UNIVERSITYOF
BIRMINGHAM

iversit}/]ofBirmin am
esearch at Birmingham

Representing and Reasoning with Intentional
Actions on a Robot

Gomez, Rocio; Sridharan, Mohan; Riley, Heather

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Gomez, R, Sridharan, M & Riley, H 2018, Representing and Reasoning with Intentional Actions on a Robot. in A
Finzi, E Karpas, G Nejat, A Orlandini & S Srivastava (eds), Proceedings of the 6th Workshop on Planning and
Robotics (PlanRob 2018) . International Conference on Automated Planning and Scheduling, pp. 133-142,
Workshop on Planning and Robotics (PlanRob) at ICAPS 2018, Delft, Netherlands, 26/06/18.
<http://wpage.unina.it/alberto.finzi/public_html/proceedings.pdf>

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 13/07/2018

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@Ilists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

http://wpage.unina.it/alberto.finzi/public_html/proceedings.pdf
https://birmingham.elsevierpure.com/en/publications/8cc834c9-b9d0-49a1-a0bf-0c3b649f4322

UNIVERSITYOF
BIRMINGHAM

Research at Birmingham

Representing and Reasoning with Intentional
Actions on a Robot

Gomez, Rocio; Sridharan, Mohan; Riley, Heather

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Gomez, R, Sridharan, M & Riley, H 2018, Representing and Reasoning with Intentional Actions on a Robot. in A
Finzi, E Karpas, G Nejat, A Orlandini & S Srivastava (eds), Proceedings of the 6th Workshop on Planning and
Robotics (PlanRob 2018) . International Conference on Automated Planning and Scheduling, pp. 133-142,
Workshop on Planning and Robotics (PlanRob) at ICAPS 2018, Delft, Netherlands, 26/06/18.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 13/07/2018

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
« Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@Ilists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. Jul. 2018

https://research.birmingham.ac.uk/portal/en/publications/representing-and-reasoning-with-intentional-actions-on-a-robot(8cc834c9-b9d0-49a1-a0bf-0c3b649f4322).html

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

Representing and Reasoning with Intentional Actions on a Robot

Rocio Gomez, Mohan Sridharan and Heather Riley
Department of Electrical and Computer Engineering
The University of Auckland, New Zealand
m.gomez@auckland.ac.nz, m.sridharan@auckland.ac.nz,hril230@aucklanduni.ac.nz

Abstract

This paper describes a general architecture for robots to rep-
resent and reason with intentional actions. The architecture
reasons with tightly-coupled transition diagrams of the do-
main at two different resolutions. Non-monotonic logical
reasoning with a coarse-resolution transition diagram is used
to compute a plan comprising intentional abstract actions for
any given goal. Each such abstract action is implemented
as a sequence of concrete actions by reasoning over the rel-
evant part of the fine-resolution transition diagram, with the
outcomes of probabilistic execution of the concrete actions
being added to the coarse-resolution history. The capabilities
of this architecture are illustrated in the context of a simu-
lated robot assisting humans in an office domain, on a phys-
ical robot (Baxter) manipulating tabletop objects, and on a
wheeled robot (Turtlebot) moving objects to particular places
or people in an office. We show that this architecture im-
proves reliability and efficiency in comparison with a plan-
ning architecture that does not include intentional actions.

1 Introduction

Consider robots assisting humans in dynamic domains, e.g.,
a robot helping a human arrange objects in different con-
figurations on a tabletop in Figure 1a, or a robot delivering
objects to particular places or people in Figure 1b. These
robots often have to reason with different descriptions of un-
certainty and incomplete domain knowledge. This informa-
tion about the domain often includes commonsense knowl-
edge, especially default knowledge that holds in all but a few
exceptional circumstances (e.g., “books are usually in the li-
brary but cookbooks may be in the kitchen™), and probabilis-
tic quantification of the uncertainty in sensing and actuation
(e.g., “I am 90% certain the robotics book is on the table”).
The robot also receives a lot more raw sensor data than it
can process, and may be equipped with many algorithms to
process the data. Furthermore, while it is difficult to pro-
vide robots comprehensive domain knowledge or elaborate
supervision, reasoning with incomplete or incorrect infor-
mation can provide incorrect or suboptimal outcomes. This
loss in performance is more pronounced in scenarios corre-
sponding to unexpected success or failure, which are com-
mon in dynamic domains. For instance, consider a robot
trying to move two books from an office to a library. Af-
ter moving the first book to the library, if the robot observes
the second book in the library, or if it observes the second

