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Influence of Fatigue and Velocity on the Latency and Recruitment Order of 1 

Scapular Muscles 2 

Abstract 3 

Objectives: To determine the influence of velocity and fatigue on scapular muscle 4 

activation latency and recruitment order during a voluntary arm raise task, in healthy 5 

individuals.  6 

Design: Cross-sectional study. 7 

Setting: University laboratory. 8 

Participants: Twenty three male adults per group (high-velocity and low-velocity).  9 

Main outcome measures: Onset latency of scapular muscles [Anterior deltoid (AD), 10 

lower trapezius (LT), middle trapezius (MT), upper trapezius (UT), and serratus 11 

anterior(SA)] was assessed by surface electromyography. The participants were 12 

assigned to one of two groups: low-velocity or high-velocity. Both groups performed a 13 

voluntary arm raise task in the scapular plane under two conditions: no-fatigue and 14 

fatigue. 15 

Results: The UT showed early activation (p < 0.01) in the fatigue condition when 16 

performing the arm raise task at a high velocity. At a low velocity and with no muscular 17 

fatigue, the recruitment order was MT, LT, SA, AD, and UT. However, the recruitment 18 

order changed in the high-velocity with muscular fatigue condition, since the 19 

recruitment order was UT, AD, SA, LT, and MT. 20 

Conclusions: The simultaneous presence of fatigue and high-velocity in an arm raise 21 

task is associated with a decrease in the UT activation latency and a modification of the 22 

recruitment order of scapular muscles.   23 

  24 
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Keywords: Timing; Neuromuscular control; Speed; Recruitment pattern. 25 

 26 

Highlights:  27 

• Upper trapezius shows an early activation latency with the simultaneus presence of 28 

fatigue and high velocity 29 

• Muscle recruitment order is modified during an arm raise task at different velocities. 30 

• Muscle fatigue or an increase in velocity alone do not subtantially modify activation 31 

latency  32 
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1. Introduction 33 

 34 

The balance between the trapezius and serratus anterior (SA) muscles maintains 35 

the dynamic stability of the scapula during arm movement (Ludewig et al., 2004; Kibler 36 

et al., 2007; Larsen et al., 2013; Hwang et al., 2017; Kara et al 2017). These functions 37 

depend on muscle strength and appropriate motor control, i.e., appropriate onset latency 38 

(timing) and muscle recruitment order (Cools et al., 2003; Phadke & Ludewig, 2013; 39 

Struyf et al., 2014). In the scapular muscles, the onset latency has been typically 40 

quantified as the time between the electromyographic (EMG) activation of a specific 41 

muscle and the activation of the anterior deltoid which is the primary motor muscle 42 

(Phadke & Ludewig, 2013). Thus, the latency of  the muscles surrounding the scapula, 43 

and their recruitment order during the execution of a motor task, can be calculated. 44 

To our knowledge, there are few reports on the influence of velocity of 45 

movement on scapular muscle activation latency and recruitment order. It has been 46 

observed that the scapulohumeral rhythm has a ratio of 2:1 during movements at low-47 

velocity (Sugamoto et al., 2002; Prinold et al., 2013), while during movements at high-48 

velocity, the scapular contribution is higher (Sugamoto et al., 2002). On the other hand, 49 

Roy et al. (2008) showed that the activation latency of the scapular muscles, under a 50 

condition of no-fatigue, is modified at different arm raise velocities (Roy et al., 2008). 51 

Thus, there is inconsistency in the reported influence of velocity on scapular muscle 52 

motor control strategies. 53 

Instability (Myers et al., 2004), the “subacromial impingement” syndrome 54 

(Cools et al., 2003; Phadke & Ludewig, 2013), the level of contraction (Myers et al., 55 

2003), and pain (Santos et al., 2010) are all factors that affect the activation latency of 56 
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the glenohumeral and scapular muscles. It is possible that scapular motor control is most 57 

demanding with high-velocity movements (Sugamoto et al., 2002; Thomas et al., 2003) 58 

and with the simultaneous presence of other physiological factors, e.g., fatigue and pain 59 

