεs

2εij
,

From Tr Ms = 2εs and Tr(MiMjMs) = pijs, we find the final formula (43) for s = k and (44) for s = l,
respectively. �

In the following Theorem characterizes the space of parameters as an affine variety in the polynomial
ring

C[p1, p2, p3, p4, p21, p31, p32, p41, p42, p43, p321, p432, p431, p421]. (46)

Downloaded from https://academic.oup.com/integrablesystems/article-abstract/3/1/xyy005/5032871
by University of Birmingham user
on 20 July 2018



FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 11

Theorem 2.4 Consider m := (M1, . . . , M4) ∈ U .
(i) The co-adjoint coordinates of m defined in (9) and (7) belong to the zero locus of the following 15
polynomials in the ring (46):

f1(p) := p32p31p21 + p2
32 + p2

31 + p2
21 (47)

− (p1p321 + p2p3)p32 − (p2p321 + p1p3)p31

− (p3p321 + p1p2)p12 + p2
3 + p2

2 + p2
1 + p2

321 + p3p2p1p321 − 4,

f2(p) := p42p41p21 + p2
42 + p2

41 + p2
21 (48)

− (p1p421 + p2p4)p42 − (p2p421 + p1p4)p41

− (p4p421 + p1p2)p12 + p2
4 + p2

2 + p2
1 + p2

421 + p4p2p1p421 − 4,

f3(p) := p43p41p31 + p2
43 + p2

41 + p2
31 (49)

− (p1p431 + p3p4)p43 − (p3p431 + p1p4)p41

− (p4p431 + p1p3)p13 + p2
4 + p2

3 + p2
1 + p2

431 + p4p3p1p431 − 4,

f4(p) := p43p42p32 + p2
43 + p2

42 + p2
32 (50)

− (p2p432 + p3p4)p43 − (p3p432 + p2p4)p42

− (p4p432 + p2p3)p23 + p2
4 + p2

3 + p2
2 + p2

432 + p4p3p2p432 − 4,

f5(p) := −2p∞ + p1p2p3p4 + p1p432 + p2p431 + p3p421 + p321p4

+ p21p43 + p32p41 − p1p2p43 − p1p4p32 − p2p3p41 − p3p4p21

− p42p31, (51)

f6(p) := p2p3p4 − p32p4 − p21p3p41 + p321p41 − p3p42 + p1p3p421

− p31p421 − p2p43 + p21p431 + 2p432 − p1p∞, (52)

f7(p) := −p1p4 + 2p41 + p21p42 − p2p421 + p31p43 + p21p32p43

− p2p321p43 − p3p431 − p21p3p432 + p321p432 + p2p3p∞

− p32p∞, (53)

f8(p) := −p1p2p3 + p21p3 + p2p31 + p1p32 − 2p321 + p2p41p43

− p421p43 − p2p4p431 + p42p431 − p41p432 + p4p∞, (54)

f9(p) := −p1p2 + 2p21 + p31p32 − p3p321 + p41p42 − p4p421

+ p32p41p43 − p32p4p431 − p3p41p432 + p431p432 + p3p4p∞

− p43p∞, (55)

f10(p) := −p1p2p4 + p21p4 + p2p41 + p1p42 − 2p421 + p1p32p43

− p321p43 − p32p431 − p1p3p432 + p31p432 + p3p∞, (56)

f11(p) := p1p3p4 − p31p4 − p21p32p4 + p2p321p4 − p3p41 − p321p42

+ p32p421 − p1p43 + 2p431 + p21p432 − p2p∞, (57)
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12 P. CALLIGARIS AND M. MAZZOCCO

f12(p) := −p2p4 + p21p41 + 2p42 − p1p421 + p32p43 − p321p431

− p3p432 + p31p∞, (58)

f13(p) := p1p3 − 2p31 − p21p32 + p2p321 − p41p43 + p4p431

+ p421p432 − p42p∞, (59)

f14(p) := p2p3 − p21p31 − 2p32 + p1p321 − p21p41p43 − p42p43

p1p421p43 + p21p4p431 − p421p431 + p4p432 − p1p4p∞

+ p41p∞, (60)

f15(p) := −p3p4 + p31p41 + p21p32p41 − p2p321p41 + p32p42

− p1p32p421 + p321p421 + 2p43 − p1p431 − p2p432 + p1p2p∞

− p21p∞. (61)

(ii) For every given generic p1, . . . , p4, p∞, the affine variety A defined in (8) with I = 〈f1, . . . , f15〉, is
four-dimensional.

Proof. To prove the relations (47), …, (61), we use iterations of the skein relation:

Tr AB + Tr A−1B = Tr A Tr B, ∀A, B ∈ SL2(C), (62)

together with (2).
To prove statement (ii), we used Macaulay2 [26], in order to compute the dimension of the affine

variety defined in (8). The result is that (8) has dimension four. �

Corollary 2.5 The quantities (p21, . . . , p43, p321, . . . , p421) give a set of over-determined coordinates on
the open subset U ⊂ M̂G2 defined in (6).

Proof. Thanks to Theorem 2.1, Lemma 2.2 and Proposition 2.3 the quantities pi, pij, pijk parameter-
ize the monodromy matrices up to global conjugation. Thanks to Theorem 2.4 for every fixed choice
of p1, p2, p3, p4, p∞ only four among the quantities pij, pijk for i, j, k = 1, . . . , 4 are independent. This
concludes the proof. �

3. Braid group action on MG2

We start this section by proving Lemma 1.2.

Proof. First we prove that that action (10) is well defined, or in other words that the I = 〈F〉 = {f1, . . . , f15}
is invariant under the action (10). To this aim, we need to show that for each generator σi, i = 1, 2, 3,
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σi(I) = I . We carry out the computation for σ1 only, the other computations are similar.

f1(σ1(p)) = f1(p), f2(σ1(p)) = f2(p), f3(σ1(p)) = f4(p),

f4(σ1(p)) = f3(p) + (p21p42 − p2p421)f6(p) + (p21p431 − p2p∞)f11(p)

+(p2p321 − p21p32)f13(p),

f5(σ1(p)) = f1(p) − p2f7(p), f6(σ1(p)) = f8(p) − p21f2(p),

f7(σ1(p)) = f3(p) + p2f9(p), f9(σ1(p)) = f5(p) − p2f2(p),

f8(σ1(p)) = f4(p) − p42f2(p) − p432f7(p) + p32f9(p),

f10(σ1(p)) = −f7(p), f11(σ1(p)) = f6(p) − p21f7(p),

f12(σ1(p)) = −f2(p), f14(σ1(p)) = −f9(p),

f13(σ1(p)) = −p21f9(p) + f10(p), f15(σ1(p)) = f11(p) + p1f7(p).

Similar formulae can be proved for all other generators of the braid group. This shows that the action
(10) is well defined on A.

In order to prove that σi for i = 1, 2, 3, defined in (10), is indeed an action of the braid group B4, we
recall that the braid group Bn in Artin’s presentation is given by:

Bn = 〈
σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2,

σiσj = σjσi, |i − j| > 1
〉
, (63)

so, we need to prove that the following relations are satisfied:

σ1σ3(m) = σ3σ1(m), σ1σ2σ1(m) = σ2σ1σ2(m), σ2σ3σ2(m) = σ3σ2σ3(m). (64)

The first relation is straightforward, while the last two follow from the fact that polynomials (57)–(60)
are zero for every p ∈ A. �

This lemma allows us to reformulate our classification problem as follows:
classify all finite orbits:

OP4(p) = {β(p)|β ∈ P4} ,

where p is the following 15-tuple of complex quantities:

p = (p1, p2, p3, p4, p∞, p21, p31, p32, p41, p42, p43, p321, p432, p431, p421) ∈ C
15,

defined in (7), and P4 is the pure braid group P4 = 〈β21, β31, β32, β41, β42, β43〉 where:

β21 = σ 2
1 , β31 = σ−1

2 σ 2
1 σ2, β32 = σ 2

2 , (65)

β41 = σ−1
3 σ−1

2 σ 2
1 σ2σ3, β42 = σ−1

3 σ 2
2 σ3, β43 = σ 2

3 ,
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and the generators satisfy the following relations:

βrsβijβ
−1
rs =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

βij, if j < s < r < i,

or s < r < j < i,

β−1
rj βijβrj, s < j = r < i,

β−1
rj β−1

sj βijβsjβrj, j = s < r < i,

β−1
rj β−1

sj βrjβsjβijβ
−1
sj β−1

rj βsjβrj, s < j < r < i.

