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A B S T R A C T

Biodiesel is a renewable vehicle fuel based on biomass. Although environmental benefits can be assumed, both
positive and negative impacts have been stated in the past, raising some doubts on the effective environmental
performance of biofuels. They therefore need to be carefully examined through the established methods of Life
Cycle Analysis (LCA). Such studies, though, have been known to give conflicting results and, for non-specialist
users of environmental performance information, such variations in literature between studies will be a cause of
concern.

Following the principles of the ISO 14040 and 14044 standards for LCA, we have explored the variations in
LCA methodology and parameter choices in a comparative analysis of 11 published studies of the production of
biodiesel from palm oil. This study highlights inconsistencies between individual studies in aspects such as data
coverage and completeness, system boundaries, and input and output streams. The importance of including
factors such as plantation carbon sequestration and land use change demonstrates a need for consistent and
appropriate methodologies. These factors are some of the most important drivers for variation in the results of
LCA studies of palm oil systems, as well as being necessary for a comprehensive perspective. The results of this
study also highlight the importance of geographical location and the fact that studies are often based on very
limited data sources.

A variance analysis identified the greatest source of variation across the chosen data sets, highlighting key
methodology steps and pointed at pitfalls in employing supposedly environmentally benign technologies. The
paper offers suggestions to i) assist inter-study comparisons, ii) offer non-LCA specialist users insight into the
causes of variable results between LCA studies, and iii) guide further in-depth research.

1. Introduction

As the human population increases, the growing demand for food,
energy, water, and materials has the potential to considerably increase
the amount of pollutants and greenhouse gases (GHG) being emitted
into the environment [1]. In the UK, the total GHG emissions in 2014
were 514.4 Mt CO2eq, of which UK electricity generation emissions
accounted for 159.5 Mt CO2eq (31%) and transport for 118.3 Mt CO2eq

(23%) [2]. Policy makers and supporting bodies are looking to increase
the sustainability of all sectors and, with regard to reducing the total
GHG emissions, energy and transport are the two highest impacting
sectors. Reductions within the energy sector will accrue as renewable
technology deployment increases. In the transport sector it is expected
that improvements will predominately be in the fuels used and in im-
proving drive train performance, aside from the increasing tendency of
European governments to phase out vehicles with internal combustion

engines in favour of electric mobility and alternative fuels.
Biodiesel is an alternative transport fuel to fossil diesel. It is renewable

and can be derived from several feedstocks, such as vegetable oils (like
rapeseed and jatropha [3–5]) and recycled waste cooking oil [6], amongst
others. The production of biodiesel predominately utilises transester-
ification to produce a monoglyceride biodiesel (and ~10% glycerol co-
product of total biodiesel yield) from plant oil precursors, with more re-
cent movements adding a catalytic hydroprocessing stage [7]. The prin-
cipal advantages claimed for biodiesel are that it is renewable and, al-
though the ‘Tank to Wheel’ energy density of biodiesel at 39 MJ/kg is
marginally lower than the 42.8 MJ/kg of fossil diesel, its GHG emissions
are lower [8–10]: 3 kg CO2/litre biodiesel versus 3.16 kg CO2/litre fossil
diesel. Including factors such as feedstock carbon sequestration during
growth [11] and land use change [12–16], two influential factors for
biofuel production, is becoming increasingly important, as they directly
contribute to the overall carbon impact of the biodiesel.
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It is important to recognise, therefore, that considerable scope re-
mains for transparent and unbiased methodologies in Life Cycle
Analysis (LCA) studies consistent with the desire for objectivity. It fol-
lows that full uniformity between different LCA studies is necessary,
although today not yet achieved. Thus, in this paper's analysis, we have
sought to comment upon the methodological aspects of Palm Oil
Biodiesel (POBD) LCA studies that we deem to fall outside of a helpful
application of LCA's inherent flexibility. The findings are hoped to help
non-LCA-specialist users of LCA studies to assess results by checking for
stringency of the analysis and any data sets published. This will be
especially important when the LCA results will be used within further
analysis and comparisons leading up to political strategy decisions.

There are various review studies that address analysis compar-
ability. Bessou et al. [17] reviewed 70 biodiesel LCA studies, grouping
similar work in regard to feedstocks, such as palm oil, jatropha, su-
garcane etc., and highlighted LCA parameter information such as geo-
graphic location, functional unit (e.g. 1 kg or 1 MJ or 1 t Palm Oil Mill
Effluent (POME) etc.), system boundary (cradle to grave/gate/tank
etc.), and which impact assessment criteria was used (IPCC 2006/CML-
IA/Energy Balance etc.) [17]. Malça et al. [4] conducted a similar study
with 28 comparative biodiesel LCA's, including their own study. It
covered information such as the type of LCA method (attributional),
whether Indirect/Direct Land Use Change was included or not, Energy
requirement, GHG intensity, as well as geographic location, to name but
a few. A meta-analysis was also published in 2012 by Manik and Halog
[18], who reviewed a number of palm oil LCA studies, focussing spe-
cifically on impact assessments and energy balances. Another com-
parative study is rom available Rocha et al. [19], who compared 12
Brazilian biodiesel LCA studies, ten of which were from soybean (five)
and palm oil (five) feedstocks.

