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ABSTRACT  

Controlled, three-dimensional (3D) cell culture systems are of growing interest for both tissue 

regeneration and disease, including cancer, enabling hypothesis testing about the effects of 

microenvironment cues on a variety of cellular processes, including aspects of disease 

progression. In this work, we encapsulate and culture in three dimensions different cancer 

cell lines in a synthetic extracellular matrix (ECM), using mild and efficient chemistry. 

Specifically, harnessing the nucleophilic addition of thiols to activated alkynes, we have 

created hydrogel-based materials with multifunctional poly(ethylene glycol) (PEG) and select 

biomimetic peptides. These materials have definable, controlled mechanical properties (G’= 

4-10 kPa) and enable facile incorporation of pendant peptides for cell adhesion, relevant for 

mimicking soft tissues, where polymer architecture allows tuning of matrix degradation. 

These matrices rapidly formed in the presence of sensitive breast cancer cells (MCF-7) for 

successful encapsulation with high cell viability, greatly improved relative to that observed 

with the more widely used radically-initiated thiol-ene crosslinking chemistry. Furthermore, 

controlled matrix degradation by both bulk and local mechanisms, ester hydrolysis of the 

polymer network and cell-driven enzymatic hydrolysis of cell-degradable peptide, allowed 

cell proliferation and the formation of cell clusters within these thiol-yne hydrogels.  These 

studies demonstrate the importance of chemistry in ECM mimics and the potential thiol-yne 

chemistry has as a crosslinking reaction for the encapsulation and culture of cells, including 

those sensitive to radical crosslinking pathways.  
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1. INTRODUCTION 

Three-dimensional (3D) culture systems are of continued and growing interest for studies 

of both tissue regeneration and disease, including cancer.1-4 For example, in the study of 

breast cancer, seminal works have demonstrated the relevance of 3D culture for in vitro 

studies to recapture in vivo breast cancer phenotypes and the importance of extracellular 

matrix (ECM) signaling in cancer cell growth and metastasis.5-7 Traditionally, such 3D 

culture studies often have utilized protein matrices harvested from tissues, such as basement 

membrane extract (or Matrigel)8 and collagen I.9, 10 Owing to the complex nature of cancer 

progression and many other maladies, design and deployment of well-defined synthetic 

mimics of the extracellular matrix provides opportunities for hypothesis testing about the 

effects of specific microenvironment cues, as well as systems for the screening of drug 

candidates, without the batch-to-batch variation of harvested materials.11, 12 Synthetic 

biomaterials, such as hydrogels, have proven to be useful tools for mimicking key aspects of 

the mechanical and biochemical properties of the ECM in a variety cell culture 

applications.13-15 In recent years, there has been heightened interest in synthetic PEG 

hydrogel-based ECM mimics as a consequence of their controlled mechanical properties and 

ability to include a wide range of biochemical cues.16 In particular, seminal studies have 

demonstrated how matrix degradability and integrin-binding can be key properties for a many 

cellular processes, from cell adhesion and proliferation to motility and differentiation,17-19 

where a variety of chemistries with different degrees of biocompatibility and property control 

have been used. These studies highlight the opportunity that such well-defined materials 

provide for 3D cell culture and the need for more robust and cytocompatible chemistries for 

the generation and modification of these systems in the presence of cells. 

In the study of breast cancer, such well-defined materials have provided unique tools for 

multidimensional culture studies and insights into key cell-matrix interactions in different 
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aspects of disease progression.16, 20, 21 For example, the use of high-throughput methods of 

PEG hydrogel components has enabled better predictions of in vivo cancer cell behaviors 

while allowing us to refine the specific characteristics of different cancer microenvironments 

that influence cell behavior and cancer progression.22-25 Further to this, the capability to 

encapsulate breast cancer cells into PEG hydrogel microspheres for high throughput analysis 

has been demonstrated, an approach which provides alternatives to screening assays typically 

performed on tissue culture treated plastic with the potential for increased physiological 

relevance.26 Additionally, several groups have utilized PEG hydrogels to probe the influence 

of matrix stiffness on breast cancer progression.27, 28 Combined with recent advances in 

characterization of cytokine secretion from 3D matrices, it is understood that the role of 

matrix interactions on the phenotypic properties of cancer cells is incredibly influential.16, 20, 

29, 30 These observations have confirmed that material properties are fundamental to 

furthering our understanding of breast cancer cell response to different microenvironments 

and the ability to fine-tune the mechanical and biochemical properties of their culture 

environment.31-36 Building upon these studies, opportunities remain in the establishment of 

new robust and accessible chemistries for the formation and modulation of matrix properties 

for the 3D culture of breast cancer cells and related niche cells. Of particular interest are 

chemistry-based approaches for the formation of hydrogels in the presence of cells sensitive 

to chemical stimuli (e.g., free radicals or catalysts).37, 38 Further, the formation of hydrogels 

that do not swell, and hence retain their mechanical properties for longer, would provide 

opportunities for the seamless integration of such well-defined materials systems within 

microfluidic devices for more complex studies of cell-microenvironment interactions (e.g., 

under fluid flow and in co-culture).39 

 The judicious choice of the crosslinking chemistry used for the formation of synthetic 

matrices is important for the facile encapsulation of a range of cell types and their culture 
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over time.40 Bioorthogonal click chemistries (e.g., copper catalyzed azide-alkyne 

cycloaddition (CuAAC), strain promoted azide-alkyne cycloaddition (SPAAC), thiol-ene, 

oxime, inverse electron demand Diels-Alder and thiol-yne reactions) enable the synthesis of 

hydrogels under physiological conditions (pH 7.4 at 37 °C).41-43 These chemistries have been 

widely used with a range of different synthetic and natural polymers44, 45 to form hydrogels 

that are not only biocompatible but can also be tuned to certain mechanical properties 

depending on the application required.46-48 Furthermore, these materials are incredibly 

versatile: the networks can be post modified with a wide range of biologically relevant 

molecules (e.g., binding peptides) to increase the biocompatibility of these materials and to 

mimic specific ECM compositions,44, 49 and their mechanical properties (e.g., stiffness) can 

be tuned to mimic the naturally occurring matrix.50, 51 In this respect, thiol-ene chemistry 

stands out amongst these, owing to the ease of i) peptide incorporation within networks by 

inclusion of cysteines within sequences of interest, including integrin-binding ligands and 

cell-degradable crosslinks, and ii) control of matrix modulus with functional group 

stoichiometry and monomer concentration during hydrogel formation.42, 52 However, these 

existing chemistries are not without drawbacks. For example, the cytotoxicity of copper 

catalyzed click chemistry motivated the move to SPAAC chemistry53 for 3D culture 

applications, yet the synthesis of SPAAC precursors remains challenging and commercially-

available products costly. Although radical initiated thiol-ene chemistry has been used 

successfully for a broad range of cell culture applications, the sensitivity of particular cells to 

free radicals and the reactive oxygen species they may generate could hinder their use with 

some cellular systems.54 Consequently, chemical approaches for the creation of 3D culture 

systems are still needed that not only provide the click chemistry trademark of rapid gel 

formation at physiological conditions but also are free of catalyst or initiator using accessible 

and easily synthesized hydrogel precursors. 
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In this work, we aimed to provide a complementary approach by establishing the utility and 

versatility of nucleophilic thiol-yne addition chemistry for encapsulation and culture of cells 

within hydrogels that undergo both programmed and cell-driven degradation, particularly for 

sensitive breast cancer cells. The nucleophilic thiol-yne addition is a reaction in which the in 

situ generation of a thiolate anion by mild base (pH 7.4) allows for nucleophilic attack on an 

activated alkyne such as a propiolate ester, thus allowing the formation of robust 

cytocompatible hydrogel materials in an efficient manner without the need for an external 

catalyst (e.g., light or a metal catalyst), free radicals, or any external stimulus.55-57 The 