(66)

4. Restrictions

In this section, we select subgroups H ⊂ P4 such that the restricted action is isomorphic to the action of
the pure braid group P3 on the quotient space (11).

Theorem 4.1 The following four subgroups Hi ⊂ P4 with i = 1, . . . , 4:

H1 := 〈β32, β43, β42〉, H2 = 〈β43, β31, β41〉,
H3 = 〈β21, β42, β41〉, H4 = 〈β21, β32, β31〉,

where the generators βjk , 1 ≤ k < j ≤ 4, are defined in (65), are isomorphic to the pure braid group P3.
Moreover given any ordered 4-tuple of matrices (M1, M2, M3, M4) ∈ U , each Hi, for i = 1, . . . , 4, acts as
pure braid group P3 on a certain triple of matrices (N1, N2, N3) ∈ M̂PVI given by:

H1 : N̂1 = M2, N̂2 = M3, N̂3 = M4, N̂∞ = (M4M3M2)
−1, (67)

H2 : N̄1 = M1, N̄2 = M3, N̄3 = M4, N̄∞ = (M4M3M1)
−1, (68)

H3 : Ň1 = M1, Ň2 = M2, Ň3 = M4, Ň∞ = (M4M2M1)
−1, (69)

H4 : Ñ1 = M1, Ñ2 = M2, Ñ3 = M3, Ñ∞ = (M3M2M1)
−1. (70)

Proof. To prove that each Hi, i = 1, . . . , 4 is isomorphic to P3 we need to prove that its generators satisfy
the relations (66), for n = 3. This can be checked by direct computations.

We now prove the second statement explicitly for the subgroup H1, for the other subgroups a similar
proof applies. First of all, thanks to (2) we have immediately:

N̂∞N̂3N̂2N̂1 = I,

so that n̂ = (N̂1, N̂2, N̂3) ∈ M̂PVI . To show that the subgroup H1 acts as pure braid group P3 on M̂PVI , we
use the fact that the generators of H1 are defined in terms of generators σ2 and σ3 of the full braid group
B4, so it is enough to prove that σ2 and σ3 act as generators of the braid group B3 on M̂PVI . Consider (67),
then the following relations hold:

σ2(m) = (M1, M3, M3M2M−1
3 , M4) = (N̂2, N̂2N̂1N̂−1

2 , N̂3) = σ
(PVI)
1 (n̂),

σ3(m) = (M1, M2, M4, M4M3M−1
4 ) = (N̂1, N̂3, N̂3N̂2N̂−1

3 ) = σ
(PVI)
2 (n̂). (71)

This concludes the proof. �
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Table 1. Matching using traces: elements on the same columns must be equal

p1 p2 p3 p4 p∞ p21 p31 p32 p41 p42 p43 p321 p432 p431 p421

H1 q̂1 q̂2 q̂3 q̂21 q̂31 q̂32 q̂∞
H2 q̄1 q̄2 q̄3 q̄21 q̄31 q̄32 q̄∞
H3 q̌1 q̌2 q̌3 q̌21 q̌31 q̌32 q̌∞
H4 q̃1 q̃2 q̃3 q̃21 q̃31 q̃32 q̃∞

We now consider the action of the subgroups Hi for i = 1, . . . , 4 in terms of co-adjoint coordinates
on M̂PVI :

q̂ := (q̂1, q̂2, q̂3, q̂∞, q̂21, q̂31, q̂32), q̄ := (q̄1, q̄2, q̄3, q̄∞, q̄21, q̄31, q̄32),

q̌ := (q̌1, q̌2, q̌3, q̌∞, q̌21, q̌31, q̌32), q̃ := (q̃1, q̃2, q̃3, q̃∞, q̃21, q̃31, q̃32), (72)

where q̂i = Tr N̂i for i = 1, 2, 3, ∞ and q̂jk = Tr N̂jN̂k for j > k, j, k = 1, 2, 3 and similar formulae for q̄,
q̌ and q̃. Then identifications (67)–(70) imply the identities summarized in Table 1, where pi,pij,pijk are
defined in (7) and elements in the same column are identical.

We define the following four projections:

π̃ , π̂ , π̌ , π̄ : A �→ M̂PVI , (73)

as follows

π̃(p) := (p1, p2, p3, p321, p21, p31, p32) = q̃,

π̂(p) := (p2, p3, p4, p432, p32, p42, p43) = q̂,

π̌(p) := (p1, p2, p4, p421, p21, p41, p42) = q̌,

π̄(p) := (p1, p3, p4, p431, p31, p41, p43) = q̄. (74)

Viceversa, given four 7-ples q̃,q̂,q̌,q̄, such that they satisfy the equalities in the columns of Table 1, we
can lift them to a point p ∈ A, in which the value of p∞ can be recovered using relation (56). We call this
matching procedure.

5. Input set

The classification result by Lisovyy and Tykhyy produced a list of all finite orbits under the action of the
braid group B3 modulo the action of the group F4 of Okamoto transformations acting on MPVI . However,
points q that are equivalent modulo the action of the group F4 of Okamoto transformations, and of the
pure braid group P3, don’t necessarily produce candidate points p that are equivalent modulo the action of
the symmetry group G of the Garnier system G2 nor by the action of the pure braid group P4. Therefore,
we need to expand the list of input points q by considering all images under F4 and P3. In this section,
we define an expansion algorithm that applies the action of F4 and P3 to the 45 exceptional orbits of [9].
Thanks to the fact that the action of F4 over these 45 finite orbits is finite, the result is a finite set that
we call E45. This set does not include points that correspond to solutions of Okamoto type nor solutions
corresponding to Picard or Dubrovin–Kitaev orbits—we will deal with these points in Section 6.
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5.1 The classification result by Lisovyy and Tykhyy

In order to expand Lisovyy and Tykhyy list of 45 finite orbits (see Table 5 in [9]) it is best to introduce
the following quantities:

ω1 := q1q∞ + q3q2, ω2 := q2q∞ + q3q1, ω3 := q3q∞ + q2q1,
ω4 := q2

3 + q2
2 + q2

1 + q2
∞ + q3q2q1q∞.

(75)

The group F4 of Okamoto transformations of the sixth Painlevé equation acts as K4�S3 on (ω1, . . . , ω4)

[9]. Extending this action to the qijs, namely acting on (ω1, . . . , ω4, q21, q31, q32) it is straightforward to
prove the following:

Proposition 5.1 The group F4 of the Okamoto transformations of the sixth Painlevé equation is generated
by the following transformations that act on (ω1, . . . , ω4, q21, q31, q32) as follows:

si(q21, q31, q32, ω1, ω2, ω3, ω4) = (q21, q31, q32, ω1, ω2, ω3, ω4), i = 1, 2, 3, ∞, δ,

r1(q21, q31, q32, ω1, ω2, ω3, ω4) = (−q21, −q31, q32, ω1, −ω2, −ω3, ω4),

r2(q21, q31, q32, ω1, ω2, ω3, ω4) = (−q21, q31, −q32, −ω1, ω2, −ω3, ω4),

r3(q21, q31, q32, ω1, ω2, ω3, ω4) = (q21, −q31, −q32, −ω1, −ω2, ω3, ω4),

P13(q21, q31, q32, ω1, ω2, ω3, ω4) = (q32, ω2 − q31 − q21q32, q21, ω3, ω2, ω1, ω4),

P23(q21, q31, q32, ω1, ω2, ω3, ω4) = (ω2 − q31 − q21q32, q21, q32, ω1, ω3, ω2, ω4).

Proof. The proof of this is a consequence of the results of [10, 27]. �

In particular we observe that P13 and P23 are elements of the braid group B3—since we act only
on points that have finite orbits under the action of the braid group, the action of the whole group F4

produces a finite set of values. All these values will be in the form (ω1, . . . , ω4, q21, q31, q32); in order to
extract q1, q2, q3 and q∞ we use the fact that we can consider the relations (75) as a system of equations
in q1, q2, q3 and q∞ and that each qi has the form:

qi = 2 cos πθi, i = 1, 2, 3, ∞.

