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Abstract

In this paper, we consider a L∞ functional derivative estimate for the first spatial derivatives of bounded 
classical solutions u : RN ×[0, T ] →R to the Cauchy problem for scalar second order semi-linear parabolic 
partial differential equations with a continuous nonlinearity f : R → R and initial data u0 : RN → R, of 
the form,

max
i=1,...,N

(
sup

x∈RN

|uxi (x, t)|
)

≤Ft (f,u0, u) ∀t ∈ [0, T ].

Here Ft : At → R is a functional as defined in §1 and x = (x1, x2, . . . , xn) ∈ R
N . We establish that the 

functional derivative estimate is non-trivially sharp, by constructing a sequence (fn, 0, u(n)), where for each 
n ∈ N, u(n) : RN × [0, T ] → R is a solution to the Cauchy problem with zero initial data and nonlinearity 
fn : R →R, and for which there exists α > 0 such that

max
i=1,...,N

(
sup

x∈RN

|u(n)
xi

(x, T )|
)

≥ α,

whilst
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lim
n→∞

(
inf

t∈[0,T ]

(
max

i=1,...,N

(
sup

x∈RN

|u(n)
xi

(x, t)|
)

−Ft (fn,0, u(n))

))
= 0.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

MSC: 35K58; 26D10; 35B45
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1. Introduction

In this paper we introduce and consider the sharpness of a functional derivative estimate (see 
Proposition 1.1) for solutions u : D̄T → R to the Cauchy problem for the scalar second order 
semi-linear parabolic partial differential equation (T > 0) given by,

ut − 	u = f (u) on DT , (1)

u = u0 on ∂D, (2)

with DT = R
N × (0, T ], ∂D = R

N × {0}, nonlinearity f ∈ C(R) and initial data u0 ∈
BPC1(RN), where BPC1(RN) is the set of bounded, continuous real-valued functions defined 
on RN which have piecewise continuous bounded gradient. We consider bounded solutions to 
the Cauchy problem (1)–(2) (henceforth referred to as [CP]), which are classical, in the sense 
that

u ∈ C(D̄T ) ∩ C2,1(DT ) ∩ L∞(D̄T ). (3)

Related to [CP], for any given T > 0 we introduce the sets AT and IT given by

AT = {(f, v,u) : f ∈ C(R), v ∈ BPC1(RN), u ∈ C(D̄T ) ∩ L∞(D̄T )},

and

IT = {(f,u0, u) : (f,u0, u) ∈AT and

u : D̄T →R is a solution to [CP] with f and u0}. (4)

For any T > 0, we observe trivially that IT ⊂ AT , and IT is non-empty ((f, u0, u) ∈ IT , with 
each of f , u0 and u being the zero function). In addition, when f ∈ Hα (functions which are 
Hölder continuous of degree 0 < α ≤ 1 on every closed bounded interval E ⊂ R) and u0 ∈
BPC1(RN), with the corresponding [CP] being a priori bounded on D̄T , then [CP] has a solution 
u : D̄T → R (see, for example, [1], [2], [3]), and (f, u0, u) ∈ IT . For any T > 0, we also note 
that when f = fp : R →R (for any 0 < p < 1) is given by

fp(u) = u|u|p−1 ∀u ∈R (5)

http://creativecommons.org/licenses/by/4.0/


J.C. Meyer, D.J. Needham / J. Differential Equations 265 (2018) 3345–3362 3347
and u0 : RN → R is given by u0(x) = 0 for all x ∈ R
N , it has been established in [4] that 

there exists non-trivial u = up : D̄T → R such that (fp, 0, up) ∈ IT . We will examine [CP] 
with f = fp in detail, in §2 and §4 to establish our main result, Theorem 1.3, namely that the 
derivative estimate in Proposition 1.1 is non-trivially sharp.

Optimal Schauder estimates for solutions to Cauchy problems for second order semi-linear 
parabolic partial differential equations, such as (1)–(3), but also with more general linear terms 
in (1), have been developed in [5], [6], [7] and [8]. A review of these developments is contained 
in [9]. In these works, the nonlinear terms in the partial differential equations (as well as the 
coefficients of the linear terms) are locally Hölder continuous and optimality is meant in the 
sense of the best possible regularity of solutions, i.e. the most refined Hölder space of functions 
in which solutions are contained. Specifically these Hölder spaces consist of functions where 
the first time derivative and first and second spatial derivatives exist and are Hölder continuous 
to a degree dependent on the Hölder degree of the nonlinear terms and linear coefficients in 
the partial differential equation. Notably, optimality in this paper is not meant in the sense of 
optimal generic derivative bounds when, say, the Hölder degree of the nonlinearity is specified. 
Consequently, for [CP], the optimal derivative estimates for first spatial derivatives of solutions 
to [CP] contained in [5], [6], [7], [8] and [9] (corresponding to the estimate in Corollary 1.2) are 
curiously larger than those which the functional derivative estimate in Proposition 1.1 yields; this 
has motivated our introduction of the notion of a derivative estimate being non-trivially sharp.