precursors are easy to incorporate into the polymer precursors and the resultant hydrogels 

require no additional purification steps. Overall the nucleophilic thiol-yne reaction is 

unparalleled in its simplicity and therefore an ideal reaction for the synthesis of hydrogels 

under physiological conditions. Previously, we have shown that this crosslinking chemistry 

can be used to form biocompatible hydrogel materials that are tunable and robust,58 and 

through careful consideration of architecture, can be nonswelling.59 Herein, we have 

developed a nucleophilic thiol-yne PEG hydrogel platform to act as an ECM mimic for the 

encapsulation and 3D culture of a range of different breast cancer cell lines: MDA-MB-231, 

highly aggressive, invasive triple negative breast cancer cells; T47D, estrogen receptor 

positive (ER+) breast cancer cells; and most notably MCF-7, ER+ breast cancer cells that are 

used extensively as a model ER+ breast cancer cell line.60 In this work, the nucleophilic thiol-

yne chemistry uniquely has been exploited to demonstrate the ability of this platform to 

create materials that mimic the mechanical properties of soft tissues, enable the facile 

incorporation of bioactive peptides for promoting cell adhesion, and allow fine-tuning local 

and bulk network degradation. This work showcases the potential for thiol-yne PEG-based 

hydrogels to be used for the culture of breast cancer cells for probing cell-microenvironment 
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interactions in a matrix with highly controlled mechanical and biochemical properties and of 

relevance for future studies with other sensitive cell types. 
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2. MATERIALS AND METHODS 

2.1 Materials 

Unless otherwise noted, all reagents were purchased from Sigma-Aldrich or Fisher 

Scientific and used without purification. 

2.2 Instrumental methods 

1H NMR spectra were recorded on a Bruker DPX-400 spectrometer at 293 K. Chemical 

shifts are reported as δ in parts per million (ppm) and referenced to the chemical shift of the 

residual solvent resonances (CDCl3: 
1H δ = 7.26 ppm; (CD3)2CO: 1H δ = 2.05 ppm). 

Size exclusion chromatography (SEC) was used to determine the molar masses and molar 

mass distributions (dispersities, ÐM) of the synthesized polymers. SEC conducted in 

chloroform (CHCl3) (0.5% NEt3) used a Varian PL-SEC 50 system equipped with 2 × PLgel 

5 µM MIXED-D columns in series and a differential refractive index (RI) detector at a flow 

rate 1.0 mL min-1. The system was calibrated against a Varian Polymer Laboratories Easi-

Vial poly(styrene) (PS) standard and analyzed by the software package Cirrus v3.3. 

SEC conducted in N,N-dimethyl formamide (DMF) (5 mM NH4BF4) used a Varian PL-

SEC 50 system equipped with 2 × PLgel 5 µM MIXED-C + guard columns in series and a 

differential refractive index (RI) detector at a flow rate of 1.0 mL min-1. The systems were 

calibrated against Varian Polymer Laboratories Easi-Vial linear poly(methyl methacrylate) 

(PMMA) standards and analyzed by the software package Cirrus v3.3. 

Rheological testing was carried out using an Anton Parr MCR 302 rheometer equipped 

with parallel plate configuration with a diameter of 50 mm. A Peltier system was used to 

maintain the temperature at 20 °C throughout the study. Data was analyzed using 

RheoCompass software. 
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Compression testing was carried out using single column universal materials testing 

machine M100-1CT Testometric with a load cell of 50 N. Data was analyzed using Wintest 

analysis software. 

2.3 Cell culture and maintenance 

The MDA-MB-231, T47D, and MCF-7 cell lines were used in this study. MDA-MB-231 

and T47D cell lines were maintained in Dulbecco’s Modified Eagle Medium (DMEM; 

Corning 10-013-CV) supplemented with 10 vol% fetal bovine serum (FBS), 1 vol% 

Glutamax and 1 vol% penicillin/streptomycin (PS). The MCF-7 cell line was maintained in 

DMEM supplemented with 5 vol% FBS and 1 vol% PS.  

2.4 Synthesis of gel precursors 

3-arm alkyne functionalized PEG (1 kg mol-1). In a typical esterification, as previously 

published,59 glycerol ethoxylate (molar mass 1.0 kg mol-1, 10 g, 10 mmol) was esterified with 

propiolic acid (4.2 g, 60 mmol) to collect the product as a light yellow oil (Yield 8.1 g, 70%). 

1H NMR ((CD3)2CO, 400 MHz): δ 4.32-4.34 (t, 3JHH = 8 Hz, -CH2OCO-), 3.89 (s, -

CH≡CC(O)O-), 3.71-3.74 (m, -OCH2CH2O-), 3.58 (s, -CCH2O); 1H NMR spectroscopy 

indicated ca. 92% conversion of the hydroxyl group to propiolate group. SEC (DMF): Mn = 

3.3 kg mol-1 (ÐM = 1.04). 

3-arm thiol functionalized PEG (1 kg mol-1). In a typical esterification as stated in the 

above procedure, glycerol ethoxylate (molar mass 1.0 kg mol-1, 10 g, 10 mmol) was esterified 

using 3-mercaptopropionic acid (4.2 g, 60 mmol). (Yield 9.4 g, 74%). 1H NMR (CDCl3, 400 

MHz): δ 4.20-4.22 (t, 3JHH = 8, -CH2OCO-), 3.58 (m, -OCH2CH2O-), 2.69-2.74 (q, 3JHH = 12, 

-OCCH2CH2SH), 2.61-2.64 (t, 3JHH =12, -OCCH2CH2SH), 1.61-1.66 (t, 3JHH = 20, -SH), 1H 
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NMR spectroscopy indicated ca. >99% conversion of the hydroxyl group to 

mercaptopropionate group. SEC (DMF): Mn = 1 .6 kg mol-1 (ÐM = 1.08). 

2-arm thiol functionalized PEG (2 kg mol-1). In a typical esterification, as stated in the 

above procedure, 2-arm PEG-OH (10 g, 10 mmol) was esterified with 3-mercaptopropionic 

acid (2 equivalents per arm/ 0.5 kg mol-1) to collect the product as a white solid (Yield 9.2 g, 

85%). 1H NMR (CDCl3, 400 MHz): δ 4.26-4.28 (t, 3JHH = 8, -CH2OCO-), 3.65 (m, -

OCH2CH2O-), 2.75-2.80 (q, 3JHH = 12, -OCCH2CH2SH), 2.67-2.70 (t, 3JHH =12, -

OCCH2CH2SH), 1.67-1.69 (t, 3JHH = 8, -SH), 1H NMR spectroscopy indicated ca. >99% 

conversion of the hydroxyl group to mercaptopropionate group. SEC (CHCl3):  Mn = 2.7 

kg.mol-1 (ÐM = 1.26). 

Thiol functionalized peptide synthesis. Both the pendant adhesion peptide (CGRGDS) 

and MMP-degradable crosslinking peptide (GCRDVPMS↓MRGGDRCG) were synthesized 

using standard solid phase peptide synthesis (SPPS) on MBHA rink amide resin 

(Novabiochem) on a peptide synthesizer (Protein Technologies PS3) using Fmoc-protected 

amino acids (ChemPep), deprotected with 20% piperidine in N,N-dimethylformamide (DMF) 

and activated with O-(Benzotriazole-1-yl)-N,N,N’,N’-tetramethyluronium 

hexafluorophosphate (HBTU) at 4 × excess. Peptide was cleaved from resin with a cleavage 

solution containing 95% v/v trifluoroacetic acid (TFA), 2.5 v/v triisopropylsilane (TIPS), 

2.5% v/v water, and 5% w/v dithiothreitol (DTT) to prevent disulfide formation. The 

cleavage solution containing the peptide product was precipitated into cold ether, then 

pelleted by centrifugation (4400 rpm, 4 °C, 5 min). Decanted for a total of three ether washes 

and then dried overnight. Peptides were purified by high-performance liquid chromatography 

(HPLC; XBridge BEH C18 OBD 5 µm column; Waters, Milford, MA) with a linear water-

acetonitrile gradient and molecular weight was verified by electrospray ionization mass 
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spectrometry (ESI-MS; Waters Acquity H-Class UPLC/SQD2, Waters, Milford, MA; ESI 

Figure S1). 