This paper presents the inventory dataset summaries side by side,
comparing studies regarding completeness, since some papers did not
display data for all the parameters listed. In regard to these comparison
studies for biodiesel LCAs, few papers include details on whether the
study complied with the ISO LCA standards, and no papers were ex-
plicitly clear about whether consequential or attributional LCA ap-
proaches were utilised.

There is also a variation in the way that reports are presented from
large organisations like the Royal Society, UNEP GEF, IFEU, WWF etc.
and research/production boards like the Roundtable on Sustainable
Palm Oil, as some will only look at carbon or energy, and rarely with
quantity. On the other hand, there are increasing efforts across multiple
research fields in aligning divergent studies and normalising them, so
that the results can be presented in a comparable and calibrated manner
[20]. This was addressed by Farrell et al. [21] through normalising LCA
data to gain an overall understanding, as well as by Manik and Halog
[18].

The above considerations formed the basis for the exploration of
possible ways to assist non-, or less-specialist users of LCA to interpret
the environmental profile outcomes of different LCA studies. By pro-
viding a perspective on the structuring of LCA frameworks, we intend
this paper to provide some significance to this research field, focusing
on comparative assessments of environmental assessments (Section 3).

Biodiesel production from palm oil was selected for this ex-
amination because it is a mature process and, as a highly productive
and well-established crop system, palm oil offers much future scope
for further generations of biofuels, bioenergy and bioproducts.
Calibration of results and assurance that the environmental profiles
of such palm oil products meet sustainability requirements will be a
key component of any policy and investment decisions concerning
the future development of palm oil and other biomass-based sys-
tems. From an initial collection and overview of biodiesel based
papers, as input to the analysis presented here, over 100 studies
were relevant to palm oil, from these, 17 studies with adequate in-
ventory data were selected, out of which only 11 had sufficient
breadth of coverage of the palm oil supply chain, relevance to POBD,

and had been published in refereed, archival journals. Having lo-
cated a number of review articles on palm oil with only four to eight
studies, we felt 11 studies were sufficient for our purpose. These
were analysed to evaluate the reasons for variation regarding the
results of their Life Cycle Inventory's (LCI), and consequently their
Impact Assessments.

Having selected POBD as an exemplary topic, the objectives of the
in-depth study were:

i) To develop a generically-representative LCI dataset of a ‘Well to
Tank’ POBD system (from palm oil biomass production to biodiesel
production, ready for use) based on available published inventory
data within literature.

ii) To explore and assess the data extracted from the studies and dis-
cuss the variations found across published data in the literature.

iii) To explore the variance of LCI outcomes, focusing on discrepancies
in specific parameters.

iv) To examine how methodological and other choices could affect the
outcomes of POBD studies.

2. Materials and methods

In order to fulfil mentioned objectives we reviewed LCA studies on
POBD, and built a generic LCI to reveal sources of discrepancy in
published findings and to identify ways of minimising such variation in
LCA study outcomes.

2.1. Selection of studies

There are multiple strategies that can be utilised in order to produce
a robust LCI data set from published data. The most common methods
used are systematic review and meta-analysis. In this study, a sys-
tematic review was conducted to identify appropriate sources from
literature published between 2007 and 2014, using online resources
such as Science Direct [22] and official journal websites, including but
not limited to Elsevier [23,24] and Springer [25], to enable develop-
ment of a normalised, generic LCI for POBD based on a meta-analysis
approach. Further literature collection was attempted between the
periods of 2015 and 2018, with only three sources [26–28] being found
to meet similar criteria as the studies assessed in this paper; the latter of
which cited most of them. However, all three papers were missing key
data outputs, and/or contained data very similar to those already in-
vestigated, and so would not add anything new at this time. There were
also no compatible papers found for 2017 or 2018; only one assessing
the composition of palm fruit bunches [29], which has been utilised
later in this paper.

Therefore, the existing publications identified between 2007 and
2014 were deemed sufficient for the current review. As a consequence
of this, we did not make use of databases and LCA software for this
study and relied soley on the reported data, just as any potential user of
this literature would have to do. As a result, a production system ana-
lysis was adopted, from an established plantation through to biodiesel
production, but not biodiesel use.

2.1.1. Decision tree
During background research, it was found that many whose titles

suggested relevance to LCA of biodiesel were either unrelated to palm
oil [30–34], had incomplete data sets [35,36], or were incompatible
with other studies - typically due to data that could not be normalised
or varied substantially in terms of parameters, system boundaries, and/
or data coverage. These variations limited their value for assimilation
into a generic dataset, especially due to rather few studies having
consistent data fields. The following decision tree was used to de-
termine the suitability of a published article for use in this paper
(Fig. 1).