One particular solution of equations (75) is listed in [9] in terms of θ1, θ2, θ3, θ∞ for each point in the
Table 5 in [9]. We can then compute all other solutions q1, q2, q3 and q∞ by using the following:

Lemma 5.2 Suppose ω1, ω2, ω3, ω4 are given and consider system (75) in the variables q1, q2, q3, q∞, then
this system admits at most 24 solutions. Any two such solutions are related by the following elements
of F4:

id, α, β, γ , α · β, α · γ , β · γ ,

α · β · γ sδ , α · sδ , β · sδ , γ · sδ , α · β · sδ ,

α · γ · sδ , β · γ · sδ , α · β · γ · sδ , sδs1, α · sδ · s1,

β · sδ · s1, γ · sδ · s1 α · β · sδ · s1, α · γ · sδ · s1,

β · γ · sδ · s1, α · β · γ · sδ · s1.
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FINITE ORBITS OF THE BRAID GROUP ON THE GARNIER SYSTEM 17

where α, β, γ , sδ , s1 act as follows on the parameters θi:

α(θ1, θ2, θ3, θ∞) = (1 + θ1, 1 + θ2, 1 + θ3, 1 + θ∞)

β(θ1, θ2, θ3, θ∞) = (θ2, θ1, θ∞ − 2, θ3), γ (θ1, θ2, θ3, θ∞) = (θ3, θ∞ − 2, θ1, θ2)

sδ(θ1, θ2, θ3, θ∞) = (θ1 − δ, θ2 − δ, θ3 − δ, θ∞ − δ), δ = θ1 + θ2 + θ3 + θ∞
2

,

s1(θ1, θ2, θ3, θ∞) = (−θ1, θ2, θ3, θ∞).

Proof. It is an immediate consequence of Proposition 10 in [9]. �

This lemma allows us to calculate all the solutions of the system (75) in terms of the given ω1, ω2, ω3, ω4

starting from only one solution q1, q2, q3 and q∞. We are therefore able to set up our expansion algorithm:

Algorithm 1 For every line of Table 5 in [9], take the values (ω1, . . . , ω4, q21, q31, q32) and the
corresponding (q1, q2, q3, q∞) given in [9].

(1) Apply to (ω1, . . . , ω4, q21, q31, q32) all 48 transformations of the group K4 � S3. For each new set
of values (ω′

1, . . . , ω′
4, q′

21, q′
31, q′

32) obtained in this way, compute the corresponding (q′
1, . . . , q′

∞) as
the result of the same transformation on (q1, q2, q3, q∞).

(2) For every element (ω′
1, . . . , ω′

4, q′
21, q′

31, q′
32) obtained in step 1, generate their orbit under the action

of the braid group B3. For each new set of values (ω′′
1 , . . . , ω′′

4 , q′′
21, q′′

31, q′′
32) obtained in this way,

compute the corresponding (q′′
1 , . . . , q′′

∞) as the result of the same braid on (q′
1, q′

2, q′
3, q′

∞).

(3) For every element (ω′′
1 , . . . , ω′′

4 , q′′
21, q′′

31, q′′
32) and (q′′

1 , . . . , q′′
∞) obtained in step 2, find all other solu-

tions (q′′′
1 , q′′′

2 , q′′′
3 , q′′′

∞) of the system (75) for (ω′′
1 , . . . , ω′′

4) by applying the transformations in Lemma
5.2 to (q′′

1 , . . . , q′′
∞).

(4) Merge (q′′′
1 , q′′′

2 , q′′′
3 , q′′

∞) and (q′′
21, q′′

31, q′′
32) into:

q′′′ = (q′′′
1 , q′′′

2 , q′′′
3 , q′′′

∞, q′′
21, q′′

31, q′′
32).

(5) Generate the P3-orbit of q′′′ and save the result in the set E45

Once this algorithm ends, the set E45 will contain only a finite number of orbits. This set contains
86,768 points.

6. Matching procedure

In this section, we propose a procedure to construct all candidate points p ∈ A:

Definition 6.1 A point p such that its four projections q̂, q̌, q̄, q̃, defined in (74), generate finite orbits
under the action of P3 and such that at most one projections is a Picard or Dubrovin–Kitaev orbit, is said
to be a candidate point.

Note that, to generate a candidate point p, it is not necessary to know all four projections q̂, q̌, q̄, q̃.
Indeed, looking at Table 1, we see that if we give three projections, then only the value of p∞ and one
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18 P. CALLIGARIS AND M. MAZZOCCO

value pijk will be undetermined, but we can calculate these values from (51) and by choosing appropriately
one of the four relations f1, . . . , f4, defined in (47)–(50), respectively. So, in order to obtain the set C of
all candidate points, we can set up three matching procedures, each of them based on the knowledge of
only three projections. We denote by C̃, Ĉ, Č and C̄ the sets obtained by matching three projections and
missing q̃, q̂, q̌ or q̃, respectively.

In order to construct the set C, the union of all the above four sets C̃, Ĉ, Č, C̄ must be taken:

C = C̃ ∪ Ĉ ∪ Č ∪ C̄. (76)

As we are going to show in the next Lemma, it is enough to know only one of the sets C̃, Ĉ, Č, C̄ to generate
the whole set C:

Lemma 6.1 Consider m ∈ U and the permutation π(1234) that acts on the co-adjoint coordinates of m as
follows:

π(1234)(p) = (p4, p1, p2, p3, p∞, p41, p42, p21, p43, p31, p32, p421, p321, p432, p431),

then:

π(1234)(C̃) = Č, π(1234)(Č) = C̄, π(1234)(C̄) = Ĉ, π(1234)(Ĉ) = C̃. (77)

Proof. We only prove the first of (77), the other relations can be proved in a similar way. Thanks to
Theorem 2.1, a point p ∈ C̃ parameterizes a quadruple m of monodromy matrices m := (M1, M2, M3, M4)

up to global diagonal conjugation. Analogously, the three projections q̂, q̌, q̄ ∈ M̂PVI parameterize three
triples of monodromy matrices n̂, ň, n̄ ∈ M̂PVI , such that, up to global diagonal conjugation:

N̂1 = M2, N̂2 = M3, N̂3 = M4, N̂∞ = (M4M3M2)
−1,

N̄1 = M1, N̄2 = M3, N̄3 = M4, N̄∞ = (M4M3M1)
−1,

Ň1 = M1, Ň2 = M2, Ň3 = M4, Ň∞ = (M4M2M1)
−1.

Now take the point p′ = π(1234)(p), this parameterizes the triple m′ = π(1234)(m) up to global diagonal
conjugation. Consider now the three projections q̂′, q̃′, q̄′ ∈ M̂PVI of p′. They parameterize three triples
of monodromy matrices n̂′, ñ′, n̄′ ∈ M̂PVI , such that, up to global diagonal conjugation:

N̂ ′
1 = M ′

2 = M1, N̂ ′
2 = M ′

3 = M2, N̂ ′
3 = M ′

4 = M3,

N̂ ′
∞ = (M ′

4M ′
3M ′

2)
−1 = (M3M2M1)

−1,

N̄ ′
1 = M ′

1 = M4, N̄ ′
2 = M ′

3 = M2, N̄ ′
3 = M ′

4 = M3,

N̄ ′
∞ = (M ′

4M ′
3M ′

1)
−1 = (M3M2M4)

−1,

Ñ ′
1 = M ′

1 = M4, Ñ ′
2 = M ′

2 = M1, Ñ ′
3 = M ′

3 = M2,

Ñ ′
∞ = (M ′

3M ′
2M ′

1)
−1 = (M2M1M4)

−1.

These relations show that

n̂′ = ñ, n̄′ = π(123)n̂, ñ′ = π(123)ň,
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where

π(123)(q) = (q3, q1, q2, q∞, q32, q21, q31),

Now since ñ, π(123)n̂, π(123)ň ∈ M̂PVI , this shows that p′ ∈ Č. Viceversa, we can prove in a similar way
that given p′ ∈ Č, then p = π−1

(1234)p
′ ∈ C̃. This concludes the proof. �

We are now ready to describe how to implement the matching algorithmically.