(Santos et al., 2010). In this context, a late scapular muscle response (i.e., latency 60 

increase) has been observed after a sudden arm fall (unpredictable) from a 90° 61 

abduction in fatigued scapular muscles (Cools et al., 2002). In a recent study, we 62 

investigated the effect of predictable and unpredictable motor tasks on scapular muscle 63 

activation latency (Mendez-Rebolledo et al., 2016). Our results indicated that scapular 64 

muscles presented a specific recruitment order during a predictable task: SA was 65 

activated prior to the anterior deltoid (AD), and the upper trapezius (UT) was activated 66 

after the AD. While in an unpredictable motor task, all muscles were activated after the 67 

destabilization, without a specific recruitment order; instead, there was simultaneous 68 

activation. These results contribute to the understanding of motor control strategies in 69 

predictable tasks; however, the mechanisms involved have not yet been reported in 70 

detail. In line with this, it is necessary to increase knowledge about the simultaneous 71 

effects of muscular fatigue and velocity increases during the arm raise task, in terms of 72 

scapular muscle activation latency and recruitment order. 73 

These two factors (velocity and fatigue) are frequent physiological conditions 74 

that occur during daily activities, work, and sporting tasks (Thomas et al., 2003; Santos 75 

et al., 2010; Joshi et al., 2011). A better understanding of how motor control is required 76 

during predictable movements at high-velocity, and during conditions of fatigue, would 77 

allow for better planning and selection of the most appropriate outcomes and the most 78 

suitable exercises for rehabilitation plans (Santos et al., 2010; Joshi et al., 2011). Thus, 79 

the objective of the current study was to determine the influence of velocity and fatigue 80 
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on scapular muscle activation latency and recruitment order during a voluntary 81 

(predictable) arm raise task, in healthy individuals. We hypothesized that the presence 82 

of fatigue in the scapular muscles, during an arm raise task at high-velocity, would 83 

modify scapular muscle activation latency and recruitment order.  84 

 85 

2. Methods 86 

 87 

2.1. Study design 88 

This cross-sectional study was conducted in the XXX. The results reported here 89 

correspond to the second stage of a larger investigation. The first stage was recently 90 

published (Mendez-Rebolledo et al., 2016). The dependent variable in the current study 91 

was onset latency of the scapular muscles: lower trapezius (LT), middle trapezius (MT), 92 

UT, and SA. Independent variables included velocity (low and high) and the absence or 93 

presence of fatigue. The method was designed considering the Helsinki Consensus 94 

(1975) on biomedical research in humans. The Bioethics Committee of the XXX 95 

approved all procedures (Folio 2015106GM) and an informed consent form was read 96 

and signed by each participant before participating in the study. 97 

 98 

2.2. Participants 99 

The participants presented the following baseline characteristics: age, 21.4 ± 1.6 100 

years; height, 1.72 ± 0.05 m; weight, 72.4 ± 6.4 kg; body mass index (BMI), 24.4 ± 2.9 101 

kg/m2; and physical/sporting activity, 3 ± 1.2 times per week. The study involved a non-102 

probability sample of students from the Facultad de Ciencias de la Salud de la 103 

Universidad de Talca recruited via advertising.  A sample of 23 voluntary participants 104 
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per group (high and low velocity) was calculated based on a 95% confidence interval, a 105 

power of 0.8, and an expected 15% loss. A mean of 159.6 ms and a standard deviation 106 

of 56.4 ms for UT onset latency was obtained in a previous study (Cools et al., 2002), 107 

and was considered for the sample size calculation. Exclusion criteria were: (1) BMI 108 

greater than 29.9 kg/m2, as the extra subcutaneous tissue can compromise the quality of 109 

the EMG signal (Phadke & Ludewig, 2013); (2) incomplete range of motion of the 110 

shoulder; (3) a current or past history of shoulder pain; (4) participation in overhead 111 

sports; and (5) history of trauma, dislocation, rotator cuff tear, spinal deformities, 112 

radicular symptoms, and/or neurological diseases.  113 

 114 

2.3. Instrumentation 115 

An accelerometer (Delsys Inc., Boston, MA, USA) was used on the anterior 116 

deltoid’s surface of each volunteer to determine the beginning and end of the elevation 117 

movement. This procedure was modified from previous reports where different 118 

movement tasks were measured (Körver et al., 2014). The surface EMG (sEMG) signal 119 

was acquired with a Delsys Trigno™ Wirless EMG System (Delsys Inc., Boston, MA, 120 

USA) and recorded with the EMGworks Acquisition 4.2.0 (Delsys Inc., Boston. MA, 121 

USA) software. The sEMG was sampled at 2000 Hz and stored on a computer using a 122 

16-bit analog-digital converter. The electrodes were made of silver (99.9%) and had an 123 

inter-electrode distance of 10 mm. A bandpass filter was used (fourth-order, zero-delay 124 

butterworth filter with frequencies between 20-450 Hz) and the signal was digitally 125 

amplified with a gain of 300, common mode rejection ratio > 80 dB, signal-to-noise 126 

ratio < 0.75 mV RMS. 127 

 128 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

2.4. Procedures and data collection 129 

Anthropometric assessments of the participants (weight and height), and warm-130 

up exercises of the scapular and rotator cuff muscles, were performed at the beginning 131 

of each session (day 1 and 2). Prior to electrode placement, the hair was shaved and the 132 

skin was cleaned with dermoabrasive paper and 70% isopropyl alcohol solution, to 133 

reduce the impedance (typically < 10 kΩ). The EMG signals were recorded from the 134 

dominant arm; the electrodes were located on the UT, MT, LT, SA, and AD muscles. 135 