book in the kitchen on the way back to the office, it should
stop executing its plan, reason about what may have hap-
pened, and compute a new plan if necessary. One way to
achieve this behavior is to augment a traditional planning
approach with the ability to reason about observations of all
domain objects and events during plan execution, but this ap-
proach will become computationally intractable in complex
domains. Instead, the architecture described in this paper
seeks to enable a robot pursuing a particular goal to auto-
matically reason about the underlying intention and related
observations of its domain during planning and execution. It
does so by building on an architecture that uses declarative
programming to reason about intended actions to achieve a
given goal (Blount, Gelfond, and Balduccini 2015), and on
an architecture that reasons with tightly-coupled transition
diagrams at different levels of abstraction (Sridharan et al.
2017). We describe the following characteristics of the ar-
chitecture:

e An action language is used to describe the tightly-coupled
transition diagrams of the domain at two different reso-
lutions. At the coarse resolution, non-monotonic logical
reasoning with commonsense knowledge, including de-
fault knowledge, produces a sequence of intentional ab-
stract actions for any given goal.

e Each intended abstract action is implemented as a se-
quence of concrete actions by automatically zooming to
the relevant part of the fine-resolution system description
defined as a refinement of the coarse-resolution system
description. The outcomes of executing the concrete ac-
tions using probabilistic models or uncertainty are added
to the coarse-resolution history.

In this paper, the coarse-resolution and fine-resolution ac-
tion language descriptions are translated to programs in CR-
Prolog, an extension of Answer Set Prolog (ASP) (Gelfond
and Kahl 2014), for commonsense reasoning. The execution
of each concrete action using probabilistic models of uncer-
tainty in sensing and actuation is achieved using existing al-
gorithms. The architecture thus reasons about intentions and
beliefs at different levels of resolution. We demonstrate the
general applicability of our architecture in the context of a
(1) simulated robot assisting humans in an office domain; (ii)
physical robot (Baxter) manipulating objects on a tabletop;
and (iii) wheeled robot (Turtlebot) moving objects to desired

ln the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

>

(b) Turtlebot.

(a) Baxter robot.

Figure 1: (a) Baxter robot manipulating objects on a tabletop; and
(b) Turtlebot moving objects to particular locations in a lab.

locations in an office domain. We show that the proposed ar-
chitecture improves reliability and computational efficiency
of planning and execution in dynamic domains in compari-
son with a planning architecture that does not support rea-
soning about intentional actions.

2 Related Work

There is much work in the modeling and recognition of in-
tentions. Belief-desire-intention (BDI) architectures for rea-
soning agents model intention and guide reasoning by elimi-
nating choices inconsistent with current intentions (Bratman
1987; Rao and Georgeff 1995). However, such architectures
do not learn from past behavior, adapt to new situations,
or include an explicit representation of (or reasoning about)
goals. Other work has reasoned with domain knowledge or
used models learned from training samples to recognize in-
tentions (Kelley et al. 2008).