6.1 Matching with the PVI 45 exceptional algebraic solutions

In this section, we give an algorithm that produces the finite set CE45×E45×E45 of all candidate points p such
that three over four projections q̂, q̌, q̄, q̃, defined in (74), are in the set E45.

Algorithm 2

(1) Consider (q̂, q̌, q̄) ∈ E45 × E45 × E45.

(2) Check if q̂, q̌, q̄ satisfy relations given by the columns of Table 1, then go to the next step, otherwise
go to Step 1.

(3) Determine the two roots p(i)
321, for i = 1, 2, using equation (47).

For each i = 1, 2:

(4) Calculate the values of p(i)
∞ using equation (51).

(5) Use Table 1 to determine all the other components of p(i).

(6) If p(i) satisfies equations (52)–(61) then go to the next Step, otherwise go to Step 1.

(7) Save p(i) in the set C̃E45×E45×E45 , eliminate (q̂, q̌, q̄) from E45 × E45 × E45 and go to Step 1.

Since E45 is a finite set, this algorithm terminates and produces a finite set C̃E45×E45×E45 . Finally the
big set CE45×E45×E45 can be generated by Lemma 6.1 as follows:

CE45×E45×E45 = C̃E45×E45×E45

3⋃
i=1

π i
(1234)(C̃E45×E45×E45).

The Algorithm 2 together with the action of the permutations producing the set CE45×E45×E45 can be
found [21]. This set contains all candidate points p ∈ A such that three projections (74) are in the set E45

and consists of 3,355,200 points.

6.2 Matching with Okamoto’s Riccati solutions

We call Okamoto-type solutions the algebraic solutions of the PVI equation belonging to Okamoto’s
Riccati solutions. The set O of all finite orbits corresponding to Okamoto-type solutions is an infinite set,
therefore to construct candidate points with projections in this set is not a straightforward adaptation of
Algorithm 2.
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20 P. CALLIGARIS AND M. MAZZOCCO

Definition 6.2 A point p is called not relevant if the associated monodromy group is reducible or there
exists an index i = 1, . . . , 4, ∞ such that Mi = ±I. A point p is called relevant otherwise.

In this subsection, we are going to prove a few lemmata that show that in order for p to be relevant, the
number of projections corresponding to solutions of Okamoto type is limited. We will then characterize
these projections and formulate algorithms that exploit these characterizations to classify candidate points
with projections of Okamoto type.

Proposition 6.2 If a point p ∈ A is such that any three of its four projections q̂, q̌, q̄, q̃ are in the set O
of all finite orbits corresponding to algebraic solutions of Okamoto type then the point p is not relevant.

Consequently, all points p satisfying hypotheses of Proposition 6.2 will be irrelevant to our
classification (and then excluded from it).

Before proving this result, we will need the following two definitions:

Definition 6.3 The set OID is the set of all the q ∈ O such that the associated triple of monodromy
matrices n ∈ M̂PVI admits one matrix equals to ±I.

Definition 6.4 The set ORED is the set of all the q ∈ O such that if we consider the associated triple of
monodromy matrices n ∈ M̂PVI then the monodromy group 〈N1, N2, N3〉 is reducible.

Proof of Proposition 6.2: In order to prove the statement, we distinguish three cases:
(i) Assume p has three projections in OID. It is enough to consider m ∈ M̂G2 and the following three
projections:

ñ = (M1, M2, M3), n̂ = (M2, M3, M4), ň = (M1, M2, M4), (78)

because all other cases differ from this case only by a permutation of the matrices Mi, see Lemma 6.1. If
any of Mi = ±I, then we conclude. If not, we are left with the following case:

Ñ∞ = M3M2M1 = ε̃I, N̂∞ = M4M3M2 = ε̂I, Ň∞ = M4M2M1 = ε̌I,

where ε̃, ε̂, ε̌ = ±1. Combining these relations we obtain:

M4 = ε̃ε̂M1, M3 = ε̃ε̌M4, and therefore M3 = ε̂ε̌M1, M2 = ε̃ε̂ε̌M−2
1 ,

so that finally m = (M1, ε̃ε̂ε̌M−2
1 , ε̂ε̌M1, ε̃ε̂M1) which is reducible. Therefore p is not relevant.

(ii) Suppose p is such that three projections over four are in the set ORED. Again it is enough to consider
the three projections (78). Since the three monodromy groups defined by the triples ñ, n̂, ň are reducible,
these triples have each a common eigenvector, let us denote them ṽ, v̂ and v̌, respectively. Now the matrix
M2 that appears in all the three projections, has three eigenvectors ṽ, v̂ and v̌, which implies that one of
the following identities must hold: ṽ = v̂ or ṽ = v̌ or v̂ = v̌. Therefore the monodromy group is
reducible and the point p is not relevant.
(iii) When there are three projections in O, not all of the same type, we apply Lemma 6.3. This concludes
the proof.
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Lemma 6.3 If a point p ∈ A is such that one of its four projections q̂, q̌, q̄, q̃ is in the set OID and another
one projection is in the set ORED, then such point p is not relevant.

Proof. Consider m ∈ M̂G2 and the following two distinct generic projections:

(Mi, Mj, Mk) ∈ OID, i > j > k, i, j, k = 1, . . . , 4, (79)

(Mi′ , Mj′ , Mk′) ∈ ORED, i′ > j′ > k′, i′, j′, k′ = 1, . . . , 4. (80)

If either Mi, Mj, Mk is equal to ±I, then we conclude. Otherwise suppose:

MiMjMk = ±I. (81)

Moreover, suppose the monodromy group associated to the triple (Mi′ , Mj′ , Mk′) is reducible, then the
matrices Mi′ , Mj′ , Mk′ have a common eigenvector v. In (79) and in (80), at least two indices i, j, k that are
equal to two indices i′, j′, k′, without loss of generality, suppose i 	= i′, j = j′ and k = k′, then equation
(81) implies Mi = ±(Mj′Mk′)−1, which shows that v is also an eigenvector for Mj and therefore the
monodromy group 〈Mi, Mi′ , Mj, Mk〉 is reducible as we wanted to prove. �
Lemma 6.4 Let p be a relevant point such that one of its projections q is in the set OID, then q satisfies:

q21 = ±q3, q31 = ±q2, q32 = ±q1, q∞ = ±2. (82)

Proof. Consider the triple of matrices n = (N1, N2, N3) determined by q ∈ OID. If any of the Ni is equal
to ±I, by the matching procedure, we end up with a point p that is not relevant, therefore, we avoid this
case. Otherwise, assume N∞ = N3N2N1 = ±I, then:

N1 = ±(N3N2)
−1, N2 = ±(N1N3)

−1, N3 = ±(N2N1)
−1. (83)

By taking the traces we obtain (82). This concludes the proof. �

Lemma 6.5 Let q be the co-adjoint coordinates on M̂PVI . If q is in the set ORED, then q satisfies:{
qij = 1

2 (qiqj − εiεjsisj), i > j, i, j = 1, 2, 3,

q∞ = 1
4 (q1q2q3 − ε1ε2s1s2q3 − ε1ε3s1s3q2 − ε2ε3s2s3q1)

(84)

where sk = √
4 − q2

k for some choice of the signs εk = ±1 for k = 1, 2, 3.

Proof. Consider the triple of matrices n = (N1, N2, N3) determined by q ∈ ORED, they define a reducible
monodromy group. Therefore, we can choose a basis in which they are all upper triangular. Then their
diagonal elements are given by their eigenvalues eigenv(Ni) = exp (εlπθi), where εl = ±1, so that:

Tr(Ni) = 2 cos πθi, i = 1, 2, 3, ∞, (85)

Tr(NiNj) = 2 cos(π(εiθi + εjθj)), i, j = 1, 2, 3, i > j, (86)

Tr(N3N2N1) = 2 cos(π(ε1θ1 + ε2θ2 + ε3θ3)). (87)

Applying trigonometric identities we obtain relations (84). This concludes the proof. �
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An obvious consequence of this result is:

Lemma 6.6 Suppose p ∈ A is a relevant point such that any two of its four projections q̂, q̌, q̄, q̃, defined
in (74), are in the set ORED. Denote by q one of the remaining projections, then there exists a couple of
indices (i, j),(i′, j′) with one index in (i, j) equal to one index in (i′, j′) such that:{

q2
ij + q2

i + q2
j − qijqiqj − 4 = 0, i > j, i, j = 1, 2, 3,

q2
i′j′ + q2

i′ + q2
j′ − qi′j′qi′qj′ − 4 = 0, i′ > j′, i′, j′ = 1, 2, 3.