Thiol-ene gel precursors. Thiol-ene gel precursors, including PEG20k(SH)4, macromer, 

alloc-functionalized peptides (K(alloc)GWGRGDS and KK(alloc)GGPQIWGQGK(alloc)K), 

and lithium acylphosphinate (LAP) were synthesized according to the previously published 

protocol.61, 62 

2.5 Hydrogel fabrication 

Thiol-yne hydrogel synthesis. A 1:1 molar ratio of alkyne group to thiol group was used 

for all gelations by thiol-yne chemistry unless stated otherwise and the precursor content was 

kept at 10 wt%. In a typical procedure for making a thiol-yne PEG gel, PEG1k(SH)3 (7.9 mg, 

6.23 × 10-6 mmol) was dissolved in 75 μL Dulbecco’s phosphate-buffered saline (PBS, pH 

7.4) solution or DMEM. A separate solution of PEG1k(C≡CH)3 (7.2 mg, 6.23 × 10-6 mmol) in 

75 μL PBS (pH 7.4) or DMEM. The two solutions were mixed together on a vortex mixer for 

5 s. 20 μL of hydrogel solution was then pipetted into a 1 mL syringe mold and left to cure. 

Validation of pendant peptide incorporation. Standard solutions of thiol-functional 

fluorescent peptide in PBS were prepared at various concentrations (0.1, 0.5, 1, 2, 3, 4 mM). 

Thiol-yne hydrogels were formed according to the above protocol and soaked in the standard 

fluorescent peptide solutions overnight. Thiol-yne hydrogels were synthesized with 5 mM 

thiol-functionalized fluorescent peptide and swollen in PBS or phenol red free media 

overnight. Images of fluorescence were captured with a LSM 810 confocal microscope 

(Zeiss), with a 488 nm laser. Fluorescence of each image was quantified in ImageJ. 

Fluorescence of standards were graphed by concentration and fit linearly. The linear fit 
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equation was used to determine the concentration of fluorescent peptide covalently 

incorporated into the gels. 

Thiol-ene hydrogel synthesis. A solution of 10 wt% PEG20k(SH)4, a stoichiometric 

amount of alloc-functionalized crosslinker (KK(alloc)GGPQIWGQGK(alloc)K) and 2 mM of 

alloc-functionalized fibronectin mimetic peptide (K(alloc)GWGRGDS) and 2 mM LAP were 

combined in DMEM. 20 μL of the hydrogel solution was then pipetted into a 1 mL syringe 

mold and polymerized by exposure to 365 nm light (10 mW cm-2) for 1 min. 

2.6 Mechanical Characterization 

Rheological Testing. All rheology was performed on an Anton Parr MCR 302 rheometer 

fitted with a parallel plate configuration (diameter of 8 mm) at 21 °C. In a typical rheological 

test for gelation kinetics, PEG1k(SH)3 (5.5 mg, 4.33 × 10-3 mmol) and PEG1k(C≡CH)3 (5.0 

mg, 4.33 × 10-3 mmol) were dissolved in separate solutions of 50 μL DMEM. The two 

solutions were mixed together and injected on to the lower plate, at 21 °C. The upper plate 

was lowered immediately to a plate separation of 2 mm, and the measurement was started.  A 

frequency of 5 Hz and a strain of 5% was applied to minimize interference with the gelation 

process and keep the measurement within the linear viscoelastic region. The normal force 

was also kept constant at 0 N. The gelation kinetics was characterized by the evolution of 

storage moduli (G’) and loss moduli (G”) as a function of time. The gel point was determined 

by the cross-over between the G’ and G”. A point was recorded each second until the G’ and 

G” plateaued. The amplitude and frequency sweeps were carried out on the gel formed from 

this experiment. The amplitude sweep applied a constant frequency of 10 rad s-1
, and the 

strain was ramped logarithmically from 0.01% to 100%. The normal force was kept constant 

at 0 N and 6 points were recorded for each decade. All measurements were repeated in 

triplicate and representative charts are shown. The frequency sweep applied a constant strain 
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of 0.5%, and the angular frequency was ramped logarithmically from 100 rad s-1 to 0.1 rad s-

1. The normal force was kept constant at 0 N throughout the test, and 5 points were taken 

each decade. All measurements were repeated in triplicate, and the average storage and loss 

moduli were calculated from the frequency sweep experiments at 10 rad s-1 and 0.5% strain. 

Young’s Modulus calculations. Young’s Moduli were calculated from the average 

rheological G’ and G” values using the equation:63 

� = 2��1 +  
� and � = √�′� + �"�  

Where � = Young’s Modulus, 
 = 0.5 (Poisson’s ratio for hydrogel materials),49 �= shear 

modulus, �′= shear storage modulus and �"= shear loss modulus. 

Uniaxial compressive tests. All uniaxial compressive testing was performed on a M100-

1CT Testometric fitted with a load cell of 50 N. Hydrogel samples were prepared with a 2 

mL syringe to give a cylindrical shape with a diameter of 9 mm and thickness of 4 mm. 

Samples were left to cure for 1 h after forming, to ensure the crosslinking reaction was 

complete before being tested. A preload force of 0.1 N was set, and each test was carried out 

at a compression velocity of 5 mm min-1. Each hydrogel was subject to strain until failure in 

order to determine the ultimate compressive stress and strain. All compression tests were 

repeated 10 times, and an average of the data was taken to find the ultimate compressive 

stress and strain. Data was analyzed using Wintest analysis software.  

2.7 Biocompatibility studies and 3D cell encapsulation 

Cell encapsulation in 3D thiol-yne and radically-initiated thiol-ene hydrogels. Trypsin 

(0.25% Trypsin / 0.1% EDTA) was added to cells, and incubated at 37 °C, until all the cells 

detached (~3 mins), the solution was then quenched with culture medium. Cells were 

centrifuged (1,000 rpm, 5 mins) and resuspended in serum-free DMEM. Cells were mixed 
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with hydrogel precursor solution, and polymerizations proceeded as noted for hydrogel 

fabrication. For thiol-yne chemistry, it is critical that cells be mixed with the thiol-containing 

gel precursor first to limit exposure to any potential hydrolysis products of PEG alkyne 

before polymerization. 

 

Cell metabolic activity (two-dimensional (2D) culture). For 2D cell culture, cell 

metabolic activity was assessed using the CellTiter 96 assay, a colorimetric assay which 

includes a tetrazolium compound and an electron coupling reagent, phenazine ethosulfate. On 

day -1, cells were seeded in a 96-well plate (n=3) at a concentration of 15,000 cells cm-2. On 

day 0, cells were exposed to the desired treatments. For each treatment, 50 μL of solution was 

added to each well and incubated at room temperature for 15 mins. The only treatment that 

was not incubated for 15 mins was the radically-initiated thiol-ene treatment. Treatments 

included: Medium (control), PBS solution, thiol-ene, PEG alkyne, cysteine only, and thiol-

yne. The thiol-ene treatment mimicked thiol-ene gelation conditions and included a 10 wt% 

solution of PEG3.4k(SH)2, 2-allyl functionalized peptide, and LAP in PBS, which was added 

to wells, then exposed to long wavelength UV light (365 nm, 10 mW cm-2) for 1 min. The 

PEG alkyne treatment included a solution of PEG1k(C≡CH)3 in PBS (concentration 

equivalent for making 10 wt% gels). The cysteine only treatment was a solution of cysteine in 

PBS (concentration equivalent to the number of thiol groups present in 10 wt% thiol-yne 

PEG gel formation). The thiol-yne treatment mimicked thiol-yne gelation conditions by 

incorporating concentrations of PEG1k(C≡CH)3 and thiol (cysteine) required to form a 10 

wt% thiol-yne PEG hydrogel in PBS. Once the treatment was removed, 100 μL of fresh 

culture media were added to each well. The media were exchanged after 1 h. Metabolic 

activity of the cells was assessed on day 1 and day 3. For day 3 samples, the 100 μL of media 

were changed on day 2. The metabolic activity was assessed according to the manufacturer’s 
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instructions. Briefly, 20 μL of CellTiter 96 solution was added to each well; the plates were 

incubated for 4 h; and then the absorbance was measured on a plate reader at 490 nm. 