At the highest level in Fig. 1, papers and other publications were
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reviewed for their methodological basis and the comparability of in-
ventory data within the overall goals of this study. Articles passing this
high-level filter were then considered under either ‘Route A’ or ‘Route
B’. ‘Route A’ represents research papers with ‘complete’ published in-
ventory data sets and, depending on the information content, relies on
how compatible they were with other relevant studies for LCI and
overall LCA evaluation. ‘Route B’ addresses review articles and meta-
analyses of the subject area. These were useful for data and normalised
outcomes and as sources of additional studies for individual analysis
under ‘Route A’.

Summary Table 1 identifies the countries of origin of the in-
vestigated studies and whether LCA environmental impacts/an energy
balance were included in the results. In the initial meta-analysis, 150
studies were identified to cover relevant research topics but, within
these, only 17 studies [35,37–52] had a suitable level of transparent
data sets. Table 1 also lists the three types of LCI data and Impact As-
sessment categories covered within each study. The categories, based
on the ones listed in LCA database software such as ‘SimaPro’ and

‘Gabi’, which some studies used, use a variety of impact assessment
methodologies, including ‘CML-IA baseline’, ‘ILCD 2011 Midpoint+ ’,
and ‘IMPACT 2002+ ’. Alternative impact assessment methodologies
differ through which impact categories, and/or resource/emission
contributors are used. In order to cover all impact methodologies, the
categories were aggregated under the four main areas: Human Health,
Ecosystem Quality, Resources and Land Use Change. Within these ca-
tegories, the most frequently found data consisted of Global Warming
Potential (GWP-100a/Climate Change/GHG), Eutrophication Potential,
Acidification Potential, Fossil Fuel Resource Use, and Land Use Change;
all except the latter are typical of the ‘CML-IA baseline’ methodology.

In many cases, published papers and reports only cover one critical
environmental impact (usually GHG emissions or GWP-100a). Only half
of the studies in Table 1 assessed the potential impact of land use
change; four of which were further assessed in stage two of this paper.
Of the papers that did assess land conversion, the majority assumed
rainforest – both primary and replanted, cultivated grasslands, and/or
peatland [35,40,45,47,48]. In addition, only 2 studies performed every
impact category (Nazir et al. [41] and Yusoff et al. [47]), and a quarter
of studies investigated more than two impact categories. Therefore, due
to data inconsistencies across the majority of impact categories, Impact
Assessment was excluded from this paper, as it would be neither ben-
eficial nor impactful to the field. We therefore focused on the meta-
analysis and LCI aspects of our study to produce a generic LCI, with
coefficients of variation, from this literature. This in turn would allow
us to analyse the studies and identify their methodological variation
outcomes for non-LCA-specialist users. The limitations of this approach
are considered in the discussion of this paper.

The ‘Comparable’ column in Table 1 represents an overview of the
suitability of the articles’ base data and Functional Units (FUs) from a
variation of complete to somewhat sparse studies. ‘Acceptable’ studies
contained data that was comparable either directly or through very
limited re-calculation or conversion, ‘Reasonable’ studies covered at
least two of the three core LCI data categories but required conversion/
data reworking of the energy equivalence data, and ‘Limited’ studies
had data which could not be directly compared despite covering the
necessary LCI data categories. This process led to a reduction in the

Fig. 1. Palm Oil LCA/LCI publications for comparison analysis - identification
and selection decision tree.

Table 1
LCI and LCIA content of the papers selected for in-depth analysis in this study.

A = Acceptable; R = Reasonable; L = Limited; and Blank = No data
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article set down from 17 studies to 11.
Throughout the assessment of numerous articles, it was clear that

different publications have different methodological structure within
this area of LCA research. As a result, a detailed LCI on POBD was
produced, with the aim of delivering a comprehensive model dataset.
The results gained seek to give insight on the divergence in evaluation
and to develop further understanding of how this variance in results
may be mitigated within the LCA approach and methodology.

2.2. Development of generically-representative LCI dataset for POBD

The model POBD LCI was developed following the principles of ISO
14040 and 14044 standards [53,54].

2.2.1. Goal and scope
The aim of the study was to conduct an overview of POBD pro-

duction, assessing the inputs and outputs throughout the palm planta-
tion, Crude Palm Oil (CPO) processing plant and biodiesel production
plant stages. As the use phase was not included, excluding fuel dis-
tribution and the combustion phase, the resulting assessment is typical
of a ‘Well to Gate’ analysis.

2.2.2. Functional units
The Functional Unit (FU) of this study is ‘the production of 1000 kg

POBD’. The demands for CPO and Fresh Fruit Bunches (FFB) have been
ratioed accordingly to correspond to a reference flow of 1000 kg POBD.
There are three expressions for this study with the following data types:

• Quantity data: kg/1000 kg POBD
This is used within the inventory for input substances, such as fer-
tilisers and herbicides. Quantity values are based on the amount of
FFB output, which in turn is determined by the amount of CPO re-
quired to convert into the POBD FU. This is due to CPO and FFB
being the key ingredients for POBD.