The paper is structured as follows. In the remainder of §1, we establish a Schauder-type deriva-
tive estimate and a functional derivative estimate for the first spatial derivatives of solutions to 
[CP]. In addition, we motivate and define the notion of the functional derivative estimate being 
non-trivially sharp and state the main result of the paper in Theorem 1.3. In §2, for fixed T > 0
and each 0 < p < 1, we introduce (fp, 0, u(p)) ∈ IT with u(p) : D̄T → R a specific non-trivial 
anti-symmetric self similar solution to [CP], which corresponds to the front solution in [4]. In §3, 
we consider the formal limit as p → 0 of a boundary value problem for the ordinary differential 
equation associated with u(p). This is used in §4 to establish Theorem 1.3. Finally in §5 we dis-
cuss alternative approaches to establishing Theorem 1.3, as well as related concluding remarks.

Before we state our main result, we introduce notation and establish preliminary results as a 
necessity, but also as motivation. To begin, for u ∈ L∞(D̄T ) and λ ∈ (0, T ], we denote ||u||λ∞ =
||u|D̄λ

||∞. Also, for λ > 0, we introduce the functional Fλ :Aλ → [0, ∞) given by

Fλ(f, v,u) = max
i=1,...,N

||vxi
||∞ + 1√

π

λ∫
0

||f (u(·, τ ))||∞
(λ − τ)1/2 dτ ∀(f, v,u) ∈Aλ. (6)

It follows immediately from (6) that for each λ > 0, the functional Fλ : Aλ → [0, ∞) is well-
defined, and, for each (f, v,u) ∈Aλ, the following inequality holds

Fλ(f, v,u) ≤ max
i=1,...,N

||vxi
||∞ + 2λ1/2

√
π

||f (u)||λ∞. (7)

We now consider a functional derivative estimate for [CP], which is a straightforward exten-
sion of those given in [10, Lemma 5.12] and [11, Lemma 3.9].

Proposition 1.1 (Functional derivative estimate). Let (f, u0, u) ∈ IT . Then, for each 0 < t ≤ T , 
it follows that (f, u0, u| ¯ ) ∈ It , ux (·, t) ∈ C(RN) ∩ L∞(RN) (i = 1, . . . , N) and
Dt i
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max
i=1,...,N

||uxi
(·, t)||∞ ≤Ft (f, u0, u|D̄t

).

Proof. Since u : D̄T → R is a solution to [CP] with f and u0, it follows by definition that u|D̄t

is a solution to [CP] with f and u0 on D̄t for any 0 < t ≤ T , and hence, (f, u0, u|D̄t
) ∈ It . 

For convenience we drop the restriction notation from here onward (with (f, u0, u) ∈ AT , then 
(f, u0, u) ∈ At for each 0 < t ≤ T ). Now, let (f, u0, u) ∈ IT . Then, since f (u) ∈ C(D̄T ) ∩
L∞(D̄T ), it follows from a standard application of the finite Laplace transform to (1) and (2), 
via (3) (see, for example [10, Theorem 4.9] with N = 1), or from the variation-of-constants 
formula, that u : D̄T → R satisfies the following integral equation,

u(x, t) = 1

πN/2

∫
RN

u0(x + 2
√

tw)e−|w|2dw

+ 1

πN/2

t∫
0

∫
RN

f (u(x + 2
√

t − τw, τ))e−|w|2dwdτ ∀(x, t) ∈ DT . (8)

Again, since f (u) ∈ C(D̄T ) ∩ L∞(D̄T ) and u0 ∈ BPC1(RN), we observe that both terms on 
the right hand side of (8) have continuous partial derivatives with respect to xj on DT for 
j = 1, . . . , N (see, for example, [10, Lemma 5.9] with N = 1) and it follows that for each 
j = 1, . . . , N ,

uxj
(x, t) = 1

πN/2

∫
RN

u0xj
(x + 2

√
tw)e−|w|2dw

+ 1

πN/2

t∫
0

∫
RN

f (u(x + 2
√

t − τw, τ))

(t − τ)1/2 wje
−|w|2dwdτ ∀(x, t) ∈ DT . (9)

Therefore, for each j = 1, . . . , N ,

|uxj
(x, t)| ≤ ||u0xj

||∞ + 1

πN/2

t∫
0

∫
RN

∣∣∣∣f (u(x + 2
√

t − τw, τ))