An architecture formalizing intentions based on declar-
ative programming was presented in (Baral and Gelfond
2005). It introduced an action language that can represent
intentions based on two principles: (i) non-procrastination,
i.e., intended actions are executed as soon as possible; and
(i) persistence, i.e., unfulfilled intentions persist. This ar-
chitecture was also used to enable an external observer to
recognize the activity of an observed agent, i.e., for deter-
mining what has happened and what the agent intends to
do (Gabaldon 2009). However, this architecture did not sup-
port the modeling of agents that desire to achieve specific
goals. The more recent Theory of Intentions (TZ) (Blount,
Gelfond, and Balduccini 2015; 2014) builds on (Baral and
Gelfond 2005) to model the intentions of goal-driven agents.
This theory expanded transition diagrams that have physical
states and physically executable actions to include mental
fluents and actions. It associated a sequence of agent actions
with the goal it intended to achieve (called an “activity”),
and introduced an intentional agent that only performs ac-
tions that are intended to achieve a desired goal and does so
without delay. This theory has been used to create a method-
ology for understanding of narratives of typical and excep-
tional restaurant scenarios (Zhang and Inclezan 2017), and
goal-driven agents in dynamic domains have been modeled
using such activities (Saribatur, Baral, and Eiter 2017). A
common requirement of such theories and their use is that
all the domain knowledge, including the preconditions and

effects of actions and potential goals, be known and en-
coded in the knowledge base, which is difficult to do in
robot domains. Also, the set of states (and actions, observa-
tions) to be considered can be large in robot domains, which
makes efficient reasoning a challenging task. In (Zhang
and Inclezan 2017), the authors cluster indistinguishable
states (Saribatur and Eiter 2016) but these clusters need to
be encoded in advance. Furthermore, these approaches do
not consider the uncertainty in sensing and actuation.

Many logic-based methods have been used in robotics, in-
cluding those that also support probabilistic reasoning (Han-
heide et al. 2017; Zhang, Sridharan, and Wyatt 2015). Meth-
ods based on first-order logic do not support non-monotonic
logical reasoning or the desired expressiveness for capabil-
ities such as default reasoning, e.g., it is not always mean-
ingful to express degrees of belief by attaching probabili-
ties to logic statements. Non-monotonic logics such as ASP
address these limitations and have been used in cognitive
robotics (Erdem and Patoglu 2012), but classical ASP for-
mulations do not support the probabilistic models of uncer-
tainty that are used by algorithms for sensing and actuation.
Approaches based on logic programming also do not sup-
port one or more of the capabilities such as incremental ad-
dition of probabilistic information or variables to represent
open worlds. Our prior refinement-based architecture rea-
soned with tightly-coupled transition diagrams at two reso-
lutions, executing each abstract action in a coarse-resolution
plan computed using ASP as a sequence of concrete ac-
tions computed by probabilistic reasoning over the relevant
part of the fine-resolution diagram (Sridharan et al. 2017;
Sridharan and Gelfond 2016). This paper explores the com-
bination of these ideas and those drawn from 7Z; specific
differences from prior work are described below.

3 Cognitive Architecture

Figure 2 presents a block diagram of the overall architecture.
Similar to prior work (Sridharan et al. 2017), this architec-
ture may be viewed as consisting of three components: con-
troller, logician and executor. In this paper, the controller is
responsible for holding the overall beliefs of domain state,
and for the transfer of control and information between all
components. For any given goal, the logician performs non-
monotonic logical reasoning with the coarse-resolution rep-
resentation of commonsense knowledge to generate an ac-
tivity, i.e., a sequence of intentional abstract actions. Each
abstract action is implemented as a sequence of concrete
actions. The executor uses probabilistic models of the un-
certainty in sensing and actuation to execute each such ac-
tion, with the outcomes (and relevant observations) being
communicated to the controller and added to the coarse-
resolution history of the logician. These components are de-
scribed below, along with differences from prior work, using
variants of the following illustrative domain.

Example 1 [Robot Assistant (RA) Domain] Consider a
robot assisting humans in moving particular objects to spe-
cific locations in an indoor office domain with:

e Sorts such as place, thing, robot, object, and book,
arranged hierarchically, e.g., object and robot are sub-

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

coarse-resolution description,
history and goal.