The electrodes were placed parallel to the presumed direction of the muscle fibers, 136 

according to SENIAM recommendations (Hermens et al., 2000). For the SA, electrodes 137 

were placed according to a previous study (Lehman et al., 2008). The position of each 138 

electrode on the skin was marked with a hypoallergenic pencil to ensure the location of 139 

the electrodes. Finally, an accelerometer was placed in the lateral region of the arm. 140 

Proper electrode placement was further verified by observing the EMG signal on a 141 

computer monitor during maximal voluntary isometric contraction of the arm, according 142 

to the SENIAM recommendations. 143 

The participants were assigned through simple random sampling (random 144 

number generator) to one of two groups: low-velocity or high-velocity. Both groups 145 

performed a voluntary arm raise task in the scapular plane under two conditions: no-146 

fatigue and fatigue (Fig. 1). A custom-made device based on previous studies (Ludewig 147 

& Cook, 2000; Moraes et al., 2008) was used to standardize the upper limb position to 148 

ensure that the movement was made in the scapular plane. This device consisted in a 149 

rectangular glass positioned in front of the arm, 30° anterior to the frontal plane 150 

(scapular plane).  The low-velocity group executed the task with a velocity of four 151 

seconds per cycle of arm elevation, in a range of motion of 180°, and the high-velocity 152 
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group executed the task with a velocity of two seconds per cycle (Sugamoto et al., 153 

2002). In the no-fatigue condition, the participants were instructed to reproduce the 154 

movement velocity following the established rhythm of a metronome; they practiced the 155 

movement at least two times prior to the measurements. This task was executed 156 

voluntarily, without interruptions, and in the presence of visual (opened eyes), 157 

somatosensory (gravity effect on the upper limb) and auditory information 158 

(metronome), in order to ensure the task was "predictable" (Kanekar & Aruin, 2015). 159 

Participants rested for 5 min before completing the fatigue condition.  160 

 161 

Fig. 1. Voluntary arm raise task: voluntary arm elevation of 180° with the glenohumeral joint at 30° of 162 

horizontal adduction. 163 

 164 
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Each participant was given instructions about the fatigue protocol for shoulder 165 

muscles. This protocol consisted of execution of a cycle of bilateral arm elevation 166 

(180°) in the scapular plane (describe above) at a rate of 1 cycle per second, as many 167 

times as possible. The movement was performed with a dumbbell according to body 168 

weight; 1.4 kg for those participants weighing less than 68.1 kg, and 2.3 kg for those 169 

participants weighing greater than 68.1 kg. The use of this criterion allowed us to 170 

observe alterations in scapular movement in participants performing an arm raise task 171 

against a resistance based on their body weight (McClure et al., 2009). Enoka (2012) 172 

indicated that the fatigue experienced by an individual depends on both perceptions of 173 

fatigue and the level of fatigability. For these reasons, each participant was provided 174 

with instructions regarding the modified Borg’s Rate of Perceived Exertion Scale 175 

(Zanca et al., 2016), and time of task failure, during the fatigue protocol (bilateral arm 176 

elevation) described previously. Every 20 cycles of arm elevation, participants were 177 

asked about their level of shoulder fatigue on a scale from 0 to 10. The fatigue protocol 178 

was discontinued when the participant reached a score equal to or greater than 8, and 179 

were not able to maintain the bilateral arm elevation. Once fatigued, participants again 180 

performed the voluntary arm raise task. Finally, the EMG signals of the scapular 181 

muscles (UT, MT, LT, and SA) and the AD were recorded, and the average of three 182 

trials performed by each group, and under condition (no-fatigue or fatigue), was 183 

calculated. A signal-to-noise ratio of less than 20% was confirmed in all the signals. 184 

Additionally, the arm elevation and fall times were calculated through accelerometry. 185 

No significant differences between elevation and fall times were observed in each group 186 

(fatigue; no-fatigue) and condition (low-velocity; high-velocity). 187 

 188 
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2.5. Data processing 189 

All raw EMGs signals were analyzed with EMGworks Analysis 4.2.0 (Delsys 190 

Inc., Boston, MA, USA). The signals were full-wave rectified and filtered with a low-191 

pass filter (fourth-order, zero delay, butterworth filter) with a cutoff frequency of 50 Hz 192 