• Energy equivalence data: MJ eq./1000 kg POBD
The quantity of several input substances (e.g. fertilisers, herbicides)
is determined by the amount of FFB output, which in turn is de-
termined by the overall 1000 kg POBD FU. The energy equivalence
value for such substances is directly related to the FU, in regards to
its energy content, and in the cases of fertilisers and herbicides, the
amount of energy required to produce them.

• Carbon equivalence data: kg CO2 eq./1000 kg POBD
The carbon equivalence of the inputs and outputs is also included in
this assessment, but not the combustion of the POBD due to it being
outside of our system boundary. Like energy, all the carbon
equivalence values are calculated on an FU basis.

2.2.3. Dataset collection, normalisation and completion
The individual elements of inventory data were extracted from the

11 studies passing the systematic review and organised under three key
stages of POBD production: FFB plantation (Stage 1), CPO processing
(Stage 2), and POBD production (Stage 3). Each study presented slight
to substantial differences in the quantities of FFB, CPO, and POBD, so
all the key inventory data were homogenised so that all studies utilised
the same FU. As shown in Table 1, some studies had only one set or
mixed sets of inventory data consisting of quantity, energy and/or
carbon equivalence data types.

Studies with only energy and/or carbon equivalence data were used
to assist in completing missing fields from other studies, taking care to
only use data from similar geographic locations to fill in gaps. Palm Oil
can only be produced in certain climatic zones, namely between the
latitudes 10–20° North and South of the equator [48], so the inaccuracy
factor from using data from similar geographies is minimised. As few
studies have previously contained all three data types across the chosen
fields, this approach was adopted in order to produce a model process
chain as comprehensive as possible. The development of the meta-

analysis resulted in a normalised LCI dataset that progressed from some
of the individually very sparse, incomplete data in any given publica-
tion. The data fields chosen were based on frequency of occurrence
across the 17 studies. Of these fields, many studies only contained less
than 25% when the three data types were originally extracted from the
source publications. These data sets were then normalised and geo-
graphically completed up to a level of 95% of the fields. This was
achieved by going back to fundamentals, such as carbon equivalence or
MJeq./kg values, and completing missing data by using data from
geographically comparable studies. For instance, overall energy
equivalence and carbon equivalence were calculated using Eqs. (1) and
(2), respectively.

EnergyEquivalence MJ kg quantity kg( / )* ( )eq. (1)

CarbonEquivalence kgCO kg quantity kg( / )* ( )eq2 . (2)

This resulted in converting what was once 17 sets of incomparable
POBD LCI's to 11 comprehensive data sets, which covered quantity,
energy, and carbon equivalence in a comparable, consistent format.

3. Results

The normalised values of the resultant LCI dataset of the POBD
production process are presented below, together with detailed pre-
sentation of the ranges of results and uncertainties deriving from the
individual sources.

3.1. LCI structure – process overview

In order to produce 1000 kg POBD, 5123.6 kg± 36% of cultivated
FFB from the Palm Oil Plantation are fed into the CPO processing stage.
Within the CPO plant, the FFB are sterilised in an autoclave for
~90min at ~125 °C, ~1.37 bar [49,51]. The fresh fruit is then stripped
from the fruit bunches and mashed under steam-heated conditions in a
process called ‘digestion’. The CPO is extracted, typically yielding an
amount of 987.9 kg± 15% as the mashed pulp is pressed, before being
centrifuged, purified and stored at 60ᵒC [49,51]. Additionally, the fibre
and nuts are removed from the press. The nuts are then cracked, se-
parating the kernels from the shells so they can be sold. The fibre and
shells can be used as boiler fuel to produce carbon natural electricity
and steam on site [49,51,55], due to carbon sequestration during bio-
mass growth. This resulted in allocation of avoided grid electricity
during the crude palm oil production stage. An improvement of this
could be converting the POME, which is the waste water from the ‘di-
gestion’ process, and the Empty Fruit Bunches (EFB) into biogas in an
Anaerobic Digester. This biogas could then be used in a boiler, turbine,
or fuel cell to produce electricity and heat (for steam production);
which some studies did consider [37,39,40,42,43,52].

The CPO is then passed on to the next stage, Biodiesel Production,
where conventionally it is transesterified using methanol and sodium
hydroxide, to finally yield 1000 kg of POBD and 110 kg of glycerol,
which are produced together [56]. During this process triglyceride oils
are converted to methyl esters through the addition of methanol. This
reduces the molecular weight to one-third, reduces the viscosity by a
factor of eight, and increases the volatility. The methyl esters are then
washed, so the glycerol is finally gravitationally separated overnight
[55], resulting in a more refined biodiesel product.