(88)

Lemmata 6.4, 6.5 and 6.6 lead to the development of additional matching algorithms in order to
complete our classification for the cases when these points are included. Thanks to Lemma 6.3, in order
to complete our classification of candidate points, we need to construct only the following four sets:
CE45×OID×OID , the set of all candidate points with at least two projections in OID and one in E45, the set
CE45×ORED×ORED, the set of all candidate points with at least two projections in ORED and one in E45,
CE45×E45×OID , the set of all candidate points with at least two projections in E45 and one in OID, and
CE45×E45×ORED, the set of all candidate points with at least two projections in E45 and one in ORED. The set
CE45×ORED×ORED turns out to be empty.

To construct the set CE45×OID×OID , we proceed as follows: firstly we construct the set C̃E45×OID×OID ,
where one over the three projections q̂, q̌, q̄ is in the set E45 and two of the remaining projections are in
the set OID, then, applying Lemma 6.1 we generate the whole set CE45×OID×OID .

The set C̃E45×OID×OID is the union of the following three sets of candidate points p:

(A2.1) ¯̃CE45×OID×OID : candidate points p with q̂, q̌ ∈ OID, q̄ ∈ E45.

(A2.2) ˇ̃CE45×OID×OID : candidate points p with q̂, q̄ ∈ OID, q̌ ∈ E45.

(A2.3) ˆ̃CE45×OID×OID : candidate points p with q̄, q̌ ∈ OID, q̂ ∈ E45.
Here, we state only the algorithm that generates the subset (A2.1), the other algorithms for the subsets

(A2.2) and (A2.3) can be derived in a similar way. The algorithm is based on the following result, which
is an obvious consequence of Lemma 6.4:

Lemma 6.7 If a point p ∈ A, is such that q̂, q̌ ∈ OID, then q̄ must satisfy:

q̄2 = ε̂ε̌q̄1, q̄32 = ε̂ε̌q̄31, (89)

and p is such that:

p1 = q̄1, p2 = ε̌q̄31, p3 = ε̂ε̌q̄1, p4 = q̄3, p21 = ε̌q̄3, p31 = q̄21, p32 = ε̂q̄3,

p41 = q̄31, p42 = ε̌q̄1, p43 = ε̂ε̌q̄31, p432 = ε̂2, p431 = q̄∞, p421 = ε̌2. (90)

Algorithm 3

(1) Take q̄ ∈ E45.

(2) Check if q̄ satisfies:

q̄2 = ε̂ε̌q̄1, and q̄32 = ε̂ε̌q̄31,

then go to the next Step, otherwise go to Step 1.
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(3) Determine the components of p involved in identities (90).

(4) Determine the values p(i)
321, for i = 1, 2, using equation (47).

For each i = 1, 2:

(5) Calculate the values of p(i)
∞ using equation (51).

(6) Use identities given by the columns of Table 1 in order to determine the other components of p(i).

(7) If p(i) satisfies equations (52)–(61) then go to the next Step, otherwise Step 1.

(8) Save p(i) in the set ¯̃CE45×OID×OID , and go to Step 1.

When Algorithm 3 and the algorithms for subsets (A2.2) and (A2.3) end, the following set is obtained:

C̃E45×OID×OID = ¯̃CE45×OID×OID ∪ ˇ̃CE45×OID×OID ∪ ˆ̃CE45×OID×OID ,

then, by Lemma 6.1, we generate the set CE45×OID×OID as:

CE45×OID×OID = C̃E45×OID×OID

3⋃
i=1

π i
(1234)(C̃E45×OID×OID), (91)

where permutation π(1234) is defined in Lemma 6.1. This set contains 6,385 points and Algorithm 3 can
be found in [21].

We proceed in a similar way to construct the set CE45×E45×ORED of all candidate points p ∈ M̂G2 such
that one over the four projections q̂, q̌, q̄, q̃ is in the set ORED and two of the remaining projections are
in the set E45. We give here only the algorithm such that q̂, q̌ ∈ E45, q̄ ∈ ORED—all other cases can be
derived in similar way.

Algorithm 4

(1) Consider q̂, q̌ ∈ E45 × E45.

(2) Check if q̂, q̌ satisfy relations given by the columns of the first and third rows of Table 1 then go to
the next step, otherwise go to Step 1.

(3) Calculate p31 and p431 using Table 1 and conditions (84).

(4) Determine the values p(i)
321, for i = 1, 2, using equation (47).

For each i = 1, 2:

(5) Calculate the values of p(i)
∞ using equation (51).

(6) Use identities given by the columns of Table 1 in order to determine the other components of p(i).

(7) If p(i) satisfies equations (52)–(61) then go to the next step, otherwise Step 1.

(8) Save p(i) in the set ¯̃CE45×E45×ORED, and go to Step 1.

When Algorithm 4 and the analogous algorithms for q̄, q̌ ∈ E45, q̂ ∈ ORED and for q̄, q̂ ∈ E45,
q̌ ∈ ORED, respectively end, the set C̃E45×E45×ORED is obtained. Then, as before, the set CE45×E45×ORED is
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given by:

CE45×E45×ORED = C̃E45×E45×ORED

3⋃
i=1

π i
(1234)(C̃E45×E45×ORED).

This set contains 342,368 points and Algorithm 4 can be found in [21].
We now produce the algorithm that generates the set CE45×E45×OID of all candidate points p ∈ A such

that one projection is in the set OID and two of the remaining three projections are in the set E45. We give
here only the algorithm such that q̂, q̌ ∈ E45, q̄ ∈ OID - all other cases can be derived in similar way. This
is a simple adaptation of Algorithm 4 in which we substitute Steps (2) and (8):

Algorithm 5
(1), (2), (4), (5), (6), (7) see Algorithm 4.
(3) Calculate p31 and p431 using Table 1 and conditions (82).

(8) Save p(i) in the set ¯̃CE45×E45×OID , and go to Step 1.

When Algorithm 5 and the analogous algorithms for q̄, q̌ ∈ E45, q̂ ∈ OID and for q̄, q̂ ∈ E45, q̌ ∈ OID,
respectively end, we obtain C̃E45×E45×OID , then as before:

CE45×E45×OID = C̃E45×E45×OID

3⋃
i=1

π i
(1234)(C̃E45×E45×OID).

This set contains 245,760 points, and Algorithm 5 can be found in [21].
Finally the set of all candidate points is:

C = CE45×E45×E45 ∪ CE45×OID×OID ∪ CE45×E45×ORED ∪ CE45×E45×OID . (92)

This is a finite set consisting of 3,461,273 points (duplicated points are erased). We re-define this set by
throwing away all points that produce M∞ = ±I, so that the resulting set C has 3,287,140 elements.

7. Extracting finite orbits

Now, we need to determine which points in C lead to a finite orbit of the P4-action. The following result
is fundamental to achieve this:

Lemma 7.1 Let p ∈ C a candidate point, then its orbit is finite if and only if β(p) ∈ C for every braid
β ∈ P4.

Proof. Suppose β(p) ∈ C for every β ∈ P4, then the orbit is finite since C is finite too. Vice versa, suppose
p has a finite P4-orbit, then for every β, β(p) must have a finite orbit. Hence, β(p) must be an element
of C. �

Therefore, to select the finite orbits is equivalent to find the subset C0 ⊂ C such that:

C0 = {p ∈ C | β(p) ∈ C, β ∈ P4}. (93)
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To construct the set C0, we use the following:

Algorithm 6

(1) Consider p ∈ C.

(2) Apply to it all the generators (65) of P4.

(3) If there exists an i = 1, . . . , 6 such that p(i) /∈ C then delete p from the set C and go to Step 1,
otherwise save p in C0 and go to Step 1.