Logician

zoomed system description

sequence of abstract actions

sequence of fine-resolution actions

fine-resolution transition
Executor

Controller

observations

Figure 2: Architecture uses logic representation of the world at two different resolutions; may be viewed as interactions between a controller,

logician, and executor.

sorts of thing. Sort names and constants are in lower-
case, and variable names are in uppercase.

e Places: {office;,office,, kitchen, library} with a
door between neighboring places; only door between
kitchen and library can be locked—Figure 3.

e Instances of sorts, e.g., roby, booky, book;.

e Static attributes such as color, size and different parts
(e.g., base and handle) associated with objects.

e Other agents that may influence the domain, e.g., move a
book or lock a door. These agents are not modeled.

Office 1 Office 2 Kitchen Library

O [%

Figure 3: Four rooms considered in Example 1, with a human in
the kitchen and two books in office;. Only the library’s door can
be locked; all other rooms are open at all times.

3.1 Action Language and Domain Representation

We first describe the action language encoding of domain
dynamics, and its translation to CR-Prolog programs for
knowledge representation and reasoning.

Action Language Action languages are formal models
of parts of natural language used for describing transition
diagrams of dynamic systems. We use action language
AL 4 (Gelfond and Inclezan 2013) to describe the transi-
tion diagrams at different resolutions. AL 4 has a sorted sig-
nature with statics, fluents and actions. Statics are domain
attributes whose truth values cannot be changed by actions,
whereas fluents are domain attributes whose truth values can
be changed by actions. Fluents can be basic or defined. Ba-
sic fluents obey the laws of inertia and can be changed by
actions. Defined fluents do not obey the laws of inertia and
are not changed directly by actions—their values depend on
other fluents. Actions are defined as a set of elementary op-
erations. A domain attribute p or its negation —p is a literal.
AL allows three types of statements:

a causes ly if po,...,Pm (Causal law)

Lif po,...,Pm (State constraint)

impossible ao, ..., ax if po, ..., pm (Executability condition)

where a is an action, | is a literal, 1, is a basic literal, and
Po,- - -, Pm are domain literals.

Knowledge Representation The domain representation
consists of system description D, a collection of statements
of ALy, and history H. D has a sorted signature X and
axioms that describe the transition diagram T. X defines
the basic sorts, domain attributes and actions. Basic sorts
of the RA domain and some ground instances were intro-
duced in Example 1. Domain attributes and actions are de-
scribed in terms of their arguments’ sorts. Statics of the RA
domain include relations such as next_to(place,place),
which describes the relative location of places in the do-
main; and relations representing object attributes such as
color and size, e.g., obj_color(object,color). Flu-
ents include loc(thing,place), the location of the robot
or domain objects; in_hand(robot,object), which de-
notes a particular object is in the robot’s hand; and
locked(place), which implies a particular place is
locked. The locations of other agents, if any, are
not changed by the robot’s actions; these locations
are inferred from observations obtained from other sen-
sors. The domain’s actions include move(robot, place),
pickup(robot, object), putdown(robot,object), and
unlock(robot, place); we also consider exogenous ac-
tions exo_move(object, place) and exo_lock(place) for
diagnostic reasoning. X also includes the sort step for tem-
poral reasoning, and the relation holds(fluent, step) to
imply that a particular fluent holds at a particular time step.

Axioms for the RA domain include causal laws, con-
straints and executability conditions such as:

move(robq, P) causes loc(robq,P)
pickup(rob;, O) causes in_hand(rob;,O)
ﬁlOC(Th, Lz) if IOC(—H’L,Lﬂ, Ly 75 L,
loc(O, P) if loc(roby,P), in_hand(roby, O)
impossible pickup(robq, O) if loc(roby,Ly),
lOC(O,Lz), L, 75 L,

The history H of a dynamic domain is usually a record of
fluents observed to be true or false at a particular time step,
i.e., obs(fluent,boolean, step), and the occurrence of an
action at a particular time step, i.e., occurs(action, step).
We expanded this notion to represent defaults describing the
values of fluents in the initial state, e.g., “books are usually
in the library and if it not there, they are normally in the
office” is encoded as:

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

initial default loc(X, library) if book(X)
initial default loc(X, office;) if book(X),
—loc(X, library)

We can also encode exceptions to these defaults, e.g., “cook-
books are in the kitchen”.