(Phadke & Ludewig, 2013). The onset latency variable for each scapular muscle was 193 

calculated as the difference in latency relative to that of AD activation (Phadke & 194 

Ludewig, 2013; Mendez-Rebolledo et al., 2016). Onset was defined as the point where 195 

the EMG activity passed the threshold of at least three standard deviations above the 196 

average of the signal at rest, and maintained this level of activation for at least 25 ms 197 

(Myers et al., 2003; Phadke & Ludewig, 2013). The standard deviation was calculated 198 

in relation to a period of 200 ms of rest signal. One researcher visually confirmed all 199 

muscle onset latencies.  200 

 201 

2.6. Statistical analysis 202 

The mean of the three trials for each group and condition (no-fatigue or fatigue) 203 

was used for the statistical analysis. To determine differences in the BMI between low-204 

velocity and high-velocity groups, a t-test for independent groups was used. An alpha 205 

level <0.05 was considered in all the statistical tests. SPSS statistical software (SPSS 206 

20.0, SPSS Inc., IL, USA) was used.  207 

The Shapiro-Wilk test, Levene's test, and Mauchly's test of sphericity were 208 

applied to calculate the distribution, homogeneity of variance, and sphericity, 209 

respectively. To determine the interaction between velocity and fatigue, a two-way 210 

repeated measure analysis of variance (ANOVA) with within and between factors: 211 

velocity (two levels) and fatigue (two levels) was performed. When the repeated 212 
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measure ANOVA showed interaction between factors, Bonferroni corrected t- tests 213 

were used to compare the onset latencies between factors. To determine differences 214 

between scapular muscles onset latencies in each condition, i.e. differences in the 215 

recruitment order, a one-way repeated measures ANOVA with factor muscle (four 216 

levels) was performed. Bonferroni corrected t-tests were used to compare the scapular 217 

muscles response. 218 

Partial eta-squared (ηp²) for ANOVA was used to examine the effect size. A ηp² less 219 

than 0.06 was classified as “small”, 0.07-0.14 as “moderate”, and greater than 0.14 as 220 

“large”. In addition, Cohen d for paired samples was used as an indicator of the effect 221 

size. A Cohen d less than 0.2 was classified as “trivial”, 0.2-0.5 as “small”, 0.5-0.8 as 222 

“moderate”, and greater than 0.8 as “large”. 223 

 224 

3. Results 225 

 226 

Two participants (one from each group) were not included in the analysis 227 

because these presented EMG signals with excessive noise and artifacts. Therefore, the 228 

following results consider 22 participants for each group (low-velocity and high-229 

velocity). There were not significant differences in BMI between groups (p > 0.05). The 230 

time of task failure was 192 ± 79 sec for the low-velocity group and 158 ± 86 sec for the 231 

high-velocity group. All data presented a normal distribution, sphericity, and 232 

homogeneity of variance.  233 

 234 

3.1. Influence of velocity and fatigue in scapular muscles onset latencies.  235 
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The repeated measures ANOVA revealed a significant velocity x fatigue 236 

interaction with a moderate effect size (F1 = 4.25; P = 0.045; ηp² = 0.09) only for UT 237 

onset latency. The post-hoc analysis showed that the UT exhibited a significantly earlier 238 

onset latency in the fatigue condition to high-velocity than in all other conditions (Table 239 

1). The above significant differences presented a large effect size. The other scapular 240 

muscles onset latencies did not show a significant velocity x fatigue interaction: MT (F3 241 

= 2.18; P = 0.147; ηp² = 0.05), LT (F3 = 0.45; P = 0.503; ηp² = 0.01), and SA (F3 = 242 

0.49; P = 0.486; ηp² = 0.01).  243 

 244 

3.2. Influence of velocity and fatigue in scapular muscle recruitment order.  245 

In the no-fatigue condition of slow-velocity group, the first muscle activated was 246 
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MT, followed by the LT, SA, AD and UT (Fig. 2a). The repeated measures ANOVA 247 

showed a main effect for muscle with a large effect size (F4 = 19.15; P<0.0001; ηp² = 248 

0.81). The post-hoc analysis showed that the MT, LT and SA were activated 249 

significantly earlier than the AD and UT (Table 2). In addittion, the AD was activated 250 

significantly earlier than UT. The above significant differences presented a large effect 251 

size. In the fatigue condition of this same group, the first muscle activated was the SA, 252 

followed by the AD, UT, LT and MT (Fig. 2b). However, the repeated measures 253 

ANOVA did not revealed a main effect for muscle (F4 = 0.91; P = 0.458; ηp² = 0.04).  254 