(t − τ)1/2 wje
−|w|2

∣∣∣∣dwdτ

≤ ||u0xj
||∞ + 1√

π

t∫
0

∫
R

||f (u(·, τ ))||∞
(t − τ)1/2 |wj |e−w2

j dwjdτ (10)

≤ max
j=1,...,N

||u0xj
||∞ + 1√

π

t∫
0

||f (u(·, τ ))||∞
(t − τ)1/2 dτ

= Ft (f, u0, u) ∀(x, t) ∈ DT . (11)
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Since the right hand side of (11) is independent of x ∈ R
N and (f, u0, u) ∈ IT , it is an immediate 

consequence that for each 0 < t ≤ T , uxi
(·, t) ∈ C(RN) ∩ L∞(RN) (i = 1, . . . , N ), and the 

required inequality follows trivially. �
A derivative estimate can now be obtained as follows,

Corollary 1.2. Let (f, u0, u) ∈ IT . Then,

max
i=1,...,N

||uxi
(·, t)||∞ ≤ max

i=1,...,N
||u0xi

||∞ + 2t1/2

√
π

||f (u)||t∞ ∀t ∈ (0, T ].

Proof. This follows directly from Proposition 1.1 and (7). �
For each (f, u0, u) ∈ IT , we now have, via Proposition 1.1 and (7), that

−
(

max
i=1,...,N

||u0xi
||∞ + 2T 1/2

√
π

||f (u)||T∞
)

≤ max
i=1,...,N

||uxi
(·, t)||∞ −Ft (f, u0, u) ≤ 0 ∀t ∈ (0, T ]. (12)

Therefore, given (f, u0, u) ∈ IT , then (maxi=1,...,N ||uxi
(·, t)||∞ −Ft (f, u0, u)) is bounded uni-

formly above and below for t ∈ [0, T ]. Moreover, via (12), it follows that for any (f, u0, u) ∈ IT ,

−
(

max
i=1,...,N

||u0xi
||∞ + 2T 1/2

√
π

||f (u)||T∞
)

≤ inf
t∈(0,T ]

(
max

i=1,...,N
||uxi

(·, t)||∞ −Ft (f, u0, u)

)

≤ sup
t∈(0,T ]

(
max

i=1,...,N
||uxi

(·, t)||∞ −Ft (f, u0, u)

)

≤ 0. (13)

Now, motivated by (13), we refer to the derivative estimate in Proposition 1.1 as sharp on D̄T , 
when

sup
(f,u0,u)∈IT

(
inf

t∈(0,T ]

(
max

i=1,...,N
||uxi

(·, t)||∞ −Ft (f, u0, u)

))
= 0.

However, we observe that this definition is not immediately satisfactory; consider the case when 
f ∗ ∈ C(R), u∗

0 ∈ BPC1(RN) and u∗ ∈ C(D̄T ) ∩ L∞(D̄T ) are given by

f ∗(u) = 0 ∀u ∈R, (14)

u∗
0(x) = 0 ∀x ∈ R

N, (15)

u∗(x, t) = 0 ∀(x, t) ∈ D̄T . (16)

Then, trivially, (f ∗, u∗
0, u

∗) ∈ IT , with, for each i = 1, . . . , N ,

||u∗ (·, t)||∞ = 0 ∀t ∈ (0, T ], (17)
xi
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whilst

Ft (f
∗, u∗

0, u
∗) = 0 ∀t ∈ (0, T ]. (18)

Thus, it follows from (17) and (18) that

inf
t∈(0,T ]

(
max

i=1,...,N
||u∗

xi
(·, t)||∞ −Ft (f

∗, u∗
0, u

∗)
)

= 0, (19)

and then from (19) and (13) that

sup
(f,u0,u)∈IT

(
inf

t∈(0,T ]

(
max

i=1,...,N
||uxi

(·, t)||∞ −Ft (f, u0, u)

))
= 0,

and hence, the derivative estimate in Proposition 1.1, according to the definition introduced 
above, is sharp. To exclude such triviality associated with spatially homogeneous solutions 
to [CP], we introduce the following refinement to the above definition; namely, we refer to the 
functional derivative estimate in Proposition 1.1 as non-trivially sharp with index α on D̄T when 
there exists α > 0 such that

sup
(f,u0,u)∈Iα

T

(
inf

t∈(0,T ]

(
max

i=1,...,N
||uxi

(·, t)||∞ −Ft (f, u0, u)

))
= 0,

where now

Iα
T = {(f,u0, u) : (f,u0, u) ∈ IT and max

i=1,...,N
||uxi

(·, T )||∞ ≥ α}.