This algorithm is designed in such a way that points already considered are not considered again, or
in other words, we order points in C and proceed in order. This algorithm ends when in the set C there
are no more elements to delete. The final set C0 contains 1,270,050 points and Algorithm 6 can be found
in [21].

Note that C0 contains only elements that generate finite orbits under the P4-action. In fact, assume by
contradiction that p ∈ C0 has an infinite orbit. Then there exists a braid β such that β(p) 	∈ C. Now every
braid β ∈ P4 can be thought as an ordered combination of generators βij:

β = βi′j′ . . . βij︸ ︷︷ ︸
n

, (94)

where n indicates the length of the word. Let us introduce the following notation:

p(0) = p, p(1) = βij(p
(0)), . . . , p(n) = β(p) = βi′j′(p

(n−1)) = βi′j′ . . . βij︸ ︷︷ ︸
n

(p(0)). (95)

Since we supposed p(n) /∈ C, Algorithm 6 deletes p(n−1) from the set C. In the next iteration it deletes p(n−2)

and so on, till when p(0) = p is deleted from C, and therefore p is not in C0, contradicting our hypothesis.

8. Extracting non-equivalent orbits

In this section, we quotient the set C0 of all points p giving rise to a finite orbit with respect to the action
of the pure braid group, so that we select only one representative point for every finite orbit, and by the
action of the symmetry group G of M̂G2 described in the next theorem proved in the Appendix.

Theorem 8.1 The group

G := 〈P13, P23, P34, P1∞, sign1, . . . , sign4, π(12)(34), π(1234)〉 (96)

where

P13(p) = σ2σ
−1
1 σ−1

2 (p), (97)

P23(p) = σ2σ
−1
1 σ−1

2 σ−1
1 σ2σ

−1
1 σ−1

2 (p), (98)
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P34(p) = σ3σ2σ
−1
1 σ−1

2 σ−1
3 σ2σ

−1
1 σ−1

2 σ3σ2σ
−1
1 (p), (99)

P1∞(p) = (−p∞, p2, p3, p4, −p1, p2p∞ − p432p21 + p43p1 − p431,

p3p∞ − p43p321 + p4p21 − p421, p32, p321, p42, p43,

p32p∞ − p432p321 + p4p1 − p41, p432, p21,

p2p321 − p32p21 + p3p1 − p31), (100)

sign1(p) = (−p1, p2, p3, p4, −p∞, −p21, −p31, p32, −p41, p42, p43, −p321, p432,

− p431, −p421), (101)

sign2(p) = (p1, −p2, p3, p4, −p∞, −p21, p31, −p32, p41, −p42, p43, −p321, −p432,

p431, −p421), (102)

sign3(p) = (p1, p2, −p3, p4, −p∞, p21, −p31, −p32, p41, p42, −p43, −p321, −p432,

− p431, p421), (103)

sign4(p) = (p1, p2, p3, −p4, −p∞, p21, p31, p32, −p41, −p42, −p43, p321, −p432, −
− p431, p421). (104)

π(12)(34)(p) = (p2, p1, p4, p3, p∞, p21, p42, p41, p32, p31, p43, p421, p431, p432, p321), (105)

π(1234)(p) = (p4, p1, p2, p3, p∞, p41, p42, p21, p43, p31, p32, p421, p321, p432, p431). (106)

is a group of symmetries for M̂G2 .

8.1 Points belonging to the same orbit

In this subsection, we explain how to take the following quotient:

C1 := C0/P4.

Algorithm 7 For every p ∈ C0:

(1) Calculate OP4(p).

(2) Save p ∈ C1 and delete OP4(p) from C0 .

Since the set C0 is finite, the algorithm ends. This algorithm produces the set C1, that contains 17,946
finite orbits of the P4-action.

8.2 Quotient under the symmetry group G

Our aim is to quotient C1 by the action of the symmetry group G, see Appendix. Note that G is an infinite
group; however, it acts as a finite group on (p1, p2, p3, p4, p∞) and preserves the length of a P4-orbit.
Thanks to this fact we are able to set up a finite factorization algorithm.

We proceed as follows: we factorize by the action of the finite subgroup:

〈sign1, . . . , sign4, π(12)(34), π(1234)〉 ⊂ G, (107)

to obtain the set C ′
2.
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Algorithm 8

(1) Consider p ∈ C1.

(2) Remove from C1 the set OP4(p) and save p in the set C ′
2.

(3) Apply to p all transformations in
〈
sign1, . . . , sign4

〉
and save the result in the set A0.

For every p′ ∈ A0:

(4) Apply to p′ all transformations in
〈
π(12)(34), π(1234)

〉
and save the result in the set A1.

For every p′′ ∈ A1:

(5) If p′′ is in C1, then OP4(p) and OP4(p
′′) are equivalent. Remove OP4(p

′′) from C1. If p′′ is not in C1,
apply again the current Step to the next p′′ in A1.

(6) If all possible choices of p′′ in A1 are exhausted go to Step 1.

This algorithm ends when all choices of points p in the finite set C1 are exhausted. The set C ′
2, created

in this way, contains 122 points, therefore this factorization reduces dramatically the number of orbits to
be processed from 17,946 to 122.

Next, we subdivide the set C ′
2 into subsets that contain orbits of the same length and have the same

(p1, p2, p3, p4, p∞) modulo change of signs or permutations. This is useful because, since the action of
G preserves the length of an orbit and that the (p1, p2, p3, p4, p∞) remain invariant up to permutations
and sign flips under the G action, only points within the same subset can be related by a transformation
in G.

Algorithm 9

(1) Consider p ∈ C ′
2, with |OP4(p)| = N , N ∈ N.

(2) Save p in a set AN .

(3) Remove p from C ′
2.

For every p′ ∈ C ′
2:

(4) If p′ is such that:

• |OP4(p
′)| = N .

• (p1, p2, p3, p4, p∞) and (p′
1, p′

2, p′
3, p′

4, p′
∞) differ by change of signs or permutations.

Save p′ in AN and remove p′ from C ′
2, otherwise apply again this Step to another p′ ∈ C ′

2.

Since the set C ′
2 is finite, this algorithm ends when there are no more elements in C ′

2. This algorithm
generates a finite list of 54 subsets AN , where N is such that for every p ∈ AN we have |OP4(p)| = N and
(p1, p2, p3, p4, p∞) and (p′

1, p′
2, p′

3, p′
4, p′

∞) differ by change of signs or permutations.
Then, within each subset AN , for all the elements in the subset, we apply a transformation in G in

such a way that every element p in the subset will have the same ordered (p1, p2, p3, p4, p∞) and check if
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there is a P4 transformation linking the points in the same AN . This is done in the following:

Algorithm 10 For every subset AN :

(1) Choose a point p ∈ AN and save it in the set C2.

(2) Remove p from AN .

(3) Act with G on each element in the set AN , producing a new set A′
N in such a way that every element

p′ in A′
N will have:

(p′
1, p′

2, p′
3, p′

4, p′
∞) = (p1, p2, p3, p4, p∞).

For every p′ ∈ A′
N :

(4) Generate the orbit of p′ under the action of 〈P13, P23, P34〉; if p is in this orbit, then OP4(p) and OP4(p
′)

are equivalent, otherwise save p′ in C2 and apply again this Step to another p′ ∈ A′
N .

(5) When all choices of p′ ∈ A′
N are exhausted, go to Step 1.

Since the number of subsets AN is 54, and each subset has a finite number of elements, this algorithm
ends when there are no more subsets AN to process. It turns out that for each set AN there is only one
class of equivalence under the action of the group G. This completes our classification of all finite orbits.
We summarize the content of the set C2, in Table 2.

8.3 Finite monodromy groups

Here we show that solution 25 in Table 2 corresponds to an infinite monodromy group and there is
no symmetry mapping it to an orbit with finite monodromy group. We also calculate the order of the
monodromy groups generated by all other orbits. The results about monodromy group orders are resumed
in Table 3.