Fig. 2. Scapular muscles onset latencies and recruitmet order in each velocity and condition; a) low-255 

velocity/no-fatigue; b) low-velocity/fatigue; c) high-velocity/no-fatigue; d) high-velocity fatigue. Time 256 

zero represents the onset latency of anterior deltoid during the voluntary arm raise task and the error bars 257 

indicate standard deviation.   258 

* MT, LT and SA were activated significantly earlier than the AD and UT. P < 0.0001 259 

**  SA and LT muscles were activated significantly earlier than the AD and UT. P < 0.01 260 

*** SA was activated significantly earlier than the MT. P < 0.05 261 

† UT was activated significantly earlier that the AD, SA, LT and MT. P < 0.01 262 

‡ AD and SA were activated significantly earlier than the MT. P < 0.05 263 

 264 

In the no-fatigue condition of high-velocity group, the first muscle activated was 265 

SA, followed by the LT, MT, AD and UT (Fig. 2c). The repeated measures ANOVA 266 

showed a main effect for muscle with a large effect size (F4 = 14.93; P< 0.0001; ηp² = 267 

0.41). Post-hoc analysis showed that the SA and LT muscles were activated 268 

significantly earlier than the AD and UT; and the SA was activated significantly earlier 269 

than the MT (Table 2). Conversely, in the fatigue condition of this same group, the first 270 

muscle activated was the UT followed by the AD, SA, LT and MT (Fig. 2d). The 271 

repeated measures ANOVA showed a main effect for muscles with a large effect size 272 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

(F4 = 13.25; P< 0.0001; ηp² = 0.38). The post-hoc analysis revealed that the UT was 273 

activated significantly earlier that the AD, SA, LT and MT; and the AD and SA were 274 

activated significantly earlier than the MT (Table 2). 275 

 276 

4. Discussion 277 

 278 

Our results indicate that the velocity of movement and muscular fatigue modify 279 

activation latency and scapular muscle recruitment order during a voluntary arm raise 280 

task. Specifically, (1) activation latency of the UT muscle showed early activation in the 281 

condition of fatigue and high velocity movement, in comparison to the other conditions 282 

(no-fatigue and low velocity). In addition, (2) the order of recruitment was significantly 283 

different during the arm raise task at different velocities; at low velocity and with no 284 

muscle fatigue, the order of recruitment was MT, LT, SA, AD, and UT; at high velocity 285 

and with no muscle fatigue, the order of recruitment was SA, LT, MT, AD, and UT, 286 

exhibiting a pattern of recruitment similar to the initial condition; and finally, at high 287 

velocity and with muscle fatigue, the recruitment order was UT, AD, SA, LT, and MT, 288 

which is a considerable variation compared to the two previous conditions.  289 

 290 

4.1. Onset latency of scapular muscles 291 

This is the first report regarding the simultaneous influence of velocity and 292 

fatigue on scapular muscle latency and recruitment order during an arm raise task. The 293 

UT was the only muscle that exhibited a decrease in activation latency with the presence 294 

of fatigue and high velocity arm raise movements, modifying the latency from 26.8 to -295 

44.4 ms. This result differs from previous reports. Roy et al. (2008) found that muscle 296 
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activation latency of the shoulder complex did not vary with increased velocity in an 297 

arm raise task, among a sample of healthy participants. This motor task was performed 298 

in the presence of no muscular fatigue, and involved arm raises with 90° range of 299 

movement in the scapular plane. Only one report analyzed the influence of scapular 300 

muscle fatigue; this study found an increase in activation latency in the fatigued 301 

scapular muscles during sudden arm fall from a 90° position of abduction, under 302 

conditions of visual, auditory, and somatosensory deprivation (Cools et al., 2002). In the 303 

present investigation, the task was characterized as predictable and voluntary, since the 304 

participants had visual (opened eyes) and somatosensory (effect of gravity on the upper 305 

limb) information, before and during the arm raise task (Kanekar & Aruin, 2015). In 306 

addition, auditory cues (metronome) helped to regulate the velocity of arm elevation 307 

during the different conditions. This allows for anticipated activation of the scapular 308 

muscles in order to maintain joint stability. In this context, the differences observed in 309 

the present study, as compared to the previous reports, can be attributed to the nature of 310 

the motor task employed in each study (Mendez-Rebolledo et al., 2016), and the 311 

simultaneous presence of fatigue and high velocity in the execution of the movements.  312 