We can now state the main result in this paper, as

Theorem 1.3. For any T > 0 and α > 0, there exists a sequence {(fn, 0, un) ∈ Iα
T }n∈N, such that

lim
n→∞

(
inf

t∈(0,T ]

(
max

i=1,...,N
||unxi

(·, t)||∞ −Ft (fn,0, un)

))
= 0.

It then follows immediately from Theorem 1.3 that

Corollary 1.4. For any T > 0 and α > 0, the derivative estimate in Proposition 1.1 is non-
trivially sharp with index α on D̄T .

2. The problem (Pp)

For any fixed N ∈N and p ∈ (0, 1), consider [CP] with nonlinearity fp :R → R given by (5)
and initial data u0 : RN → R such that u0 = 0. Henceforth we will refer to this as (Pp). In 
[4, Theorem 3.14] it is demonstrated that, for any T > 0, there exists a self-similar solution 
u(p) : D̄T → R to (Pp) of the form
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u(p)(x, t) =
{

wp(η(x, t))t1/(1−p), (x, t) ∈ DT

0, (x, t) ∈ ∂D
(20)

with η(x, t) = x1t
−1/2 for all (x, t) ∈ DT , whilst wp : R →R is such that wp ∈ C2(R), and

w′′
p + 1

2
ηw′

p + fp(wp) − 1

(1 − p)
wp = 0 ∀η ∈R, (21)

wp(−η) = −wp(η) ∀η ∈ R, (22)

|wp(η)| < (1 − p)1/(1−p) ∀η ∈R, (23)

wp(η) → ±(1 − p)1/(1−p) as η → ±∞, (24)

0 < w′
p(η) < sup

η∈R
|w′

p(η)| = w′
p(0) ∀η ∈ R\{0}, (25)

w′
p(0) >

(1 − p)1/(1−p)

(1 + p)1/2 . (26)

The function wp : R → R, for p ∈ (0, 1), will be used extensively throughout the rest of the 
paper. Now, for any T > 0, since u(p) : D̄T → R given by (20) is a solution to (Pp), we have that

(fp,0, u(p)) ∈ It ∀t ∈ (0, T ]. (27)

In addition, it follows from (5), (20), (23) and (24), that,

Ft (fp,0, u(p)) = (1 − p)p/(1−p)�(1/(1 − p))

�((3 − p)/2(1 − p))
t(1+p)/2(1−p) ∀t ∈ (0, T ], (28)

whilst from (20) and (25),

max
i=1,...,N

||u(p)
xi

(·, t)||∞ = ||u(p)
x1 (·, t)||∞ = w′

p(0)t(1+p)/2(1−p) ∀t ∈ (0, T ]. (29)

Therefore, via (28), (29) and Proposition 1.1,

max
i=1,...,N

||u(p)
xi

(·, t)||∞ −Ft (fp,0, u(p)) = (w′
p(0) − φ(p))t(1+p)/2(1−p) ≤ 0 ∀t ∈ (0, T ]

(30)

where φ : (0, 1) → R is given by

φ(p) = (1 − p)p/(1−p)�(1/(1 − p))

�((3 − p)/2(1 − p))
∀p ∈ (0,1). (31)

Furthermore, by substitution into (10)

|fp(u(p)(x, t))| < ||fp(u(p)(·, t))||∞ ∀(x, t) ∈ DT ,
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which follows from (20), (23) and (24), and proceeding with the proof of Proposition 1.1 we may 
conclude that the inequality in (30) is, in fact, strict. We also observe that,

φ(p) > 0 ∀p ∈ (0,1), (32)

φ(p) → 2√
π

as p → 0+. (33)

In addition, it follows from (7), (5), (20) and (23), that,

Ft (fp,0, u(p)) ≤ 2√
π

(1 − p)p/(1−p)t(1+p)/2(1−p) ∀t ∈ (0, T ]. (34)

Thus, via (28) and (34), we have,

φ(p) ≤ 2√
π

(1 − p)p/(1−p) <
2√
π

∀p ∈ (0,1). (35)

Now, we conclude from the discussion following (30) that

inf
t∈(0,T ]

(
max

i=1,...,N
||u(p)

xi
(·, t)||∞ −Ft (fp,0, u(p))

)
= (w′

p(0) − φ(p))T (1+p)/2(1−p) < 0.

(36)

We also observe from (20) and (26) that

max
i=1,...,N

||u(p)
xi

(·, T )||∞ = w′
p(0)T (1+p)/2(1−p) >

(1 − p)1/(1−p)

(1 + p)1/2 T (1+p)/2(1−p). (37)

A proof of Theorem 1.3 will now follow, up to minor detail, if we are able to construct a sequence 
{pn}n∈N, such that pn → 0 as n → ∞, and

w′
pn

(0) → 2√
π

as n → ∞.