The Sankey diagram in Fig. 2 provides a graphical representation of
this system. It also demonstrates the additional inputs, wastes, and
primary/secondary product flows (fresh palm fruits/crude palm oil) to
the final stage product, POBD, with its glycerol by-product. The ma-
jority of studies utilised wastes and by-products either for onsite energy,
or sold them for additional revenue. Some of the studies considered
methanol recovery and reuse, and most did not discuss the amount of
washing wastewater produced. Therefore, it could be assumed that the
water and methanol inputs would equal the washing waste outputs, but
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with varying degrees of evaporation and potential losses from the
system, it was not possible to calculate these amounts.

Fig. 2 highlights the flow of materials and resources. Inspecting the
graph offers some insight into not only the current coefficients of var-
iation between the key studies in this paper, but also opportunities for
improving the process efficiency. For instance, it can be seen that the
amount of water used in the CPO processing stage boiler, for producing
steam, is one of the highest inputs within the system, of which most
exits the system within the POME. This indicates possibilities of heat
recovery and possibly water management.

The CPO processing stage generates several biomass co-products
coming from the separation of the FFB. The EFB and POME can be
treated in ponds onsite and then used as a substitute for inorganic
fertiliser, and the biogas produced from POME could be converted to
electricity. Most studies currently use a mix of grid electricity and on-
site generation from waste biomass. The fibres and shells are combusted
to produce electricity and steam for the CPO processing stage, and the
kernels are typically sold on for palm kernel oil production.

3.2. LCI – range and variation

3.2.1. Analysis of variations within inventory analysis data
3.2.1.1. Quantity data. The quantity data was analysed first, as the
energy and carbon equivalence data had to be synthesised based on this
data set. The FU was defined as 1000 kg POBD for all 11 studies and the
amount of FFB and CPO were amended accordingly (Figs. 3, 6 and 7).

The range of data generated varied considerably for certain studies,
as demonstrated by the Pleanjai et al. [51] study. Table 2 provides a
summary of the LCI data generated. For the production assessments in
Figs. 4 and 5, the data in Table 2 was used to calculate a CPO average
(1055 kg/1000 kg POBD) and an FFB average (5180 kg/1000 kg
POBD). These values were not used anywhere else except in the var-
iance analysis to demonstrate differences above and below the median
data values.

Figs. 3, 6 and 7 are graphitisation's of the data from Table 2, using a
spider diagram to demonstrate the variation of data across the 11
chosen studies. In terms of the parameters (Plantation, Processing, and
Transesterification), they all include each stage's respective inputs and
outputs, including products passed onto the next stage. It can be seen
that the data sets are not entirely consistent and there are fluctuations
across the chart due to missing data.

In Fig. 3, within the ‘Plantation’ stage, the FFB makes up a majority
of the quantity for most studies, Pleanjai et al. [51] forming an extreme.

This is because of the amount of fertiliser that Pleanjai et al. [51] as-
sume to be required, in which the other studies differ in analysis. They
also claim to high quantities in the ‘Processing’ parameter, which can
also be seen in their follow-up review [52], but this is predominantly
because they have more complete data sets than the other studies.
These have some values missing, for instance Achten et al. [40], who
provided little processing data.

The reason the key indicators of the POBD system (FFB/CPO/POBD)
have received so much attention is because of the extent of the missing
or unknown data for energy and carbon equivalence values. The other
parameters have been added to demonstrate how much incomplete data
sets can obscure the results, although most fields have been filled with
similarly sourced data. The common known values for the FFB and CPO
parameters are that for every 1000 kg CPO produced approx. 5000 kg
FFB are required [36]. Figs. 4 and 5 highlight the extent of study var-
iations based on these findings.

The horizontal dotted lines in Figs. 4 and 5 show the averages of the
FFB and CPO production data sets, respectively. The solid lines de-
monstrate which studies are either close to or far from average. Both
Pleanjai et al. [51,52] studies are consistently above average, due to
having more complete data sets. Conversely, Papong et al. [50] is under
average for both. Reasons for these variations also consist of geographic
locations, plantation sizes, technology efficiency and age, and produc-
tion methods.

Souza et al. [39] and Kamahara et al. [42] are the two most con-
sistent studies for both FFB and CPO processing, in accordance with
average production. The low CPO value of Patthanaissaranukool et al.
[49] in Fig. 5 is also one of the studies to have more consistent FFB
production, whereas Choo et al. [43] has less consistent FFB data than
CPO with the averages. If methodological deviations are cancelled out,
possible parameter variations could be influenced by ageing tech-
nology, plantation harvest technique variations, or lower quality of
harvests due to climate impacts.

3.2.1.2. Energy equivalence data. The energy equivalence data (Fig. 6)
was produced using reported energy equivalence values for inventory
data (Table 2). The FU was set at the energy equivalence of 1000 kg
POBD for all 11 studies and equalled 39,600 MJeq./1000 kg POBD. The
CPO values were slightly more consistent for energy equivalence data
compared to quantity data, fluctuating closely around 38,121 MJeq./
1000 kg POBD± 10%. The FFB dataset had higher variation between
studies, at 78,040 MJeq./1000 kg POBD± 33%.