Based on the previous research, it is likely that fatigue is the determining 313 

condition for this modification in muscular latency during movement execution at high 314 

velocity. One possible explanation for this decrease in UT latency is the type of fiber in 315 

each compartment of the trapezius muscle. The LT has a high proportion of type I fibers 316 

(resistant to fatigue) while the UT has a high proportion of type II fibers (non-resistant 317 

to fatigue) (Lindman et al., 1990; Lindman et al., 1991; Larsson et al., 2001). Due to 318 

these histochemical characteristics, the fibers of the UT fatigue faster, generating 319 

overactivation and an increase in firing rate, in order to maintain scapular function 320 
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(Falla et al., 2009; Ge et al., 2012). On the contrary, the fibers of the LT and MT are 321 

more resistant to fatigue and maintain their activation with no major variations. This is 322 

based on the results by Westgaard and De Luca (2001) who showed that the inferior 323 

fibers of the trapezius muscle have a larger proportion of low threshold motor units 324 

which are usually associated with muscle fibers with higher aerobic capacity and 325 

therefore are able to activate for longer periods compared to high threshold motor units. 326 

Therefore, the observed changes in muscle recruitment might be explained by the 327 

different peripheral properties of the scapular muscles. However, it is also likely that 328 

central adjustments influenced the recruitment order as it has been shown that the 329 

central nervous system may change the recruitment strategy to satisfy the demands of 330 

the task (Strang & Berg, 2007; Mendez-Rebolledo et al., 2016). In this context, the large 331 

standard deviation (variability) of the muscle onset latencies of the groups may mask 332 

potential differences. This could be potentially explained by different neural strategies 333 

used by the participants during the arm elevation, despite that the demands of the task 334 

remained consistent for each individual condition 335 

On the other hand, the results of the present study indicate that the activation 336 

latencies of the MT, LT, and SA muscles are not modified when the arm raise task is 337 

performed at varying velocities. These results are consistent with previous reports where 338 

MT, LT, and SA are activated prior to the AD muscle (shown as negative values for 339 

onset latencies), both in healthy non-athletes who performed a movement at low-340 

velocity (Roy et al., 2008; Mendez-Rebolledo et al., 2016), and in healthy tennis players 341 

who executed a serve at high-velocity (Kibler et al., 2007). It is probable that the high 342 

demand of a high-velocity arm movement is addressed by a greater contribution of the 343 

scapular kinematics (Sugamoto et al., 2002; Prinold et al., 2013) and EMG amplitude 344 
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(Gaudet et al., 2017), without variations in the activation latency of MT, LT, and SA. 345 

These muscles are considered the main scapular stabilizers which allow dynamic 346 

control of the scapula during arm movements (Kibler et al., 2007; Boettcher et al., 347 

2010), and therefore, are the main active muscles required in diverse environmental 348 

conditions. 349 

 350 

4.2. Scapular muscle recruitment order and sport 351 

The results of our investigation reveal a specific recruitment pattern of the 352 

scapular muscles, in the absence of fatigue, and during high and low velocity 353 

conditions: the stabilizing scapular muscles, i.e., MT, LT, and SA (Kibler et al., 2007; 354 

Boettcher et al., 2010; Phadke & Ludewig, 2013), are likely to be activated prior to the 355 

AD muscle, and the scapular mobilizing muscle, i.e., UT (Kibler et al., 2007; Boettcher 356 

et al., 2010; Phadke & Ludewig, 2013), is activated after the AD. This order of 357 

recruitment has been observed in a tennis serve (Kibler et al., 2007) and a baseball pitch 358 

(Hirashima et al., 2002), where the movements of the arm are performed at high-359 

velocity. 360 

In contrast, this muscle pattern varies with the simultaneous presence of fatigue 361 

and high velocity arm movement: the scapular mobilizing muscle is activated prior to 362 

the AD muscle, and the scapular stabilizing muscles are activated later. These results 363 

show that muscle fatigue or an increase in velocity alone do not substantially modify 364 

muscle activation latencies (Roy et al., 2008; Gaudet et al., 2017), but the simultaneous 365 

presence of muscle fatigue and high velocity movement contributes to the decrease in 366 

the activation latency of the UT, and the modification of muscle recruitment order. 367 

Where there is greater demand for velocity in a motor task, there is greater rotation of 368 
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the scapula (Sugamoto et al., 2002; Prinold et al., 2013; Gaudet el al., 2017). This 369 

greater demand in the kinematics is reflected by the scapular muscles through a greater 370 

EMG amplitude of the stabilizing muscles (SA) (Gaudet et al., 2017) and, according to 371 

the results of this study, a relatively stable recruitment order: SA, LT, MT, AD, and UT. 372 