It is the construction of such a sequence which we now address. However, before proceeding to 
this, it is worth noting from (36), (35) and (26), that at this stage, we have

(1 − p)1/(1−p)

(1 + p)1/2 < w′
p(0) < φ(p) <

2√
π

∀p ∈ (0,1). (38)

We now proceed by examining the solution w0 : R̄+ → R to a boundary value problem in which 
the ordinary differential equation is the formal limiting differential equation of that in (21), as 
p → 0+. We then show that there exists a sequence {pn}n∈N, such that pn → 0 as n → ∞, 
whilst, for any X > 0,

wpn → w0 and w′
pn

→ w′
0 uniformly on [0,X] as n → ∞. (39)

The result then follows on observing that w′ (0) = 2/
√

π .
0



J.C. Meyer, D.J. Needham / J. Differential Equations 265 (2018) 3345–3362 3353
3. The problem (S0)

In this section, we consider the boundary value problem obtained by taking the formal limit 
as p → 0 in the associated problem for the ordinary differential equation studied in [4] when 
p ∈ (0, 1). We seek a function w : [0, ∞) → R such that w ∈ C1([0, ∞)) ∩ C2((0, ∞)) and

w′′ + 1

2
ηw′ − w = −1 ∀η > 0, (40)

w(0) = 0, w(η) → 1 as η → ∞, (41)

w(η) > 0 ∀η > 0. (42)

We refer to this linear inhomogeneous boundary value problem as (S0). We observe that the 
coefficients in (40) are continuous functions of η ∈ [0, ∞). Thus, the homogeneous part of (40)
has two real-valued basis functions w1, w2 ∈ C1([0, ∞)) ∩ C2((0, ∞)) and a particular integral 
w̄ ∈ C1([0, ∞)) ∩C2((0, ∞)) after which it is straightforward to establish that (S0) has a unique 
solution given by ω0 : [0, ∞) → R with

w0(η) = 1 − 4√
π

(2 + η2)I (η) ∀η ∈ [0,∞), (43)

where

I (η) =
∞∫

η

e−s2/4

(2 + s2)2 ds ∀η ∈ [0,∞) (44)

and we note that I (η) is monotone decreasing in η ∈ [0, ∞) with I (0) = √
π/8 (see [12, pp. 302, 

7.4.11]) and I (η) decays exponentially as η → ∞. Finally, we observe from (43) and (44) that

w′
0(0) = 2√

π
. (45)

In the following section, we proceed to construct the sequence of functions wpn : R → R for 
which (39) holds.

4. Proof of Theorem 1.3

In this section, we construct a sequence {pn}n∈N such that pn ∈ (0, 1) for all n ∈ N, pn → 0
as n → ∞ and, for any X > 0, wpn :R → R satisfies

wpn → w0, w′
pn

→ w′
0 uniformly on [0,X] (46)

as n → ∞, where w0 : [0, ∞) → R is the unique solution to (S0), given by (43)–(44). We note 
that via (46) and (45), we have

w′
pn

(0) → 2√
π

as n → ∞,

which is crucial to the proof of Theorem 1.3.



3354 J.C. Meyer, D.J. Needham / J. Differential Equations 265 (2018) 3345–3362
Throughout this section we consider wp : R → R restricted to the domain [0, ∞), so that 
wp = wp : [0, ∞) → R. To begin, we obtain uniform bounds on wp, w′

p and w′′
p for p ∈ (0, 1). 

We have first,

Proposition 4.1. Consider wp : [0, ∞) → R with p ∈ (0, 1). Then,

0 ≤ wp(η) < 1 ∀η ≥ 0,

0 < w′
p(η) <

2√
π

∀η ≥ 0,

and

|wp(η1) − wp(η2)| ≤ 2√
π

|η1 − η2| ∀η1, η2 ≥ 0.

Proof. It follows from (23), (25) and (38) that for p ∈ (0, 1)

0 ≤ wp(η) ≤ (1 − p)1/(1−p) < 1 ∀η ≥ 0,

and

0 < w′
p(η) ≤ w′

p(0) <
2√
π

∀η ≥ 0. (47)

Therefore, via the mean value theorem with (47), we have

|wp(η1) − wp(η2)| ≤ sup
θ∈[0,∞)

w′
p(θ)|η1 − η2| ≤ 2√

π
|η1 − η2| ∀η1, η2 ≥ 0,

as required. �
Additionally, we have

Proposition 4.2. Consider wp : [0, ∞) → R with p ∈ (0, 1). Then, for any X > 0,

|w′
p(η1) − w′

p(η2)| ≤
(

X√
π

+ 2

)
|η1 − η2| ∀η1, η2 ∈ [0,X].