 

Cell metabolic activity (3D culture). For 3D cell culture, cell metabolic activity was 

assessed using the alamarBlue assay. On day 0, cells were encapsulated in gels (n=4) and 

placed in 48-well plates with 500 μL of media. Metabolic activity was assessed on day 1, day 

3, and day 7. Metabolic activity of the cells was assessed according to the manufacture’s 

instructions. Briefly, alamarBlue reagent was diluted 1:10 in phenol red free media, then 

media were removed from each well, and 500 μL of diluted alamarBlue solution added to 

each well. Well plates were incubated for 4 h, then the fluorescence was measured on a plate 

reader (Ex = 560, Em = 590). Media were replaced on the gels, since the same gels were 

measured at each time point. 

 

Cell viability assay (3D culture). Cell viability for 3D cell culture was assessed using a 

Live/Dead Assay Kit, including calcein AM and ethidium homodimer. Working solution was 

prepared by adding 0.5 μL of calcein AM and 2 μL of ethidium homodimer to 1 mL of PBS. 

On day 0, cells were encapsulated in gels (n=3) and placed in 48-well plates with 500 μL of 

media. Cell viability was assessed on day 1, day 3, day 7, and day 10. On the day of assay, 

media were removed, and 500 μL of working solution was added. Thiol-yne gels were 

incubated for 30 mins and thiol-ene gels were incubated for 10 mins, to account for 

differences in diffusion due to variation in matrix densities between the two systems. 

Fluorescence imaging in three-dimensions was captured with a LSM 810 confocal 

microscope (Zeiss). Staining for live cells (Calcein, Ex. = 495 nm, Em. = 515 nm) was 

excited with a 488 nm laser, while staining for dead cells (Ethidium homodimer, Ex = 528 

nm, Em = 617 nm) was excited with a 514 nm laser. Z-stacks with an average thickness of 
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200 μm were collected from three different x-y zones of each sample and orthogonal 

projections were obtained from each Z-stack. Images were processed using ImageJ software. 

Analysis of cell cluster diameter was carried out using confocal microscopy and 

images processed using Volocity (Perkin Elmer). All compositions were formed in serum 

free media (2,500 cells µL-1). Cell clusters were stained with calcein and images were taken 

in 200 µm stacks (interval = 5.7 µm) by confocal microscopy (LSM 810 confocal 

microscope; Zeiss). Images were then processed using Volocity (Perkin Elmer), the diameter 

of cell clusters stained with calcein was analyzed using the longest axis measurement 

function in Volocity. Analysis with Volocity included use of the following functions: find 

objects, close, fill holes in objects, remove noise from objects, separate touching objects, and 

exclude objects by size (objects <1500 µm3). 

 

Immunostaining of cells in 3D culture. Hydrogels containing cells were rinsed with PBS 

(2 × 5 min, 37 °C) and then fixed with 4% paraformaldehyde (15 mins, room temperature). 

Gels were washed with PBS (1 × 5 min, room temperature), and then with a solution of 3% 

bovine serum albumin (BSA) and 0.05% Triton-X in PBS (2 × 5 min, room temperature). 

Cells were permeabilized and blocked by incubating with a solution of 5% BSA and 0.1% 

Triton-X in PBS (1 h, room temperature). Ki-67 samples were stained by incubating with 

solution of 2 μg mL-1 Anti-Ki-67 antibody (abcam), 5% BSA, and 0.1% Triton-X in PBS (4 

°C, overnight). Gels were washed with a solution of 3% BSA and 0.05% Triton-X in PBS (3 

× 30 mins, room temperature). Secondary antibody was added by incubating in a solution of 

goat anti-mouse AF647 (Invitrogen), phalloidinTRITC, 5% BSA, and 0.1% Triton-X in PBS 

(4 °C, overnight). Gels were washed with 3% BSA and 0.05% Triton-X in PBS (3 × 30 mins, 

room temperature). Gels were incubated with DAPI solution (700 nM DAPI in PBS, 1 h, 

room temperature). Gels were washed with PBS (3 × 30 mins, room temperature) and 
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imaged immediately with a LSM 810 confocal microscope (Zeiss). FIJI was use for image 

processing and quantification of Ki-67 positive cells. 
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3. RESULTS AND DISCUSSION 
 

3.1 Design of nucleophilic thiol-yne PEG hydrogel-based ECM mimics 

Click chemistries have shown great utility for the rapid formation of synthetic hydrogels 

for cell culture applications; yet, a need remains for materials chemistries free of catalyst and 

initiator that allow the formation of well-defined synthetic mimics of the ECM using 

accessible precursors. Thiol-yne chemistry offers an opportunity to easily create a versatile 

cell culture platform that provides control of chemical and mechanical properties with 

reaction conditions relevant for the encapsulation of the wide range of cells that may be 

sensitive to significant changes in temperature, pH, radicals etc. Towards establishing this 

cell culture platform for breast cancer cell culture, a range of PEG precursors with different 

architecture and molecular weights were functionalized with alkyne or thiol end groups 

(conversion >84%). As previously reported,59 3 arm (1 kg mol-1) PEG alkyne was 

synthesized using propiolic acid through a simple Fischer esterification process. Thiol 

terminated PEG precursors were synthesized in a similar manner using 3-mercaptopropionic 

acid with 2 or 3 arm PEG precursors at 2 kg mol-1, or 1 kg mol-1 respectively. Hydrogels were 

then formed at 10 wt% in either PBS (pH 7.4) or DMEM in a 1:1 alkyne:thiol ratio. As a 

consequence of the highly efficient nature of the thiol-yne reaction, no further purification 

steps were needed, and the hydrogels were used as prepared. Hydrogel nomenclature is 

dependent on the PEG precursors and peptide incorporation, each component is denoted 

considering the number of arms, molecular weight, and the incorporated functionality, S for 

thiol, A for alkyne or P for peptide. Hence, 31S refers to the 3-arm thiol terminated PEG 

precursor (1 kg mol−1) (Scheme 1).  

Hydrogels, formed using this chemistry, degrade by ester hydrolysis over time, 

allowing for cell proliferation, which often is critical to long term cell culture in three 

dimensions. However, if degradation occurs too rapidly, the structural support will not be 
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maintained for the duration of the cell study. Here, we have selected the 31A31S system, a high 

modulus network (G’= 10 kPa), to ensure the capability of prolonged cell culture, (10 days). 