However, in the presence of muscular fatigue, the UT modifies its motor control 373 

strategy by decreasing its activation latency and considerably modifying the scapular 374 

recruitment pattern: UT, AD, SA, LT, and MT. According to our results, the decrease in 375 

UT muscle latency significantly influenced the muscular recruitment order, primarily 376 

because of the presence of fatigue during the high velocity arm movement. These fast 377 

movements are commonly observed in sport activities involving the upper limb, e.g., 378 

baseball, basketball, athletics (throwing), and volleyball (Hirashima et al., 2002; Kibler 379 

et al., 2007). In this context, it is likely that in the fatigued (high-velocity) condition, the 380 

UT was part of an anticipatory postural adjustment as the onset was prior to AD, which 381 

contrasted with the non-fatigued condition. Previous research has shown an over-382 

activation of the UT in subjects with shoulder dysfunction (Ludewig & Cook, 2000; 383 

Larsen et al., 2013; Kara et al., 2017); therefore, it could be tempting to suggest that an 384 

earlier onset of UT activation during a fatiguing task could increase the risk of injury. 385 

However, the upper limb sports mentioned above may require an earlier activation of 386 

the UT during a fatigued condition to satisfy the demands of the movement. Therefore, 387 

this recruitment pattern would be necessary to enable the performance of the task. These 388 

observations (whether the earlier activation of the UT can be considered an adaptive or 389 

a mal-adaptive response), need to be confirmed in future studies comparing both healthy 390 

and injured populations.       391 

 392 
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4.3. Limitations  393 

Despite the interesting findings reported in this study we must acknowledge 394 

some limitations. The muscle activation latency was based on a threshold of three 395 

standard deviations from the resting EMG. Di Fabio (1987) supports the use of this 396 

method due to its reliability and maximum comparability between studies. In addition, 397 

Hodges & Bui (1996) indicate that this criterion is widely used during dynamic 398 

contractions because it reduces the negative influence of artifacts and signal-to-noise 399 

ratio. In spite of this, it is necessary to use caution when making comparisons between 400 

studies, bearing in mind the method of obtaining muscle activation latency. In addition, 401 

the operational definition of arm movement velocity was in accordance with the study 402 

of Sugamoto et al. (2002). The low-velocity group executed the task with a velocity of 403 

four seconds per cycle of elevation, in a range of motion of 180°, and the high-velocity 404 

group executed the task with a velocity of two seconds per cycle. Other reports have 405 

indicated that the arm velocity reached during sports involving the upper limb may be 406 

higher (Prinold et al., 2013), possibly because of the rotational components of the 407 

movements used (e.g., rotation of the shoulder during a pitch). Another limitation of the 408 

current study is the lack of investigation of the deeper muscles, however, these muscles 409 

are difficult to assess with intramuscular EMG during highly dynamic tasks. 410 

 411 

5. Conclusions 412 

 413 

The simultaneous presence of muscle fatigue and high-velocity arm raise 414 

movement is associated with a decrease in the UT activation latency and a modification 415 

to the scapular muscle recruitment order. An increase in the arm raise velocity generates 416 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 

 

a greater demand on the scapular kinematics, which is dealt with by the scapular 417 

muscles through a relatively stable order of recruitment: SA, LT, MT, AD, and UT. 418 

However, in the presence of muscle fatigue, the UT modifies its motor control strategy 419 

by decreasing its activation latency, thereby considerably modifying the order of 420 

scapular recruitment: UT, AD, SA, LT, and MT. This study contributes to the 421 

understanding of several factors that can influence motor control strategy, especially UT 422 

activation latency, during  the practice of overhead sports. 423 

 424 
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Tables 539 

Table 1. Scapular muscles onset latencies and multiple pairwise comparisons between velocities (low and high) and conditions (no-fatigue and fatigue) for upper 540 

trapezius. 541 

Scapular Muscles No-fatigue/low-velocity No-fatigue/high-velocity Fatigue/low-velocity Fatigue/high-velocity 

Upper trapezius onset latency (ms) 26.8 ± 31.8 16.5 ± 54.4 5.2 ± 55.3 -44.4 ± 56.8 

Middle trapezius onset latency (ms) -79.6 ± 53.1  -24.9 ± 50.8 19.4 ± 56.3 40.8 ± 41.7 

Lower trapezius onset latency (ms) -68.7 ± 63.2 -34.4 ± 34.7 12.6 ± 79.3 19.4 ± 49.2 

Serratus anterior onset latency (ms) -59.1 ± 38.4 -63.0 ± 44.0 -3.8 ± 55.1 4.7 ± 50.7 