Proof. Via the mean value theorem,

|w′
p(η1) − w′

p(η2)| ≤ sup
θ∈[0,X]

|w′′
p(θ)||η1 − η2| ∀η1, η2 ∈ [0,X]. (48)

Now, from (21), (23) and Proposition 4.1,

|w′′
p(θ)| ≤

∣∣∣∣θ2w′
p(θ)

∣∣∣∣ + |wp(θ)|p +
∣∣∣∣ 1

(1 − p)
wp(θ)

∣∣∣∣ ≤ X√
π

+ 2(1 − p)p/(1−p) ≤ X√
π

+ 2

(49)

for all θ ∈ [0, X]. The result then follows from (48) and (49). �
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Before we can obtain a result for ω′′
p corresponding to Proposition 4.1 and Proposition 4.2, 

we need the following,

Proposition 4.3. Consider wp : [0, ∞) → R with p ∈ (0, 1/2]. Then,

wp(η) ≥
{ 1

8
√

2
η, 0 ≤ η ≤ η′

η′
8
√

2
, η > η′

where

η′ = √
π

(√
1 + 1

4
√

2π
− 1

)
< 1. (50)

Proof. It follows from (21) that

η∫
0

w′′
p(s)ds =

η∫
0

(
−1

2
sw′

p(s) + 1

(1 − p)
wp(s) − (wp(s))p

)
ds ∀η ∈ [0,∞). (51)

For p ∈ (0, 1/2] we next observe that Hp : [0, (1 − p)1/(1−p)] → R given by

Hp(x) = 1

(1 − p)
x − xp ∀x ∈ [0, (1 − p)1/(1−p)] (52)

satisfies

Hp(x) ≥ −(1 − p)p/(1−p) ≥ −1 ∀x ∈ [0, (1 − p)1/(1−p)]. (53)

Thus, it follows from Proposition 4.2, (23), (51), (52) and (53) that

w′
p(η) − w′

p(0) ≥
η∫

0

(
− 1√

π
s − 1

)
ds ≥ − 1

2
√

π
η2 − η ∀η ∈ [0,∞). (54)

Now, from (26) we also have

w′
p(0) >

(1 − p)1/(1−p)

(1 + p)1/2 ≥ 1

4
√

2
(55)

for all p ∈ (0, 1/2]. Therefore, it follows from (54) and (55) that

w′
p(η) ≥ w′

p(0) − 1

2
√

π
η2 − η ≥ 1

4
√

2
− 1

8
√

2
= 1

8
√

2
∀η ∈ [0, η′] (56)

with η′ given by (50). Now, it follows from (22) and (56) that
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wp(η) =
η∫

0

w′
p(s)ds ≥

η∫
0

1

8
√

2
ds = 1

8
√

2
η ∀η ∈ [0, η′].

Finally, via (25), we have

wp(η) ≥ wp(η′) ≥ η′

8
√

2
∀η ∈ (η′,∞),

as required. �
We now have,

Remark 4.4. For each X > 0, it follows from Proposition 4.1 and Proposition 4.2 that 
{wp}p∈(0,1) and {w′

p}p∈(0,1) are uniformly bounded and equicontinuous on [0, X].

We next define the sequence {pn}n∈N such that pn = 1/(2n) and the sequence of functions 
{vn}n∈N such that

vn = wpn : [0,∞) → R. (57)

It now follows immediately from the Ascoli–Arzela Theorem (for details, see [13, Theorems 7.17 
and 7.25]) that there exists a function w∗ : [0, ∞) → R such that w∗ ∈ C1([0, ∞)) and for any 
X > 0, the sequence of functions {vn}n∈N given by (57) has a subsequence {vnl

}l∈N (1 ≤ n1 <

n2 < . . . and nl → ∞ as l → ∞) that satisfies

vnl
→ w∗ as l → ∞ uniformly on [0,X], (58)

v′
nl

→ w′∗ as l → ∞ uniformly on [0,X]. (59)

Remark 4.5. Through Proposition 4.1, Proposition 4.2, (24), (57), (58) and (59), it follows that

0 ≤ w∗(η) ≤ 1, 0 ≤ w′∗(η) ≤ 2√
π

∀η ≥ 0,

and

w∗(0) = 0,

whilst via Proposition 4.3,

w∗(η) ≥
{ 1

8
√

2
η, 0 ≤ η ≤ η′

η′
8
√

2
, η > η′.

We now have,
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Proposition 4.6. Let X2 > X1 > 0. Then w∗ ∈ C2([X1, X2]) and,

w′′∗ + 1

2
ηw′∗ + 1 − w∗ = 0 ∀η ∈ [X1,X2].