Reasoning The domain representation is translated into a
program T1(D,) in CR-Prolog', a variant of ASP that in-
corporates consistency restoring (CR) rules (Balduccini and
Gelfond 2003). ASP is based on stable model semantics
and is based on concepts such as default negation and epis-
temic disjunction, e.g., unlike “—a” that states a is believed
to be false, “not a” only implies a is not believed to be true.
ASP can represent recursive definitions and constructs that
are difficult to express in classical logic formalisms, and it
supports non-monotonic logical reasoning, i.e., it is able to
revise previously held conclusions based on new evidence.
An ASP program TT includes the signature and axioms of
D, inertia axioms, reality checks, and observations, actions,
and defaults from 7{. Every default also has a CR rule that
allows the robot to assume the default’s conclusion is false
to restore consistency under exceptional circumstances. Al-
gorithms for computing entailment, and for planning and di-
agnostics, reduce these tasks to computing answer sets of
CR-Prolog programs. We compute answer sets using the
language SPARC (Balai, Gelfond, and Zhang 2013).

3.2 Adapted Theory of Intention

For a given goal, a robot using ASP-based reasoning will
compute a plan and execute it until the goal is achieved or
an action in the plan has an unexpected outcome; in the lat-
ter case, the robot will attempt to explain the outcome (i.e.,
perform diagnostics) and compute a new plan if necessary.
To motivate a need for a different approach in dynamic do-
mains, consider the following scenarios in which the goal is
to move book; and book; to the library; these have been
adapted from scenarios considered in prior work (Blount,
Gelfond, and Balduccini 2015):

e Scenario 1 (planning): Robot rob; is in the kitchen
holding book;, and believes book; is in the kitchen
and that the library is unlocked. The computed plan is:
move(roby, library), put_down(robq, book),
move(roby, kitchen), pickup(rob;, book;),
move(roby, library), put_.down(roby, book,).

e Scenario 2 (unexpected success): Assume that rob;
in Scenario-1 has moved to the library and put book;
down, and observes book, there. The robot should be
able to explain this observation (e.g., book, was moved
there) and realize the goal has been achieved.

e Scenario 3 (not expected to achieve goal, diagnose and
replan, case 1): Assume rob1 in Scenario-1 starts mov-
ing book; to library, but observes book; is not in the
kitchen. Now, rob; should realize the plan will fail, ex-
plain the observation and compute a new plan.

"'We use the terms “ASP” and “CR-Prolog” interchangeably.

e Scenario 4 (not expected to achieve goal, diagnose and
replan, case 2): Assume robl is in the kitchen holding
bookl, and believes book?2 is in office, and library
is unlocked. The robot plans to first put book; in the
library before fetching book, from office,. Before
rob; moves to the library, it suddenly observes book,
in the kitchen. Now, rob; should realize the plan will
fail, explain the observation and compute a new plan.

e Scenario 5 (failure to achieve the goal, diagnose and
replan): Assume Tob; in Scenario-1 is putting book;
in the library, after having put book; in the library
earlier, and observes that book; is no longer there. The
robot’s intention should persist; it should explain the ob-
servation(s), replan if necessary, and execute actions until
the goal is achieved.