Upper trapezius Mean difference 95% CI of difference P value Cohen’s d 

No-fatigue/low-velocity (vs) fatigue/low-velocity 21.6 -9.76 to 53.0 0.233 0.47 

No-fatigue/low-velocity (vs) no-fatigue/high-velocity 10.3 -24.6 to 45.1 0.999 0.23 

No-fatigue/low-velocity (vs) fatigue/high-velocity 71.2 7.7 to 134.7 0.008 1.54 

No-fatigue/high-velocity (vs) fatigue/high-velocity 61 29.6 to 92.3 < 0.0001 1.09 

Fatigue/low-velocity (vs) no-fatigue/high-velocity 11.3 - 74.8 to 52.2 0.350 0.20 

Fatigue/low-velocity (vs) fatigue/high-velocity 49.6 14.8 to 84.5 0.003 0.88 

95% CI, 95% confidence interval. 542 

 543 

 544 

 545 

 546 

 547 

 548 
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Table 2. Multiple pairwise comparisons between scapular muscles in each velocity (low and high) and codition (no-fatigue and fatigue). 549 

Onset latency (ms) No-fatigue Fatigue 

Low-velocity Mean Dif 95% CI of Dif  P value Cohen’s d Mean Dif 95% CI of Dif  P value Cohen’s d 

Anterior deltoid – upper trapezius -26.8 -48.1 to -5.5 0.007 1.19 -5.2 -42.1 to 31.7 1.000 0.13 

Anterior deltoid – midle trapezius 79.6 44.1 to 115.1 < 0.0001 2.11 -19.4 -57.0 to 18.2 1.000 0.48 

Anterior deltoid – lower trapezius 68.7 26.4 to 110.9 < 0.0001 1.53 -12.6 -65.6 to 40.4 1.000 0.22 

Anterior deltoid – serratus anterior 59.1 33.4 to 84.8 < 0.0001 2.17 3.9 -33.0 40.7 1.000 0.09 

Upper trapezius – midle trapezius 106.4 63.6 to 149.1 < 0.0001 2.43 -14.2 -47.2 to 18.8 1.000 0.25 

Upper trapezius – lower trapezius 95.5 44.8 to 146.2  < 0.0001 1.90 -7.4 -65.3 to 50.5 1.000 0.10 

Upper trapezius – serratus anterior 85.9 52.8 to 119.1 < 0.0001 2.43 9.0 -33.3 to 51.4 1.000 0.16 

Midle trapezius – lower trapezius -10.9 -47.4 to 25.6 1.000 0.17 6.8 -46.3 to 59.9 1.000 0.09 

Midle trapezius – serratus anterior -20.4 -55.6 to 14.8 0.830 0.39 23.2 -14.4 to 60.9 0.666 0.41 

Lower trapezius – serratus anterior -9.5 -56.9 to 37.8  1.000 0.18 16.4 -23.2 to 56.0 1.000 0.24 

High-velocity Mean Dif 95% CI of Dif  P value d Mean Dif 95% CI of Dif  P value d  

Anterior deltoid – upper trapezius -16.5 -52.9 to 19.9 1.000 0.42 44.4 6.4 to 82.4 0.014 1.10 

Anterior deltoid – midle trapezius 24.9 -9.0 to 58.8 0.318 0.69 -40.8 -68.7 to -12.9 0.002 1.38 

Anterior deltoid – lower trapezius 34.4 11.2 to 57.6 0.001 1.40 -19.4 -52.2 to 13.5 0.785 0.55 

Anterior deltoid – serratus anterior 63.0 33.6 to 92.4 < 0.0001 2.02 -4.7 -38.6 to 29.2 1.000 0.13 

Upper trapezius – midle trapezius 41.4 -0.7 to 83.6 0.057 0.78 -85.2 -122.8 to -47.6 < 0.0001 1.70 

Upper trapezius – lower trapezius 50.9 12.1 to 89.7 0.005 1.11 -63.8 -113.2 to -14.5 0.006 1.20 

Upper trapezius – serratus anterior 79.6 31.1 to 128.1 < 0.0001 1.60 -49.1 -88.9 to -9.4 0.009 0.91 

Midle trapezius – lower trapezius 9.5 -20.6 to 39.5 1.000 0.21 21.4 -22.1 to 64.8 1.000 0.46 

Midle trapezius – serratus anterior 38.1 3.0 to 73.3 0.027 0.80 36.1 5.3 to 66.8 0.014 0.77 

Lower trapezius – serratus anterior 28.7 1.0 to 56.3 0.066 0.72 14.7 -29.3 to 58.7 1.000 0.29 

Dif, difference; 95% CI, 95% confidence interval; d, effect size Cohen’s d.  550 