Both Pleanjai et al. [51,52] studies have the highest energy values

Fig. 2. LCI quantity flows based on 11 LCA study references [37,39,40,42,43,45,47,49–52,57].
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again, but as before, this is because of their more complete data sets and
higher energy data for the key indicators (FFB/CPO/POBD). The data
from the other studies is reasonably consistent, demonstrated by the
homogenous patterns, Achten et al. [40] being the exception due to
their lack of processing data.

It should be recognised that the angularity of Fig. 3 is significantly
higher than in Fig. 6, demonstrating that energy data is in better

agreement across the studies than quantity data. However, as the en-
ergy equivalence data is directly derived from the quantity data, it is
curious how Fig. 6 is more homogenous than Fig. 3, as it would be
expected that similar data patterns would be produced. This illustrates
the importance of evaluating more than one aspect in order to get a
more complete assessment of inter-study heterogeneity.

3.2.1.3. Carbon equivalence data. The carbon equivalence data (Fig. 7)
was the most incomplete data set, having most fields missing due to
lack of published data and/or unknown values. Like the data for energy
equivalence, this data was produced by using carbon equivalence or ‘kg
CO2 eq.’ values from other literature for the relevant items (also shown
in Table 2). POBD data was set at the same carbon equivalence value
across all 11 studies: 2823 kg CO2 eq./1000 kg POBD. This was
calculated using the amount of combustible organic carbon content
within the biodiesel methyl ester that could produce carbon dioxide
when used in an internal combustion engine.

The carbon equivalence for CPO was calculated to be around
3006 kg CO2 eq./1000 kg POBD± 15%, which was based on a POBD
organic carbon content of 83%. The FFB carbon values were calculated
the same as CPO, based on 31% organic carbon content and quantity.
There were some significant variations for ‘Processing’, due to the lack
of data set completeness, as before, much unlike the more downstream
data sets that show greater consistency between studies. As Achten et al.
[40] is the only study for Cameroon, and no comparable geographical
site data available to fill in the gaps, its incompleteness demonstrates
how the reliability of such sources can be easily corrupted.

3.2.2. Meta-analysis results
The meta-analysis results show that the level of comprehensiveness

affects the comparability of studies in terms of transparency, accuracy
and reliability. Although all the data sets provide reasonably consistent
stage three POBD data, the input data for stage one FFB and stage two
CPO data are more heterogeneous, due probably to specific difficulties
with individual items in gathering data and/or variations of the life
cycle methodologies applied. For instance, the amount of CPO pro-
duced depends on the different contributions of mass for the FFBs as
they go through the ‘Processing’ stage. This is demonstrated in Fig. 8;
each bar represents what is present inside each total output of FFB/FU.

There are eight complementary and complete data sets

Fig. 3. Input and output quantity data variations for 1000 kg POBD FU for 11 LCA study references [37,39,40,42,43,45,47,49–52,57].

Fig. 4. Quantity of FFB necessary for producing 1000 kg POBD vs the average
from 11 LCA study references [37,39,40,42,43,45,47,49–52,57].

Fig. 5. Quantity of CPO necessary for producing 1000 kg POBD vs the average
from 11 LCA study references [37,39,40,42,43,45,47,49–52,57].
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[37,39,42,43,47,49,51,52], as they have all five parameters: EFB, Fi-
bres, Shells, Kernel and CPO. However, Achten et al. [40] was the most
incomplete data set, with only CPO, Fibres and Shells data. This is a
direct reflection on the individual studies’ methodological choices and
without other Cameroon studies in this analysis there was no additional
data to fill in data set gaps with. Papong et al. [50] is also incomplete, as
kernel data was not present in their study, also due to individual
methodical choices. The most interesting study in Fig. 8 is Wicke et al.
[45], as despite having average results for FFB and CPO processing in
Figs. 4 and 5, it has the greatest level of discrepancy for FFB mass
contribution.

This diversity in data completeness for all stages of LCA demon-
strates how important it is to ensure that all data fields, if not as many
as possible, are fully represented in an LCA, so that inconsistencies and
data discrepancies are avoided. When using existing studies, care

should be taken to evaluate the depth of data shown and how trans-
parent the studies are.

The final area of analysis is on the data sets themselves. Variance
analysis was performed to demonstrate the extent of data variation for
each parameter (Figs. 9–11). Parameters showing thinner black bars
demonstrate data with no or little variation between studies, such as the
amount of CPO needed. The zero error for the POBD was because this
was a pre-determined fixed point for this analysis). The vertical lines
protruding from the boxes represent the range between the highest and
lowest values. The boxes themselves represent the ranges between the
median and average values, pale boxes have averages below the
median, dark boxes have averages above the median. A set of consistent
data sets would have a majority of the parameters having little differ-
ence between average and median and low variance, if any.