One way to support the desired behavior in such scenarios
is to obtain and reason with all possible observations of do-
main objects and events (e.g., observations of all objects in
the sensor’s field of view) during plan execution. However,
such an approach would be computationally intractable in
complex domains. Instead, we build on the principles of
non-procrastination and persistence and the ideas from 7 Z.
Our architecture enables the robot to compute actions that
are intended for any given goal and current beliefs. As the
robot attempts to implement each such action, it obtains all
observations relevant to this action and the intended goal,
and adds these observations to the recorded history. We will
henceforth use A7 Z to refer to this adapted theory of inten-
tion that expands both the system description D and history
‘H in the original program TT(D, H). First, the signature X is
expanded to represent an activity, a triplet of a goal, a plan
to achieve the goal, and a specific name, by introducing re-
lations such as:

activity(name), activity_goal(name,goal)
activity_length(name, length)
activity_component(name, number, action)

These relations represent each named activity, the goal and
length of each activity, and the actions that are the com-
ponents of the activity. Note that when these relations are
ground, they are statics.

Next, the existing fluents of X are considered physical flu-
ents and are expanded to include mental fluents such as:

active_activity(activity), in_progress_goal(goal)
next_action(activity, action),
in_progress_activity(activity),
active_goal(goal), next_activity_name(name)
current_action_index(activity, index)

where the relations in the first three lines are defined flu-
ents, whereas the other relations correspond to basic fluents.
These fluents represent the robot’s belief about a particular
activity, action or goal being active or in progress. None of
these fluents’ values are changed directly by executing any
physical action. The value of current_action_index changes
if the robot has completed an intended action or if a change

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

in the domain makes it impossible for an activity to succeed.
The values of the other mental fluents are changed directly
or indirectly by expanding the existing physical actions of X
to include mental actions such as:

start(name), stop(name), select(goal)
abandon(goal)

where the first two mental actions are used by the controller
to start or stop a particular activity, and the other two are
exogenous actions exercised (e.g., by a human) to select or
abandon a goal.

We also define new axioms in ALg4, e.g., to represent the
effects of actions, prevent certain outcomes, and generate
intentional actions—we do not describe these here due to
space constraints. The notion of history is also expanded to
include statements such as:

attempt(action, step), — hpd(action, step)

which denote that a particular action was attempted at a par-
ticular time step, and that a particular action did not happen
(i.e., was not executed successfully) at a particular time step.
The revised system description and history are translated au-
tomatically to CR-Prolog program TT(D’, H’) that is solved
for planning or diagnostics. The complete program for the
RA domain is available online (Software 2018).

Key differences between A7 Z and prior work on 77 are:

e 7T becomes computationally expensive, especially as the
size of the plan or history increases. It also performs
diagnostics and planning jointly, which allows it to con-
sider different explanations during planning but increases
computational cost in complex domains. A7 Z, on the
other hand, first builds a consistent model of history by
considering different explanations, and uses this model to
guide planning, significantly reducing computational cost
in complex domains.

e 77 assumes complete knowledge of the state of other
agents (e.g., humans or other robots) that perform exoge-
nous actions; in many robotics domains, this is an unreal-
istic assumption. 47 Z instead makes the more realistic
assumption that the robot can only infer exogenous ac-
tions by reasoning with the observations that it obtains
from sensor input.

e AT does not include the notion of sub-goals and sub-
activities (and associated relations) from 7 Z, as they were
not necessary; these may be introduced later without loss
of generality of our overall architecture.

Any architecture with AT Z, TZ or any reasoning com-
ponent based on logic-programming or classical first-order
logic, often has two key limitations. First, reasoning does
not scale well to the finer resolution required for many tasks
to be performed by the robot. For instance, the coarse-
resolution representation discussed so far is not sufficient if
the robot has to grasp and pickup a particular object from
a particular location, and reasoning logically over a suffi-
ciently fine-grained domain representation will be compu-
tationally expensive. Second, we have not yet modeled the
actual sensor-level observations of the robot or the uncer-
tainty in sensing and actuation. Section 2 further discusses

the limitations of other approaches based on logical and/or
probabilistic reasoning for robotics domains. Our architec-
ture seeks to address these limitations by combining AT Z
with ideas drawn from work on a refinement-based architec-
ture (Sridharan et al. 2017).