Proof. Set X2 > X1 > 0. It then follows from (58) and (59) that there is a subsequence {vnl
}l∈N

of {vn}n∈N such that

vnl
→ w∗ as l → ∞ uniformly on [X1,X2], (60)

v′
nl

→ w′∗ as l → ∞ uniformly on [X1,X2]. (61)

Also, via (57) and (21),

v′′
nl

= −1

2
ηv′

nl
− (vnl

)pnl + vnl

(1 − pnl
)

∀η ∈ [X1,X2]. (62)

We now observe that w∗ is bounded above zero on [X1, X2], via Remark 4.5, and so it follows 
from (60)–(62), that

v′′
nl

→ −1

2
ηw′∗ − 1 + w∗ as l → ∞ uniformly on [X1,X2]. (63)

Finally, via (63) and [13, Theorem 7.17], we conclude that w∗ ∈ C2([X1, X2]) and

v′′
nl

→ w′′∗ as l → ∞ uniformly on [X1,X2]. (64)

The proof is completed via (63), (64) and the uniqueness of limits. �
We now investigate the behavior of w∗ : [0, ∞) → R as η → ∞. To begin, we have,

Lemma 4.7. Consider wp : [0, ∞) → R with p ∈ (0, 1/2]. Then,

0 < w′
p(η) <

2√
π

e−η2/4 ∀η ≥ 0, (65)

and

−2 erfc

(
1

2
η

)
≤ wp(η) − (1 − p)1/(1−p) ≤ 0 ∀η ≥ 0.

Proof. Via (21), (23), (25) and (26), we have

w′′
p + η

2
w′

p = 1

(1 − p)
wp − fp(wp) < 0 ∀η ∈ (0,∞). (66)

Therefore,

w′ (η) < w′ (0)e−η2/4 ∀η ≥ 0. (67)
p p
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The inequality in (65) then follows from (67) and Proposition 4.2. An integration of (65) then 
gives

0 < wp(ηl) − wp(η) <
2√
π

ηl∫
η

e−λ2/4dλ (68)

for any ηl > η > 0. Allowing ηl → ∞ in (68), using (24), then results in

−2 erfc

(
1

2
η

)
≤ wp(η) − (1 − p)1/(1−p) ≤ 0 ∀η ≥ 0,

as required. �
We now have

Corollary 4.8. Consider wp : [0, ∞) → R with p ∈ (0, 1/2]. Then,

wp(η) → (1 − p)1/(1−p) as η → ∞ uniformly for p ∈ (0,1/2].

Proof. This follows immediately from Lemma 4.7. �
As a consequence of Corollary 4.8, we now have

Lemma 4.9. The function w∗ : [0, ∞) → R satisfies,

w∗(η) → 1 as η → ∞.

Proof. It follows from Remark 4.5 that

lim sup
η→∞

w∗(η) ≤ 1. (69)

Now, from Corollary 4.8, for any ε > 0, there exists η∗ > 0 (dependent only upon ε) such that 
for all p ∈ (0, 1/2], then

wp(η) ≥ (1 − p)1/(1−p) − ε ∀η ≥ η∗. (70)

Thus, via (70), (57) and (58),

w∗(η) ≥ 1 − ε ∀η ≥ η∗,

and so,

lim inf
η→∞ w∗(η) ≥ 1 − ε. (71)

Since (71) holds for any ε > 0, then
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lim inf
η→∞ w∗(η) ≥ 1. (72)

It follows immediately from (69) and (72) that the limit of w∗(η) as η → ∞ exists and

lim
η→∞w∗(η) = 1,

as required. �
We now have,

Proposition 4.10. The function w∗ : [0, ∞) → R is given by

w∗(η) = 1 − 4(2 + η2)I (η)√
π

∀η ≥ 0.

Proof. It follows from (57)–(59) and Proposition 4.6 that w∗ ∈ C1([0, ∞)) ∩ C2((0, ∞)). 
Additionally, it follows from Proposition 4.6 that w = w∗ satisfies (40). Moreover, from Re-
mark 4.5 and Lemma 4.9, it follows that w = w∗ satisfies (41) and (42). We thus conclude, that 
w∗ : [0, ∞) → R satisfies the boundary value problem (S0). It has been established in §3 that 
(S0) has a unique solution given by (43)–(44), as required. �

We immediately have,

Corollary 4.11. There exists a subsequence {pnl
}l∈N of {pn}n∈N such that

w′
pnl

(0) → 2√
π

as l → ∞.

Proof. It follows directly from (57), (58) and Remark 4.5 that there exists a subsequence 
{pnl

}l∈N of {pn}n∈N such that,

w′
pnl

(0) → w′∗(0) as l → ∞.