This system has been shown to rapidly form robust materials which are stable for over 30 

days, as a consequence of its slow degradation profile in aqueous environments.59  

We have previously demonstrated the initial cyctocompatiblity of the nucleophilic 

thiol-yne PEG hydrogel 31A31S system;59 however, its design lacked the incorporation of 

either cell-degradable or cell adhesive peptides toward mimicking aspects of native cell-

matrix interactions. Incorporating short receptor-binding peptides inspired by the insoluble 

proteins present in the native ECM allows the cells to interact with the synthetic network and 

can provide handles to maintain cell viability over long-term cell culture, promote cell 

proliferation, or mimic various extracellular environments.52, 64 In particular, the 

vitronectin/fibronectin mimetic adhesion sequence, RGDS, has been incorporated into a 

variety of synthetic matrices to impart biological activity and has been previously shown to 

be relevant for promoting adhesion of breast cancer cells, including MCF-7s.52, 64 Here, a 

thiol functionalized CGRGDS was thus selected for incorporation within thiol-yne synthetic 

matrices as an initial demonstration of the capability of this materials chemistry for 

incorporating receptor-binding ligands relevant for 3D culture, similar to previous 

demonstrations in thiol-ene hydrogel matrices.65 The versatile nature of the thiol-yne 

hydrogel system allows for gelation even when the stoichiometry of the end groups 

(alkyne:thiol) deviates from 1:1. In fact, robust hydrogel networks can be synthesized with a 

large range of thiol end group concentrations (up to 20 mM less PEG thiol functionality, data 

not shown), supporting the potential to incorporate high concentrations of bioactive 

functionalities into the network. To allow for the peptide incorporation, the stoichiometry of 

thiol functional groups was reduced by 5 mM enabling available alkyne groups to react with 

the added 5 mM of RGDS while maintaining the stoichiometric ratio of overall thiol and 
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alkyne content within the system, 31A31SPRGDS.  This increased the gelation time of the system 

by reducing the number of crosslinking sites as the RGDS did not contribute to the overall gel 

formation. We were able to confirm that the pendant RGDS was covalently incorporated in 

the network throughout the cell study experiments by monitoring the fluorescence of 

hydrogels modified with a fluorescent RGDS (31A31SPRGDS system), (Figure S2). The results 

demonstrate the successful incorporation of 1.8 mM peptide into the network upon the 

inclusion of 5 mM peptide at network formation. This concentration is comparable to other 

systems incorporating bioactive peptides, in which cell attachment and interaction with the 

matrix was observed.66 This further highlights the thiol-yne hydrogels ability to mimic 

aspects of the ECM through the facile inclusion of ECM-inspired adhesion peptides. Note, 

RGDS alone previously has not be observed to significantly impact high-level responses of 

MCF7s in 3D culture (e.g., morphology, proliferation, invasion);30 however, with our 

demonstration of successful peptide incorporation using RGDS, the impact of different 

ligands (or combinations of them) on cell function could be investigated in future studies with 

this thiol-yne 3D culture system.   

In addition to imparted bioactivity, cells need to have space to grow and proliferate, 

which can be achieved in a number of ways (e.g., matrix degradation or stress relaxation), 

ultimately allowing encapsulated cells to remodel their surroundings; indeed, this remodeling 

process has been shown to be a key feature in the application of synthetic materials as 3D cell 

culture scaffolds, particularly to allow for proliferation over time.67-69 Control over 

degradability of gels can be obtained by either incorporating a thermally-responsive segment 

or by modifying the PEG architecture.59 Although the 31A31S system provides the desired 

stability for long-term cell culture, the limited degradability of the dense network over the 

observed culture time may prevent the proliferation and spreading of cells. Toward testing 

this, a di-thiol PEG precursor (22S, 2 kg mol-1) was incorporated into the 31A31S and 
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31A31SPRGDS networks to create two blended systems, 31A22S31S and 31A22S31SPRGDS, and tune 

the degradability of this system. In these blended systems, the thiol functional groups are 

mixed at a ratio of 10:90 22S:31S (See SI for optimization of the PEG thiol ratio, Table S1). 

Furthermore, to increase the ability of cells to interact with their synthetic environment and 

increase degradability of the system, a matrix metalloproteinase (MMP) degradable di-thiol 

functionalized linker was incorporated into the network, (31A2MMPS31S) which allows the 

network to be locally degraded by the cells.70 Similar to the above blended systems, the thiol 

functional groups were mixed at a ratio of 10:90 2MMPS:31S. For the 31A2MMPS31S system, the 

MMP linker was incorporated into the system by substituting it for the PEG di-thiol 

precursor, as they have similar molecular weights (1.7 kg mol-1 and 2 kg mol-1 respectively). 

The 31A2MMPS31S system includes 5 mM RGDS similar to the 31A31SPRGDS and 

31A22S31SPRGDS systems to increase cell interaction with the synthetic matrix and promote cell 

viability. For clarity the addition of PRGDS has not been included in nomenclature for the 

31A2MMPS31S system; however, RGDS has been incorporated throughout the testing of the 

31A2MMPS31S system. 

Overall, in this study, five different thiol-yne hydrogel networks have been synthesized 

(31A31S, 31A31SPRGDS, 31A22S31S, 31A22S31SPRGDS and 31A2MMPS31S, Scheme 1), with the aim of 

creating synthetic extracellular matrices incorporating different peptide motifs and tuning 

their degradation profiles. Furthermore, these studies illustrate the importance that chemistry 

has in the synthesis of biomaterials, where careful design and selection of monomers was 

used to easily tune matrix properties with robust and accessible thiol-yne reaction, which 

ultimately will lead to their success in encapsulating and supporting the culture of cells.  

3.2 Characterization of thiol-yne PEG hydrogels 

Initial characterization of various network compositions was carried out through 

gelation time (vial tilt method) and swelling kinetic profile characterization. All the hydrogels 
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formed within 5 minutes in PBS; however, in DMEM, the networks formed much faster (less 

than 1 minute), (Table S2) as a consequence of the increased pH of the medium, increasing 

the rate of the nucleophilic thiol-yne addition reaction. While fast, this rate of gelation is 

similar to that observed with other chemistries used for the formation of step growth 

hydrogels used for cell encapsulation (e.g., SPAAC, thiol-maleimide).25, 46  

The swelling profile of the materials varied greatly when the networks were formed off 

stoichiometry (alkyne:thiol groups deviate from 1:1), which is desirable for adding bioactive 

pendant peptides into the network structure (Figure 1a). As previously demonstrated, when 

formed in PBS, the 31A31S system shrinks initially and then maintains a steady state for over 

30 days.59 However, when the network is formed with 5 mM less thiol end groups, this initial 

shrinking is prevented, and the swelling profile remains consistent for the duration of the 30-

day experiment (Figure 1a), thus providing an unexpected advantage for cell encapsulation 

and culture. As expected, when the stoichiometry of the reactive groups changes (-5mM 31S), 

the density of the network decreased, thus allowing more water to be drawn into the network 

and enabling the system to swell, ultimately changing the swelling profile of the system. 

Moreover, the 31A31SPRGDS (addition of RGDS to the 31A31S-5mM system) gives an 

intermediate swelling profile, demonstrating the influence the peptide has on the swelling 

profile of the network. However, all systems visually resist degradation, with their robust 

structure maintained over 30 days.  

When formed in serum-free medium in the presence of cells, the gelation time 

increased to several minutes allowing for the successful encapsulation of cells. Additionally, 

the initial shrinkage of 31A31SPRGDS is reduced compared to the original 31A31S system, 

(Figure 1b) which is further observed when a di-thiol is also incorporated into the system, 

31A22S31SPRGDS, and the networks start to swell and degrade rapidly. This rapid degradation is 

a result of the presence of cells during the crosslinking reaction, disrupting the efficiency of 
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the reaction, reducing the density of the network formed. This in turn allows more water to 

infiltrate into the system and increases the rate of ester hydrolysis of the functional end 

groups, causing the hydrogels to degrade more rapidly. Nevertheless, the increase in swelling 

over the course of 3D cell culture gives rise to less dense pore structures, allowing for 

additional cell proliferation at later time points as detailed below.  