3.3 Refinement, Zooming and Execution

Consider a coarse-resolution system description D, of tran-
sition diagram T, that includes A7 Z. For any given goal,
reasoning with TT(D., H.), as described above, will provide
an activity, i.e., a sequence of abstract intentional actions. In
our architecture, the execution of the coarse-resolution tran-
sition corresponding to each such abstract action is based on
a fine-resolution system description Dy of transition diagram
T¢, which is a refinement of, and is tightly coupled to, D..
We can imagine refinement as taking a closer look at the do-
main through a magnifying lens, potentially leading to the
discovery of structures that were previously abstracted away
by the designer (Sridharan et al. 2017). Dy is constructed
automatically as a step in the design methodology using D,
and some domain-specific information that has to be pro-
vided by the designer.

The signature X¢ of Dy includes each basic sort of D,
whose elements have not been magnified by the increase in
resolution, or both the coarse-resolution copy and its fine-
resolution counterparts for sorts with magnified elements.
For instance, the sorts in the RA domain would include:

place® = {office;, office,, kitchen, library}
place ={c1,...,Cm}

cup” = {cup}

cup = {cup;_base, cup;_handle}

book = {booky, book;}

where {c1,...,cm} are the cells that are the components
of the original set of places, and any cup has a base and
handle as components; a book, on the other hand, is not
magnified and has no components. We also include domain-
dependent statics relating the magnified objects and their
counterparts, e.g., component(cup_base,cup). Next,
domain attributes of X¢ include the coarse-resolution ver-
sion and fine-resolution counterparts (if any) of each domain
attribute of X.. For instance, in the RA domain, ¢ will in-
clude domain attributes such as:

loc*(thing*,place™), next_to*(place*,place™)
loc(thing, place), next_to(place,place)

These relations describe the location of each thing at two
different resolutions, and describe two places or cells that
are next to each other. Actions of X¢ include (a) every ac-
tion in X, with its magnified parameters replaced by fine-
resolution counterparts; and (b) knowledge-producing ac-
tion test(robot, fluent) that checks the value of a fluent in
a given state. Finally, £ includes knowledge fluents to de-
scribe observations of the environment and the axioms gov-
erning them, e.g., basic fluents to describe the direct (sensor-
based) observation of the values of the fine-resolution flu-
ents, and defined domain-dependent fluents that determine

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

when the value of a particular fluent can be tested. The test
actions only change the values of knowledge fluents.

The axioms of Dy include (a) axioms of D with variables
ranging over appropriate sorts from Z¢; (b) axioms for ob-
serving the domain through sensor inputs; and (c) axioms
relating coarse-resolution domain attributes with their fine-
resolution counterparts. For example:

test(robq, F) causes dir_obs(rob;,F) if F = true

impossible test(robq,F) if —can_test(robq,F)

in_hand*(roby, O) if component(O_base, O),
in_hand(rob;, O_base)

If certain conditions are met, e.g., each coarse-resolution do-
main attribute can be defined in terms of the fine-resolution
attributes of the corresponding components, there is a path
in T¢ for each transition in T.—see (Sridharan et al. 2017)
for details.

Reasoning at fine resolution using Dy does not address
the uncertainty in sensing and actuation, and becomes com-
putationally intractable for complex domains. We address
this problem by drawing on the principle of zooming intro-
duced in (Sridharan et al. 2017). Specifically, for each ab-
stract transition T to be implemented (i.e., executed) at fine
resolution, we automatically determine the system descrip-
tion D¢ (T) relevant to this transition; we do so by determin-
ing the relevant object constants and restricting Dy to these
object constants. To implement T, we then use ASP-based
reasoning with TT(Dy(T), H¢) to plan a sequence of concrete
(i.e., fine-resolution) actions. In what follows, we use “re-
finement and zooming” to refer to the use of both refinement
and zooming as described above. Note that fine-resolution
reasoning does not (need to) reason with activities or inten-
tional actions.