To prove these statements, we calculate the monodromy matrices by using the parameterization
formulae in Section 2 with the corresponding values of pi, i = 1, . . . , 4, ∞ and pij, i, j = 1, . . . , 4 from
Table 2. Since none of our groups are cyclic and they are subgroups of SL2(C), by Klein classification
result only binary polyhedral and binary dihedral group are allowed. The order of the binary polyhedral
groups is bounded by 120, therefore we wrote a C+ program that generates group elements up to 121
distinct elements. In this way we characterize the orders of the monodromy groups associated to all orbits
except the 25th one. Since for orbit 25 all generating matrices M1, . . . , M4 are not diagonalizable and
therefore not idempotent, the group is automatically infinite. This property is clearly preserved by the
action of the symmetry group G defined in Theorem A.5. For completeness we list here the monodromy
matrices associated to the 25th orbit (in the basis of M3M2 diagonal):

M1 =
⎛
⎝ 1 − i

√
2

5+√
5

1
10

(
5 − √

5
)

1 1 + i
√

2
5+√

5

⎞
⎠
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Table 2.

# sz. p1 p2 p3 p4 p∞ p21 p31 p32 p41 p42 p43

1 36 1 0
√

2 0 0 −1 0 −√
2 0

√
2 1

2 36 1 0 1 0 0 1 0 1 1 0 1

3 40 −1 1
√

2 1 −√
2 −1 −√

2 0 1 1
√

2

4 40 −1+√
5

2
−1+√

5
2

1+√
5

2
−1+√

5
2 − 1+√

5
2

1−√
5

2 0 1 1−√
5

2
1−√

5
2 0

5 40 − 1+√
5

2 − 1+√
5

2
1+√

5
2

1−√
5

2
1−√

5
2

−1+√
5

2 − 1+√
5

2 − 1+√
5

2 1 1 −1

6 45 −1+√
5

2
−1+√

5
2

−1+√
5

2
1−√

5
2

1+√
5

2
1−√

5
2

1−√
5

2 − 1+√
5

2 −1 −1+√
5

2
−1+√

5
2

7 45 1+√
5

2
1+√

5
2

1+√
5

2
1+√

5
2

−1+√
5

2
1+√

5
2 1 1+√

5
2 1 2 1

8 48
√

2 0 0 0
√

2
√

2 −1
√

2 0 0 1

9 72 0 0 −1 0 0
√

2 −√
2 1 −1 0 0

10 72 −√
2 0 0 −1 −√

2 0 −1 −1
√

2 −√
2 0

11 81 −1+√
5

2
1−√

5
2 −1 −1+√

5
2

1+√
5

2
−1+√

5
2 1 −1 1−√

5
2 −1 0

12 81 1+√
5

2
1+√

5
2 −1 − 1+√

5
2

−1+√
5

2
1+√

5
2

1−√
5

2 − 1+√
5

2 −1 −1 1

13 96
√

2 0 0 0 0 1 −√
2

√
2 1 −2

√
2

14 96 1−√
5

2
1−√

5
2

1−√
5

2
1−√

5
2

1−√
5

2
1−√

5
2 − 1+√

5
2

1−√
5

2
1−√

5
2

1−√
5

2
1−√

5
2

15 96 − 1+√
5

2 − 1+√
5

2
1+√

5
2 − 1+√

5
2 − 1+√

5
2

1+√
5

2 − 1+√
5

2 − 1+√
5

2 2 1 −1

16 96 0 0 1 0 −1 2 0 0 −√
2

√
2 −1

17 105 − 1+√
5

2 1 1+√
5

2 −1 −1+√
5

2 − 1+√
5

2 −1 1+√
5

2
1+√

5
2

−1+√
5

2 −1

18 105 1 1−√
5

2
1−√

5
2 −1 1+√

5
2

1−√
5

2
1−√

5
2 − 1+√

5
2 −1 0 0

19 108 1+√
5

2 1 − 1+√
5

2 − 1+√
5

2
1+√

5
2

1+√
5

2
1−√

5
2 − 1+√

5
2 −2 0 2

20 108 −1+√
5

2
1−√

5
2

−1+√
5

2 1 1−√
5

2 −1 1−√
5

2 −2 −1+√
5

2
1−√

5
2 0

21 120 1 0 −1 0 −1 0 −1
√

2 −√
2 −1 0

22 144 −1+√
5

2 1 1−√
5

2
1−√

5
2 −1 −1+√

5
2 −1 1−√

5
2 −1 1−√

5
2 − 1+√

5
2

23 144 −1 − 1+√
5

2 −1 − 1+√
5

2
1+√

5
2 1 1+√

5
2 1 1 −1+√

5
2 1

24 144 0 1 0 0
√

2 0 2 0 1 −√
2 −1

25 192 2 2 −2 −2 −2 1−√
5

2 −1 −1+√
5

2 − 1+√
5

2 − 1+√
5

2 1

26 192 0 0 0 0 0 −√
2 −2 −√

2 −1 −√
2 −1

27 200 0 0 1−√
5

2
1+√

5
2

1−√
5

2
−1+√

5
2 1 1 1−√

5
2

1−√
5

2
−1+√

5
2

28 200 1+√
5

2 0 0 −1+√
5

2
1+√

5
2

1−√
5

2 0 1+√
5

2 1 1+√
5

2 − 1+√
5

2
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29 205 −1 1 1 1+√
5

2
1−√

5
2 0 −1 1+√

5
2 − 1+√

5
2

1+√
5

2 0

30 216 −1 0 0 0 0 0
√

2 1 −√
2 0 1

31 220 −1 1 −1+√
5

2 −1 −1+√
5

2 −1 − 1+√
5

2
−1+√

5
2

1−√
5

2 0 − 1+√
5

2

32 220 − 1+√
5

2 −1 −1 − 1+√
5

2 1 1+√
5

2
−1+√

5
2

1+√
5

2
1+√

5
2

−1+√
5

2
−1+√

5
2

33 240 1 −1 1−√
5

2 0 −1+√
5

2 0 − 1+√
5

2
−1+√

5
2 1 −1+√

5
2

1+√
5

2

34 240 1−√
5

2 0 1−√
5

2 0 1−√
5

2 0 1 0 − 1+√
5

2
1−√

5
2 0

35 240 1 −1 − 1+√
5

2
1+√

5
2 0 −1 1−√

5
2 0 −1+√

5
2 − 1+√

5
2 − 1+√

5
2

36 240 0 1+√
5

2 − 1+√
5

2 0 − 1+√
5

2 1 0 −1 1+√
5

2 −1 0

37 300 1+√
5

2 1 1 1 1 1 0 1 1 1+√
5

2 1

38 300 1 −1+√
5

2 1 1 −1 −1 1−√
5

2 −1 0 0 1−√
5

2

39 360 0 −1+√
5

2 0 −1 −1+√
5

2 −1 −1 −1 1 1 0

40 360 1−√
5

2 0 0 − 1+√
5

2 1 1+√
5

2 − 1+√
5

2 2 1 0 0

41 360 1 0 − 1+√
5

2 0 − 1+√
5

2 −1 0 0 0 1+√
5

2
−1+√

5
2

42 480 1 −1 1 1 −1 −1 0 0 1−√
5

2 −1 1

43 480 0 0 0 −1+√
5

2
−1+√

5
2 − 1+√

5
2 0 1 0 1 −1

44 480 0 0 1+√
5

2 0 1+√
5

2 0 1 0 −1+√
5

2 − 1+√
5

2
1−√

5
2

45 580 1−√
5

2 0 0 0 1+√
5

2 0 1+√
5

2 −1 0 −2 −1

46 600 0 −1 0 1−√
5

2 −1 0 1−√
5

2 1 − 1+√
5

2 0 −1

47 600 − 1+√
5

2 1 0 0 1 −1 −1+√
5

2 −1 −1+√
5

2 −1 −2

48 900 0 0 0 −1 −1+√
5

2 0 1+√
5

2
−1+√

5
2

1−√
5

2 − 1+√
5

2 1

49 900 0 0 0 −1 − 1+√
5

2 0 1 −1+√
5

2 − 1+√
5

2
−1+√

5
2

−1+√
5

2

50 1200 0 0 1−√
5

2 0 0 −1+√
5

2 1 1 −1 −1 1

51 1200 0 1+√
5

2 0 0 0 1−√
5

2 1 −1+√
5

2 1 0 1

52 2160 1 0 0 0 −1 0 0 2 −1 − 1+√
5

2
1+√

5
2

53 2160 0 0 0 −1 0 −1+√
5

2
−1+√

5
2 −2 0 1 1

54 3072 0 0 0 0 0 − 1+√
5

2 0 −1 − 1+√
5

2
1−√

5
2 1
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Table 3.