Characterization of hydrogel stiffness was carried out through rheological and 

compression experiments, to understand the hydrogels’ mechanical properties for the 

development of ECM mimics. Based on the rheological and compression data, thiol-yne PEG 

hydrogels synthesized in serum-free media allows the creation of environments ranging in 

stiffness from G’= 10 kPa for the original 31A31S system to G’= 4 kPa for the 31A22S31SPRGDS 

system (Figure 1c and S3). Only the 31A22S31SPRGDS system was significantly different (ρ < 

0.05) from the original 31A31S system, as a result of the incorporation of a dithiol PEG 

precursor in addition to the pendant peptide incorporation. The stiffness of the materials 

decreased as the crosslinking density decreased: forming the hydrogels off stoichiometry 

reduced the number of crosslinked sites, reducing the rigidity of the hydrogel and therefore 

reducing G’. Furthermore, through the addition of a pendant hydrophilic peptide to the 

network, more water is drawn into the system, swelling the network and making a softer gel 

with a lower G’. However, the compressive strength of these materials is not affected by the 

change in stoichiometry of the end groups or by the addition of RGDS to the network (no 

significant difference ρ < 0.05), demonstrating the robust nature of nucleophilic thiol-yne 

addition to form hydrogels (Table S2 and Figure S3). The Young’s moduli (E), calculated 

from � = 2��1 +  
� where � = √�′� + �"� and 
 = 0.5 (Poisson’s ratio), for these 

materials ranges from 30.9 ± 0.4 kPa for 31A31S to 13.4 ± 0.035 kPa for 31A22S31SPRGDS, 

(Figure 1d and S3), mimicking the moduli of a range of soft tissues including different stages 

of breast cancer progression (e.g., low to high grade infiltrating ductal carcinoma).71, 72 As 
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observed in the rheological data, the only significantly difference in Young’s modulus was 

for the 31A22S31SPRGDS system, as a result of the dithiol PEG precursor and the incorporation 

of RGDS decreasing the number of crosslinked sites in the network and therefore decreasing 

the modulus of the ECM scaffold. 

3.3 2D cell culture of breast cancer cells in hydrogel formation-mimetic conditions 

The use of cytocompatible chemistry is essential for the formation of 3D culture 

platforms that allow the encapsulation of cells within the network. As previous work has 

shown, the nucleophilic thiol-yne addition is biocompatible with a range of cell lines, 

highlighting the ideal characteristics it possesses as a crosslinking reaction for cell culture 

platforms.55, 56, 58Additionally, the lack of catalysts and free radicals during gel formation 

make it a potentially useful tool for encapsulation of sensitive cell lines. As an initial 

evaluation of the suitability of this chemistry for probing breast cancer cell growth, three 

different breast cancer cell lines were investigated: MDA-MB-231, a highly invasive, ER- 

breast cancer cell line; T47D, a ER+ breast cancer cell line; and MCF-7, an ER+ non-

invasive tumorigenic breast cancer cell line. Non-gel forming thiol-yne reaction conditions 

were incubated with plated cells for each breast cancer cell line, using the commonly 

employed radically-initiated thiol-ene reaction as a comparison (Figure 2). Metabolic activity 

appears high for all conditions with the exception of the PEG alkyne condition, which 

showed dramatically low metabolic activity across all cell lines. These results highlight a key 

characteristic of the ester linked thiol-yne precursors. If the PEG alkyne precursor is 

presented to the cells in the absence of free thiols, thus preventing the thiol-yne reaction from 

occurring, the precursor is toxic. This is most likely a consequence of ester hydrolysis, which 

cleaves the ester bond very rapidly releasing propiolic acid (LD50 = 100 mg kg-1) to the cells; 

indeed, cytotoxicity of propiolic acid in culture medium was confirmed, where significant 

decreases in metabolic activity were observed when cells were incubated with similar 
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concentrations to those used for hydrogel formation (Figure S4). In contrast, the metabolic 

activity is recovered in the thiol-yne condition, in which a stoichiometric amount of cysteine 

is presented to react with the available alkynes of the 3 arm PEG alkyne. The crosslinking 

product of the thiol-yne reaction, the thiolalkene, has increased stability to ester hydrolysis, 

and as a result, does not negatively influence cell proliferation. 

There is a less dramatic, yet significant, reduction in metabolic activity of MCF-7 

cells for the thiol-ene treatment, for which the MDA-MB-231 and T47D cell lines have 

shown no reduction in metabolic activity. This result suggests a sensitivity of MCF-7 cells to 

reaction conditions which utilize photoinitated free radicals during the crosslinking reaction. 

These results are consistent with previous preliminary data (data not shown) in which we 

have observed that the MCF-7 cells are sensitive to some mild photopolymerization 

conditions, in particular to free radical exposure during photoinitiation (10 mW cm-2 at 365 

nm with lithium acylphosphinate [LAP] initiator). By day 3, the MCF-7 cells also show a 

metabolic activity that is statistically different (ρ < 0.05) from the growth medium control for 

the thiol-yne gel mimetic treatment, yet the metabolic activity remains high in comparison to 

the photoinitiated thiol-ene reaction condition mimic (86.7% and 63.5%, respectively, 

statistically different ρ < 0.05), suggesting that the thiol-yne reaction conditions may be more 

suitable for the encapsulation of MCF-7 cells. These initial 2D results highlight a potential 

benefit of using the nucleophilic thiol-yne addition as an alternative to the commonly used 

radically-initiated thiol-ene chemistry for hydrogel crosslinking in the presence of sensitive 

cell lines. 

3.4 3D encapsulation of breast cancer cells in thiol-yne PEG hydrogels 

In vitro synthetic cell culture platforms provide a well-controlled environment, which 

we can use to further understand the growth and behavior of breast cancer cells. An 

advantage for the use of bulk hydrogel materials as 3D cell culture platforms is that it is not 
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necessary for cells to migrate into the material after scaffold synthesis. However, by forming 

the 3D culture environment in the presence of cells, it is essential for the crosslinking 

chemistry to be cytocompatible. Therefore, after initial biocompatibility testing in 2D culture, 

we have explored the nucleophilic thiol-yne addition pathways as a route to encapsulate 

breast cancer cells for 3D culture.  

Preliminary encapsulation experiments were carried out in the 31A31S hydrogels 

formed in PBS. This system allowed for the successful encapsulation of MDA-MB-231 and 

T47D cell lines at early time points (day 1 and day 3, Figure 3), as shown by the high 

metabolic activity and cell viability. However, the metabolic activity of MCF-7 cells in this 

system was low, and live/dead images show very small cell bodies suggesting unhealthy or 

dying cells (Figure 3c). We hypothesized this to be a result of the sensitivity of the MCF-7 

cells to PBS for extended times (Figure S5 and S6). Hence, to test this hypothesis that the 

observed cell death was a consequence of sensitivity to encapsulation conditions in PBS, we 

encapsulated MCF-7 cells in 31A31SPRGDS hydrogels synthesized in serum-free DMEM 

(Figure 4). When synthesizing these systems in DMEM in the presences of cells, the gelation 

time increased, allowing the solution to be easily pipetted into suitable molds for the 

formation of well-defined, homogenous cell-gel constructs for future testing. Cells were 

encapsulated evenly with the resulting hydrogels, as confirmed by 3D renderings of cell 

distributions within the gels (Figure S7). To demonstrate the mild nature of the nucleophilic 

thiol-yne addition chemistry, commonly utilized radically-initiated thiol-ene hydrogels were 

also synthesized in DMEM in the presence of MCF-7 cells. As the thiol-ene hydrogel system 

exhibits a very different swelling profile to the thiol-yne system (3.1 times more swelling), 

two seeding densities were also examined (2,500 cells μL-1 and 7,750 cells μL-1). The lower 

seeding density contained the same total number of cells as the thiol-yne condition, and the 

higher seeding density replicated the same cell density in the materials after swelling, to 
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account for the potential effects of cell-cell interactions on cell proliferation. The thiol-ene 

chemistry led to significantly lower cell metabolic activity in comparison to the thiol-yne 

chemistry in all cases (Figure 4a). This is further confirmed through live/dead cell images, 

which show small cell bodies and punctate staining in the thiol-ene hydrogel system in 

comparison to the thiol-yne hydrogel system where the cells are much larger and uniformly 

brighter with few dead cells, (Figure 4b and c). These results further support our initial results 

in 2D culture studies that suggested the sensitivity MCF-7 cells have for otherwise gentle 

photopolymerization conditions. This result demonstrates the vast potential of the thiol-yne 

chemistry as a crosslinking reaction for the encapsulation of cell lines that are sensitive to the 

presence of free radicals.37, 38, 54, 73 This hydrogel scaffold system provides a well-defined 

synthetic in vitro platform that enables the 3D encapsulation of MCF-7 cells, and potentially 

other sensitive cell lines, opening the door to future studies for better understanding of breast 

cancer progression and other processes in variety of tissue regeneration and disease 

applications.  