Fig. 9 shows variances between the quantity data for FFB having the

Fig. 6. Energy equivalence data variations for 1000 kg POBD FU for 11 LCA study references [37,39,40,42,43,45,47,49–52,57].

Fig. 7. Carbon equivalence data variations for 1000 kg POBD FU for 11 LCA study references [37,39,40,42,43,45,47,49–52,57].
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largest variation, followed by boiler water in the central processing
stage. The extent of the FFB data variance emphasises the wide range
between data sets. Whereas in Fig. 10, the greatest variance is still the
FFB, with nitrogen fertiliser also having ranges in energy equivalence
data; this trend in FFB is also true in Fig. 11.

Some fields are missing across all the data sets for energy and
carbon equivalence values, which do not have bars or values. As pre-
viously stated, these omissions could be due to the limitations of the
study data sets in terms of completeness, but they could also be due to
differences in geography and/or plantation/industrial process

Table 2
Normalised Life Cycle Inventory: quantity, energy, and carbon data with medians and co-efficient variation bandwidths [37,39,40,42,43,45,47,49–52,57].

Fresh Fruit
Bunches

Quantity (kg) Coefficients of
Variation

Energy Eq. (MJ eq.) Coefficients of
Variation

Carbon Eq. (kg CO2 eq.) Coefficients of
Variation

Median Min Max (%) Median Min Max (%) Median Min Max (%)

Fertilisers
N 154.8 7.1 302.5 95 7513.5 234.7 14,792.3 97 188.8 8.6 369.1 95
P 42.4 0.4 84.5 99 739.5 6.1 1472.8 99 51.8 0.4 103.1 99
K 126.2 37.3 215.0 70 1178.1 124.6 2231.7 89 153.9 45.5 262.3 70
Mg 33.1 2.9 63.3 91 618.8 54.2 1183.4 91 40.4 3.5 77.2 91
B 37.5 0.4 74.6 99 1571.0 18.2 3123.9 99 45.8 0.5 91.0 99
Total 394.0 48.1 739.9 88 11,620.9 437.8 22,804.0 96 480.6 58.6 902.7 88
Herbicide 1.1 0.0 2.2 100 248.7 0.1 497.2 100 11.4 0.0 22.9 100
Diesel 10.2 1.7 18.8 84 538.7 60.3 1017.1 89 29.9 19.6 40.1 34
Water 8250.0 8250.0 8250.0 0
Full Bunches 5123.6 3255.0 6992.2 36 78,040.0 52,080.0 104,000.0 33 5880.7 3736.0 8025.4 36
Crude Palm

Oil
Quantity (kg) Coefficients of

Variation
Energy Eq. (MJ eq.) Coefficients of

Variation
Carbon Eq. (kg CO2 eq.) Coefficients of

Variation
Median Min Max (%) Median Min Max (%) Median Min Max (%)

Full Bunches 5123.6 3255.0 6992.2 36 78,040.0 52,080.0 104,000.0 33 5880.7 3736.0 8025.4 36
Boiler Water 2737.5 1575.0 3900.0 42
Steam 5.3 4.2 6.5 22 6423.3 2537.6 10,309.0 60
Electricity

(kWh)
534.4 9.7 1059.2 98 1924.0 34.9 3813.1 98 61.9 6.2 836.8 1251

Diesel 5.6 1.9 9.2 66 251.7 106.0 397.3 58 18.4 7.8 29.0 58
Empty

Bunches
1127.2 716.1 1538.3 36 8205.9 5213.2 11,198.7 36 805.6 511.8 1099.4 36

POME 1837.5 1553.5 2121.6 15 305.0 257.9 352.2 15 35.6 30.1 41.1 15
Fibres 666.1 423.2 909.0 36 8205.9 5213.2 11,198.7 36 719.8 457.3 982.3 36
Shells 281.8 179.0 384.6 36 4382.0 2783.8 5980.1 36 379.1 240.9 517.4 36
Kernel 230.0 29.5 430.5 87 4266.8 547.8 7985.8 87
Biogas 45.3 28.8 62.0 37 1042.3 663.3 1424.9 37 227.1 144.5 310.5 37
Crude Palm

Oil
987.9 835.2 1140.6 15 38,121.6 34,040.0 42,203.1 11 3006.9 2542.1 3471.6 15

Biodiesel Quantity (kg) Coefficients of
Variation

Energy Eq. (MJ eq.) Coefficients of
Variation

Carbon Eq. (kg CO2 eq.) Coefficients of
Variation

Median Min Max (%) Median Min Max (%) Median Min Max (%)
Crude Palm

Oil
987.9 835.2 1140.6 15 38,121.6 34,040.0 42,203.1 11 3006.9 2542.1 3471.6 15

Water 250.9 145.3 356.4 42
Electricity

(KWh)
156.2 5.0 307.4 97 554.3 1.8 1106.7 100 97.8 0.3 195.3 100

Methanol 136.8 93.2 180.5 32 4423.9 2062.3 6785.6 53 156.8 73.6 240.0 53
Sodium

Hydroxide
6.0 2.0 10.0 67 157.4 52.6 262.3 67 4.7 1.6 7.9 67

Wastewater 250.9 145.3 356.4 42
Glycerol 156.3 102.6 210.0 34 8815.3 5786.6 11,844.0 34 228.8 157.3 300.3 31
Biodiesel 1000.0 1000.0 1000.0 0 39,600.0 39,600.0 39,600.0 0 2823.0 2823.0 2823.0 0