However, from Proposition 4.10, (43) and (45),

w′∗(0) = w′
0(0) = 2√

π

and the proof is complete. �
We are now able to give the proof of our main result,

Proof of Theorem 1.3. First fix α > 0, T > 0 and N ∈ N. Next consider the subsequence 
{pnl

}l∈N of {pn}n∈N corresponding to that in Corollary 4.11. Let the constant

c(α,T ) =
√

π
(α + 1). (73)
2T 1/2
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We now introduce the sequence of functions {u(l) : D̄T → R}l∈N as

u(l)(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

wpnl

(
x1√

t

)
(c(α,T )t)1/(1−pnl

), (x, t) ∈ [0,∞) ×R
N−1 × (0, T ]

−wpnl

(−x1√
t

)
(c(α,T )t)1/(1−pnl

), (x, t) ∈ (−∞,0) ×R
N−1 × (0, T ]

0, (x, t) ∈ ∂D.

(74)

It is straightforward to verify directly, via (73), (74), (57), (20) and (27), that for each l ∈N,

(c(α,T )fpnl
,0, u(l)) ∈ It ∀t ∈ (0, T ]. (75)

In addition, via (74), (20) and (25), we have

max
i=1,...,N

||u(l)
xi

(·, t)||∞ = ||u(l)
x1

(·, t)||∞ = w′
pnl

(0)c(α,T )1/(1−pnl
)t (1+pnl

)/2(1−pnl
) ∀t ∈ (0, T ],

(76)

and so, in particular

max
i=1,...,N

||u(l)
xi

(·, T )||∞ → (α + 1) as l → ∞, (77)

via (76) and (73) with Corollary 4.11. Therefore, there exists L ∈N such that

max
i=1,...,N

||u(l)
xi

(·, T )||∞ ≥ α ∀l ≥ L. (78)

Therefore, for each l ≥ L,

(c(α,T )fpnl
,0, u(l)) ∈ Iα

T . (79)

Finally, it follows as in (36) that for each l ≥ L,

inf
t∈(0,T ]

(
max

i=1,...,N
||u(l)

xi
(·, t)||∞ −Ft (c(α,T )fpnl

,0, u(l))

)

= c(α,T )1/(1−pnl
)T (1+pnl

)/2(1−pnl
)
(
w′

pnl
(0) − φ(pnl

)
)

and so, via Corollary 4.11 and (33),

lim
l→∞

(
inf

t∈(0,T ]

(
max

i=1,...,N
||u(l)

xi
(·, t)||∞ −Ft (c(α,T )fpnl

,0, u(l))

))

= c(α,T )T 1/2
(

2√
π

− 2√
π

)
= 0,

and the proof of Theorem 1.3 is complete. �
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5. Discussion

We note here that it is not possible to establish a proof of Theorem 1.3 with a sequence of 
the form {(gn, 0, u(n)) ∈ IT }n∈N with gn : R → R anti-symmetric, Lipschitz continuous, and 
such that gn(u) → 1 as n → ∞ for each u > 0. This follows since u(n) : D̄T → R is the unique 
solution to

u
(n)
t − 	u(n) − gn(u

(n)) = 0 on DT ,

u(n) = 0 on ∂D,

and so u(n) = 0 on D̄T for each n ∈ N, via the uniqueness of solutions (see, for example, [14, 
Theorem 4.5]). However, we anticipate that a proof of Theorem 1.3 may be established, some-
what more generically, by considering a sequence of the form {(gn, u0, u(n)) ∈ IT }n∈N, with gn

and u(n) defined as above, but now, with non-zero initial data u0 : RN → R given by

u0(x) =
⎧⎨
⎩

w0

(
x1√
λ0

)
λ0, x ∈ [0,∞) ×R

N−1

−w0

( −x1√
λ0

)
λ0, x ∈ (−∞,0) ×R

N−1,

for some fixed λ0 > 0, with w0 : [0, ∞) → R given by (43)–(44).
Alternatively, since [CP] is often stated (when considered in applications) with an additional 

decay condition as |x| → ∞, for example,

u(x, t) → 0 as |x| → ∞ uniformly for t ∈ [0, T ], (80)

one can inquire if the functional derivative estimate in Proposition 1.1 is non-trivially sharp when 
now, a solution to [CP] satisfies (1)–(3) and (80). Since wp satisfying (21)–(26) can be contin-
uously deformed into functions w̃p (for details, see [4]) which satisfy (21)–(23), and (25)–(26)
for wp = w̃p , and

lim
η→±∞ w̃p(η) = 0,

it follows that the associated analogue of Theorem 1.3 holds when N = 1, however, is open for 
N ∈ N\{1}. Additionally, we note that it is likely that results of similar type to Theorem 1.3
can be established for functional derivative estimates of the Dirichlet and Neumann problems 
associated with (1)–(3).
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