3.5 MCF-7 cell proliferation in degradable ECM mimetic thiol-yne PEG hydrogels 

Network degradability is one route to allow cells to grow and proliferate over time 

within hydrogel-based 3D cell culture platforms. As previously stated, one approach to 

increasing network degradability is the incorporation of di-thiol functionalized PEG (2 kg 

mol-1) into the system, 31A22S31SPRGDS. With the reduction of the 3-arm thiol precursor and 

the addition of the pendant adhesion peptide, the network becomes less stiff, as shown by the 

rheology data (decrease in G’ from 10 kPa to 4 kPa), which indicates that the structure is less 

dense, with increased pore size enabling the system to swell. Increased water uptake results in 

increased hydrolysis of the network, allowing the cells to grow and proliferate, as evident by 

the significant increase in metabolic activity at later time points compared to the less 

degradable 31A31SPRGDS system (ρ < 0.05) (Figure 5a). In the 31A22S31SPRGDS system, each 
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time point also has a statistically significant increase in metabolic activity compared to the 

previous time point (ρ < 0.05), whereas metabolic activity in the 31A31SPRGDS system is only 

statistically different when comparing day 1 and the day 10 time points (ρ < 0.05). 

Confirmation was also obtained visually through live/dead images, where small cluster 

formation begins at the day 3 time point and continues to day 10, in which large clusters of 

cells are present compared to the smaller clusters formed at the later time points in the 

31A31SPRGDS system (Figure 5b-d). Image analysis of cell cluster size quantitatively confirms 

these visual observations of increased cluster diameter over time (Figure S8). The 

morphology of the clusters in these images is characteristic of MCF-7 cells, and similar to 

that typically observed in naturally-derived hydrogel systems.74 

Cluster growth over time further was supported through the incorporation of a cell 

degradable linker within the thiol-yne network, (31A2MMPS31S). Incorporation of a matrix 

metalloproteinase (MMP) degradable peptide crosslinker (GCRDVPMS↓MRGGDRCG) 

imparts local degradability of the network by MMPs secreted by the cells. The resulting 

hydrogel-based system therefore has two methods of degradation: 1) ester hydrolysis from 

the ester bonds in the functionalized PEG precursor components that allows for bulk 

degradation of the hydrogel over time and 2) enzymatic hydrolysis of an MMP degradable 

crosslink that allows cells to locally degrade the network. In these materials, by day 10, the 

cell metabolic activity was significantly increased compared to the 31A22S31SPRGDS system (ρ 

< 0.05), (Figure 5a) suggesting that the cells are degrading the matrix which leads to 

increased cell activity and potentially proliferation. Again, the metabolic activity at each time 

point was significantly increased compared to the previous time point (ρ < 0.05). The 

formation of cell clusters also was observed at later time points: similar cluster sizes were 

observed to those in 31A22S31SPRGDS degradable only by hydrolysis, whereas both 31A2 

systems had statistically larger clusters than those in the less-degradable 31A31SPRGDS at late 
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times, further supporting the importance of matrix degradation over time for cell growth in 

these systems (Figure 5d and Figure S8).75, 76 Forming MCF-7 cell clusters in a fully 

synthetic hydrogel system demonstrates the potential of this chemistry to form a tunable 

platform for controlled culture of MCF-7 cells, with relevance for the culture of a variety of 

other cell types. These synthetic hydrogels afford the opportunity to reduce batch-to-batch 

variability between samples and provide a ‘blank slate’ for manipulation of matrix properties 

in various ways depending on the application required. 

The continual increase in metabolic activity over the 10-day experiment suggested 

that the cell clusters were forming due to proliferation, and not exclusively as a result of cell 

migration from a single cell encapsulation to clusters. To continue to probe the mechanism of 

cell cluster formation, MCF-7 cells encapsulated in thiol-yne 31A22S31SPRGDS hydrogels were 

immunostained for a proliferation marker, Ki-67 (Figure 6). Ki-67, shown here in magenta, 

indicates that cells are in the active phases of the cell cycle and is associated with 

proliferation. Image quantification indicates that 41 ± 6% of cells on day 1 and 59 ± 6% of 

cells on day 3 were Ki-67 positive, values which are not statistically different (ρ > 0.05). The 

presence of Ki-67 suggests that, at least in part, cell clusters are growing as cells divide. 

Overall, this system provides a platform for observing the proliferation of cell clusters and 

has potential to be adapted to probe questions of cell interactions with their culture 

environment.  
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4. CONCLUSIONS 

Development of well-defined matrices as tools for 3D cell culture towards 

understanding disease progression and drug evaluation for breast cancer, among other 

diseases, has great potential to inform and advance current treatment methods. To do so, the 

chemistry behind the material must be capable of reliably producing controlled mechanical 

properties and presenting desired bioactive functionality in a predictable manner, while also 

encapsulating cells without impacting their viability. In this work, we have demonstrated the 

use of the nucleophilic thiol-yne addition to create synthetic PEG hydrogels with a range of 

hydrogel stiffness, the ability to easily incorporate bioactive peptide, and tunable network 

degradability by ester hydrolysis and cell-driven degradation to allow for cell proliferation for 

long-term 3D cell culture. With this system, we have demonstrated the ability to successfully 

encapsulate three breast cancer cell lines, MDA-MB-231, T47D and MCF-7. By highlighting 

the sensitivity of MCF-7 cells to radical-initiated thiol-ene crosslinking chemistry, this work 

has demonstrated the efficacy of network formation by nucleophilic thiol-yne chemistry in 

serum-free media as a potential alternative for other sensitive cell lines, clearly demonstrating 

the importance the chemistry behind new biomaterials has on their future success. 

Furthermore, we have created a system capable of bulk network degradability as well as local 

degradability mediated by MMP secretion by cells within the culture and have demonstrated 

the formation of stable MCF-7 cell clusters within 10 days of 3D culture. Immunostaining of 

the proliferation marker, Ki-67, in combination with metabolic activity data, suggests the 

observed cell clusters are formed primarily by proliferation. This study has highlighted the 

benefits of nucleophilic thiol-yne addition chemistry for the formation of a synthetic 3D 

culture platform for a sensitive breast cancer cell line, opening the door for future studies to 

design more complex network compositions and observe their effect on the cluster formation 

and behavior of a variety of breast cancer cell lines, including the MCF-7 cell line. We 
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envision this 3D cell culture platform being used broadly to study the impact of various 

controlled mechanical and biochemical compositions on the cell fate and behavior of 

sensitive cell lines, as well as present opportunities for translation in vivo for applications in 

cell delivery and tissue regeneration.  
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Scheme 1: Hydrogel formation: (a) Nucleophilic thiol-yne addition, (b) Legend for the 
alkyne, thiol and thiolalkene functionality, (c) Alkyne and thiol functionalised PEG 
architecture, (d) Hydrogel networks formed by thiol-yne chemistry at 10 wt%. Thiol and 
alkyne end group react upon mixing under basic conditions. Alkyne:Thiol ratio = 1:1  31A31S  

= 3-arm PEG alkyne (31A) reacted with 3 arm PEG thiol (31S), 31A22S31S  = 31A reacted with a 

mixture of 31S and 2-arm PEG thiol (22S) in a ratio of 10:90, to increase the rate of hydrogel 

degradation, (e) Thiol functional bioactive peptide (PRGDS) and di-thiol functional cell 

degradable peptide (2MMPS), incorporated into the hydrogel network to enable cell adhesion 
and some cell-driven remodelling increase ECM characteristics, (f) Hydrogel network 
formation with bioactive peptides at 10 wt%. 2MMPS replaced 22S  in 31A2MMPS31S. Note that all 

31A2MMPS31S  hydrogels also contain bioactive pendant peptide, however PRGDS is not 
incorporated into the nomenclature.  
 