Fig. 8. Percentage mass contribution of FFB components for 11 LCA study references [37,39,40,42,43,45,47,49–52,57].
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variations. Improvements for this data analysis would be to fill in the
missing slots with data acquired from generic process information or
derived from similar geographical sources, as previously stated, so that
all parameters are populated.

In regards to practical assessment of parameter variations in this re-
search field, the majority of impact comes from techno-economic reports,
which cover a variety of inputs and outputs – especially costs. These report
emphasise the importance of including parameter uncertainties, as not
doing so can produce misleading results [58]. They also find engineering
inevitabilities, which are common across developing countries, cause
technological uncertainties. These can result in higher prices for biodiesel
production and feedstock and instability in the market [59,60]. Crude
palm oil is the most influencing parameter in biodiesel production [58,61],
so when newer papers don’t include them in their data sets, it is also in-
creasing the uncertainty in the LCA field. Much like the variations between
the LCI's investigated in this chapter, by not discussing them and produ-
cing an LCI from only two or three papers, or even missing out parameters
altogether, can also have the potential of misrepresentation.

4. Discussion

Many studies of similar geographic origin had similar data, which in
turn varied in comparison to other geographies, as demonstrated in
Figs. 3, 6 and 7. Therefore special attention has to be given that studies
of similar geographical origin are used in comparisons. In contrast, a

major source of variation between studies arose from methodological
differences. The specificity of data collection and system boundaries
was by far the largest contributor, as studies with higher percentages of
original data e.g. both Pleanjai et al. [51,52] studies were found to be
more accurate than those with high levels of synthesised data e.g.
Achten et al. [40]. The degree of homogenisation also impacted on the
accuracy of data, as studies with POBD FUs were not influenced as
much as those with CPO FUs.

In summary, the flexibility of the ISO 14040 and 14044 standards in
offering a practitioner a choice in setting the study parameters in-
evitably means that the individual configurations of different studies on
similar or the same products – in this case POBD – will necessarily lead
to some diversity in results. It is therefore mandatory to evaluate
carefully the relevance of a given study to the LCA question(s) being
asked and, as we have done here, ideally to assimilate data and results
from several relevant studies (including additional bridging of any data
gaps etc. where needed) in order to obtain an appropriate and generic
perspective on the LCA evidence.

This study provides support to the increased interest in biomass
research on fuels for the transport sector. There is a current lack of use
of reliable LCA research in this area. The study is intended to contribute
to evaluating the variations occurring across selected POBD LCA stu-
dies, to help others find more reliable studies. One example being that
studies with either lesser or greater data set completeness, amongst
other factors, can greatly influence the overall results.

Fig. 9. Quantity data set parameter co-efficient variations for 1000 kg POBD FU for 11 LCA studies [37,39,40,42,43,45,47,49–52,57].

Fig. 10. Energy equivalence data set parameter co-efficient variations for 1000 kg POBD FU for 11 LCA studies [37,39,40,42,43,45,47,49–52,57].

Fig. 11. Carbon equivalence data set parameter co-efficient variations for 1000 kg POBD for 11 LCA studies [37,39,40,42,43,45,47,49–52,57].
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5. Conclusions

This study presents a novel, 11 study comparison and data set for-
mation for product, energy, and carbon equivalent values for the ‘Well
to Tank’ assessment of POBD.

As part of the in-depth exploration of variation between different
LCA's of palm oil biodiesel (POBD), this study has assembled a com-
parison inventory of quantities, energy, and carbon equivalence ana-
lyses for the production of POBD and its co-products. The process of
aligning LCA data from several publications and other sources revealed
substantial heterogeneity in the reporting of system boundaries,
methodological approaches, and basic data between studies. An FU of
production of 1000 kg POBD was utilised to scale the reported inputs,
outputs and environmental impacts to derive representative and well
characterised generic values and data ranges.

Biodiesel is an important step towards the market introduction of
renewable transport fuels and it is essential that its environmental
performance is reliably evaluated through internationally recognised
methods such as LCA. The present study demonstrates that variation
between LCA studies in aspects such as system boundaries, geography,
and other details such as parameter choices occurs but by use of careful
processes for data and results evaluation, filtering and assimilation,
these can be accommodated in compiling an appropriate generic in-
ventory assessment for POBD.
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