Orbits Group order

1,3, 8, 9, 10, 13, 16, 21, 24, 26, 30 24
2 12
25 Infinite

All others 60

M2 =
⎛
⎜⎝ 1 − i(3+√

5)√
2(5+√

5)

2+2
√

5−i
√

2(5+√
5)+i

√
10(5+√

5)
4(

√
5−5)

i
(

4i(2+√
5)+

√
2(5+√

5)+
√

10(5+√
5)
)

8 1 + i(3+√
5)√

2(5+√
5)

⎞
⎟⎠

M3 =

⎛
⎜⎜⎝

i
(

3+√
5+i

√
2(5+√

5)
)

√
2(5+√

5)

−1+√
5−i

√
2(5+√

5)
2(

√
5−5)

− i
(
−2i(1+√

5)+3
√

2(5+√
5)+

√
10(5+√

5)
)

8 −1 − i(3+√
5)√

2(5+√
5)

⎞
⎟⎟⎠

M4 =
⎛
⎜⎝ −1 − i(

√
5−3)√

2(5+√
5)

−1+√
5+2i

√
2(5+√

5)−i
√

10(5+√
5)

2(5+√
5)(

−1+√
5−2i

√
2(5+√

5)+i
√

10(5+√
5)
)

4

i
(
−3+√

5+i
√

2(5+√
5)
)

√
2(5+√

5)

⎞
⎟⎠

9. Outlook

From the parameterization results of Section 2, it is clear that we could reconstruct all monodromy
matrices (up to global conjugation) by matching only two points, and therefore completely reconstruct
the candidate point in that way. This means that we could in fact classify all finite orbits up to two
projections to Picard or Dubrovin–Kitaev orbits. This computation is theoretically possible but extremely
technical and would require covering so many sub-cases that we felt it is best to postpone it to further
publications.

Another direction of research is to classify all finite orbits of the pure braid group Pn on the moduli
space of SL2(C) monodromy representations over the n + 1-punctured Riemann sphere for n > 4, or
in other words all algebraic solutions of the Garnier system Gn−2. We expect the matching procedure to

work in this case too: now there will be

(
n
3

)
restrictions to PVI, so many more necessary conditions to

be satisfied in order to produce a candidate point. We have seen that for n = 4, we start from an extended
list of 86,768 to produce only 54 orbits. As n increases, the starting list is the same, but the number of
necessary conditions increases—therefore we expect that there will be less and less exceptional orbits as
n increases.
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A. The symmetry group G of M̂G2

The general theory of the bi-rational transformations of the Garnier systems was developed in [28], where
Kimura proved that the symmetric group S5 acts as a group of bi-rational transformations on the Garnier
system (see also [17, 29, 30]). These bi-rational transformations map algebraic solutions to algebraic
solutions with the same number of branches. This means that the corresponding action on the co-adjoint
coordinates maps finite orbits to finite orbits with the same number of points. To compute this action, we
use the following result proved in [10]:

Lemma A.1 The symmetric group S5 giving rise to Kimura’s bi-rational transformations of the Garnier
system acts on MG2 as the group 〈P13, P23, P34, P1∞〉 where the transformations P13,P23,P34 act on the
monodromy matrices as follows:

P13 : (M1, M2, M3, M4) �→ (M−1
1 M−1

2 M3M2M1, M2, M2M1M−1
2 , M4),

P23 : (M1, M2, M3, M4) �→ ((M−1
2 M3M2M1)

−1M1M−1
2 M3M2M1,

(M2M1)
−1M3M2M1, M2, M4),

P34 : (M1, M2, M3, M4) �→ (M∞M3M2M1(M∞M3M2)
−1, M2,

(M3M2M1M−1
2 )−1M4(M3M2M1M−1

2 ), M3), (A.1)

while transformation P1∞ acts on the monodromy matrices as:

P1∞ : (M1, M2, M3, M4) �→(−C1M∞C−1
1 , C−1

1 M2C1, C−1
1 M3C1,

C−1
1 M4C1), (A.2)

where C1 is the diagonalizing matrix of M1.

Corollary A.2 The group 〈P13, P23, P34, P1∞〉 acts on the co-adjoint coordinates as in (97)–(100).

Proof. This is a straightforward computation relying on the definition of the co-adjoint coordinates and
the skein relation. �

We wish to extend the class of transformations satisfying this property by adding to 〈P13, P23, P34, P1∞〉
the following set of transformations that also map finite orbits to finite orbits with the same number of
points (see Theorem A.5):

(i) Sign flips, or transformations that change signs to matrices Mi for i = 1, . . . , 4, corresponding to the
so-called Schlesinger transformations introduced by Jimbo–Miwa in [31]:

sign(ε1,ε2,ε3,ε4) : (M1, M2, M3, M4, M∞) �→ (ε1M1, ε2M2, ε3M3, ε4M4,

ε1ε2ε3ε4(M4M3M2M1)
−1), (A.3)

where εi = ±1 for i = 1, . . . , 4.
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(ii) Permutations of the matrices Mi for i = 1, . . . , 4 generated by:

π(12)(34) : (M1, M2, M3, M4, M∞) �→ (M−1
2 , M−1

1 , M−1
4 , M−1

3 , M2M1M4M3), (A.4)

π(1234) : (M1, M2, M3, M4, M∞) �→ (M4, M1, M2, M3, (M3M2M1M4)
−1). (A.5)

The following two results give the action of the sign flips and permutations on the co-adjoint
coordinates and can be proved by straightforward computations:

Proposition A.3 The sign flips are invertible maps generated by the four basic elements:

sign1 := sign(−1,1,1,1), sign2 := sign(1,−1,1,1), (A.6)

sign3 := sign(1,1,−1,1) sign4 := sign(1,1,1,−1)

that act as follow on the co-adjoint coordinates (9) as in (101)–(104).

Proposition A.4 The generators π(12)(34) and π(1234) act on the co-adjoint coordinates (9) as in (105) and
(106).

Finally, we characterize the group G of symmetries of M̂G2 :

Definition A.1 A symmetry for M̂G2 is an invertible map � : M̂G2 �→ M̂G2 such that given an element
p ∈ M̂G2 and its orbit O(p), the following is true:

|O(�(p))| = |O(p)|. (A.7)

Theorem A.5 The group

G := 〈P13, P23, P34, P1∞, sign1, . . . , sign4, π(12)(34)π(1234)〉 (A.8)

is a group of symmetries for M̂G2 .

Proof. The statement is true for the subgroup 〈P13, P23, P34, P1∞〉 by construction. We now prove that
each generator � in 〈sign1, . . . , sign4, π(12)(34)π(1234)〉 satisfies (A.7). It is straightforward to prove the
following relations:

σ1sign2 = sign1σ1, σ1sign3 = sign3σ1, σ1sign4 = sign4σ1,

σ2sign1 = sign1σ2, σ2sign2 = sign3σ2, σ2sign3 = sign2σ2,

σ2sign4 = sign4σ2, σ3sign1 = sign1σ3, σ3sign2 = sign2σ3,

σ3sign3 = sign4σ3, σ3sign4 = sign3σ3.
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so that all sign flips are indeed symmetries. Regarding the permutations, it is straightforward to prove the
following relations:

σ2π(1234) = π(1234)σ1, σ1π(12)(34) = π(12)(34)σ
−1
1 ,

σ2π(12)(34) = π(12)(34)(1234)3σ2σ3, σ3π(12)(34) = π(12)(34)σ
−1
3 ,

σ1π(1234) = π(1234)π(1234)σ
−1
2 σ−1

1 , σ2π(1234) = π(1234)σ1,

σ3π(1234) = π(1234)σ2.

This conclude the proof. �
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124–163.

10. Dubrovin, B. & Mazzocco, M. (2007) Canonical structure and symmetries of the Schlesinger equations.
Commun. Math. Phys., 271, 289–373.
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