Figure 1: (a) Swelling characteristics of the thiol-yne hydrogels synthesized in PBS; 

Comparison of 31A31S (square) (1:1 alkyne:thiol end groups), 31A31S-5mM with reduced 

amount of 31S (-5 mM) (circle), and 31A31S PRGDS (triangle). (b) Comparison of the swelling 
characteristics of the thiol-yne hydrogels made in serum-free DMEM with the encapsulation 
of MCF-7 cells over 1 week; 31A31SPRGDS (open circle), 31A22S31SPRGDS (cross), 31A2MMP31S, 
10:90 ratio of 2MMP:31S (diamond). (c) Rheological properties of the thiol-yne hydrogels 
synthesised in serum-free DMEM. G’ = Average storage modulus at a constant frequency of 

10 rad s
-1

 and 0.5% strain. G’ ranges from 10242 ± 1595 Pa for 31A31S to 4461 ± 115 Pa for 
31A22S31SPRGDS reflecting the addition of the RGDS peptide to the network. (d)  Young’s 

Modulus (�) calculated from � = 2��1 +  	
 where � = √�′ + �" and 	 = 0.5 (Poisson’s 
ratio). Young’s Modulus also reduces with the incorporation of RGDS from 30.9 ± 0.4 kPa 
for 31A31S to 13.4 ± 0.035 kPa for 31A22S31SPRGDS. α = Significantly different from 31A31S 
conditions, ρ < 0.05.  

Figure 2: Metabolic activity of breast cancer cells in 2D hydrogel formation-mimetic 
environments. Cells from three different breast cancer cell lines (MDA-MB-231, T47D and 

MCF-7) were seeded onto 96-well plates at a density of 15,000 cells cm
-2

. After 24h of 
culture, cells were exposed to various hydrogel formation-mimetic conditions. Cells were 
exposed to all conditions for 15 mins, with the exception of the photo-initiated thiol-ene 
condition (2 min) to mimic reaction conditions. Day 1 indicates 24h after treatment with 
conditions. Metabolic assay was assessed by Cell-Titer 96 assay (Absorbance = 490 nm). (a) 
At day 1, cells exposed to the PEG alkyne in solution had a significantly lower metabolic 
activity than in all other conditions for all cell lines. T47D and MCF-7 cells had significantly 
higher metabolic activities than the growth medium control after exposure to the thiol-yne 
condition, (b) By day 3, only the PEG alkyne condition is different from the control for the 
MDA-MB-231 and T47D cells. However, the MCF-7 cells have a significant reduction across 
multiple conditions including PBS, thiol-yne, and most significantly, thiol-ene. α = 
Significantly different from control conditions, ρ < 0.05.  
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Figure 3: The metabolic activity of (a) MDA-MB-231 and T47D (5,000 cells µL
-1

), and 

MCF-7 cells, (2,500 cells µL
-1

), encapsulated in the 31A31S (no RGDS) system formed in PBS 
solution (pH 7.4). Cell metabolic activity was assessed after 1 and 3 days of culture within 
the hydrogels by an alamarBlue assay. Fluorescence was measured on a plate reader (Ex = 
560, Em = 590). (b) Live/Dead images of MDA-MB-231 cells encapsulated in 31A31S 

hydrogels (5,000 cells µL
-1

). (c) Live/Dead images of MCF-7 cells encapsulated in 31A31S 

hydrogels (2,500 cells µL
-1

). Live cells stained green (Calcein, Ex. = 495 nm, Em. = 515 nm), 
dead cells stained red (Ethidium homodimer, Ex = 528 nm, Em = 617 nm). Scale bar = 100 
µm. These data suggest a sensitivity of the MCF-7 cells to the encapsulation conditions. 
 

Figure 4: Encapsulation of MCF-7 cells in photo-initiated thiol-ene and thiol-yne 
(31A31SPRGDS) hydrogels formed in serum-free medium. Cells were encapsulated in the thiol-

ene gels at two different cell concentrations (2,500 and 7,750 cells µL
-1

). The former cell 
concentration is the same concentration used to encapsulate cells in the thiol-yne gels, and the 
later concentration accounts for the differences in swelling between the different gel 
compositions to provide a control for effects of cell-cell interactions. (a) MCF-7 cell 
metabolic activity was assessed after 1 and 3 days of culture within the hydrogels by an 
alamarBlue assay. Fluorescence was measured on a plate reader (Ex = 560, Em = 590). (b and 
c) Live/Dead images from Day 3 time point, live cells stained green (Calcein, Ex. = 495 nm, 
Em. = 515 nm), dead cells stained red (Ethidium homodimer, Ex = 528 nm, Em = 617 nm). 

(b) Thiol-ene condition (7,750 cells µL
-1

), (c) thiol-yne condition (2,500 cells µL
-1

). Scale bar 
= 50 µm. These data suggest that the thiol-yne hydrogel system provides a gentle cell 
encapsulation environment that is suitable for 3D encapsulation and culture of MCF-7 cells. 
  

Figure 5: 3D culture of MCF-7 cells in degradable thiol-yne hydrogels. MCF-7 cells were 

encapsulated in various compositions of thiol-yne gels in serum-free medium (2,500 cells µL
-

1
). (a) The metabolic activity of MCF-7 cells in thiol-yne hydrogels was assessed by the 

alamarBlue assay at 1, 3, 7 and 10 days after encapsulation. Fluorescence was measured on a 
plate reader (Ex = 560, Em = 590). α = Significantly different values for day 10 between all 
gelation conditions, ρ < 0.05. Within the 31A22S31SPRGDS and 31A2MMPS31SPRGDS conditions, 
the metabolic activity at each day is statistically different (ρ < 0.05) from the previous time 
point. For the 31A31SPRGDS condition, only the day 10 metabolic activity is statistically 
different (ρ < 0.05) from day 1. (b-d) Live/Dead imaging of the MCF-7 cells. Live cells 
stained green (Calcein, Ex. = 495 nm, Em. = 515 nm), dead cells stained red (Ethidium 
homodimer, Ex = 528 nm, Em = 617 nm). (b) 31A31SPRGDS,

 (c) 31A22S31SPRGDS and (d) 

31A2MMPS31SPRGDS. Scale bar = 50 µm. The incorporation of 22S and 2MMPS significantly 

increased the metabolic activity by day 7 compared to the 31A31SPRGDS condition as well as 
the increased cluster formation. By day 10, the metabolic activity is significantly greater for 
the condition including the cell degradable crosslinker. This observation suggests, that the 
cells ability to locally degrade the matrix increases cell proliferation in these matrices. 
 

Figure 6: Proliferation of MCF-7 cells in 3D cell culture. MCF-7 cells were encapsulated in 
31A22S31SPRGDS hydrogels and immunostained for nuclei (blue), f-actin (red), and Ki-67 
(magenta) 1 and 3 days after encapsulation. (a) Image quantification shows that 41 ± 6% of 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

cells on Day 1 and 59 ± 6% of cells on D3 were Ki-67 positive. These values are not 
statistically different (ρ > 0.05). (b) Representative images shown for day 1 time point. Scale 
bar = 50 µm. (c) Enlarged image to highlight Ki-67 positive cells. Scale bar = 25 µm. These 
data suggest that cell proliferation contributes to the observed cell cluster formation. 
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