The actual execution of the plan of concrete action is
based on existing implementations of algorithms for com-
mon robotics tasks such as motion planning, object recog-
nition and localization; these algorithms use probabilistic
models of uncertainty in sensing and actuation. The high-
probability outcomes of each action’s execution are ele-
vated to statements associated with complete certainty in
‘H¢ and used for subsequent reasoning. The outcomes from
fine-resolution execution of each abstract transition, along
with relevant observations, are added to H. for subsequent
reasoning using A7 Z. The CR-Prolog programs for fine-
resolution reasoning and the program for the overall control
loop are available online (Software 2018).

Key differences between the current representation and
use of fine-resolution information, and prior work on the
refinement-based architecture (Sridharan et al. 2017) are:

e Prior work used a partially observable Markov decision
process (POMDP) to reason probabilistically over the
zoomed fine-resolution system description D¢ (T) for any
coarse-resolution transition T; this can be computation-
ally expensive, especially when domain changes prevent
reuse of POMDP policies (Sridharan et al. 2017). In
this paper, CR-Prolog is used to compute a plan of con-
crete actions from D¢(T); each concrete action is exe-
cuted using algorithms that incorporate probabilistic mod-

els of uncertainty, significantly reducing the computa-
tional costs of fine-resolution planning and execution.

e Prior work did not (a) reason about intentional actions;
(b) maintain any fine-resolution history; or (c) obtain and
exploit all the information from fine-resolution observa-
tions. The architecture described in this paper keeps track
of the relevant fine-resolution observations and adds ap-
propriate statements to the coarse-resolution history to use
all relevant information. It also explicitly builds a consis-
tent model of history at the finer resolution.

4 Experimental Setup and Results

This section reports the results of experimentally evaluating
the capabilities of our architecture in different scenarios. We
evaluated the following hypotheses:

e H1: using A7 Z improves the computational efficiency in
comparison with not using it, especially in scenarios with
unexpected success.

e H2: using A7 Z improves the accuracy in comparison
with not using it, especially in scenarios with unexpected
goal-relevant observations.

e H3: the architecture that combines A7 Z with refinement
and zooming supports reliable and efficient operation in
complex robot domains.

We evaluated these hypotheses experimentally: (a) in a sim-
ulated domain based on Example 1; (b) on a Baxter robot
manipulating objects on a tabletop; and (c) on a Turtlebot
finding and moving objects in an indoor domain. We also
provide some execution traces as illustrative examples of the
working of the architecture. In each trial, the robot’s goal
was to find and move one or more objects to particular loca-
tions. As a baseline for comparison, we used an ASP-based
reasoner that does not include A7 Z—we refer to this as the
“traditional planning” (7 P) approach in which only the out-
come of the action currently being executed is monitored.
Note that this baseline still uses refinement and zoom, and
probabilistic models of the uncertainty in sensing and actua-
tion. To evaluate the hypotheses, we used one or more of the
following performance measures: (i) total planning and ex-
ecution time; (ii) number of plans computed; (iii) planning
time; (iv) execution time; (v) number of actions executed;
and (vi) accuracy.

4.1 Experimental Results (Simulation)

We first evaluated hypotheses H1 and H2 extensively in a
simulated world that mimics Example 1, with four places
and different objects. Please also note the following:

e To fully explore the effects of A7 Z, the simulation-based
trials did not include refinement, i.e., the robot only rea-
sons with the coarse-resolution domain representation.
We also temporarily abstracted away uncertainty in per-
ception and actuation.

e We conducted paired trials and compared the results ob-
tained with 7P and AT Z for the same initial conditions
and for the same dynamic domain changes (when appro-
priate), e.g., a book is moved unknown to the robot and
the robot obtains an unexpected observation.

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

Scenarios ‘ Averag§ Rati'os . Accuracy
Total Time | Number Plans | Planning Time | Exec. Time | Exec.Steps | TP | ATZ
1 0.81 1.00 0.45 1.00 1.00 100% | 100%
2 3.06 2.63 1.08 5.10 3.61 100% | 100%
3 0.81 0.92 0.34 1.07 1.12 72% | 100%
4 1.00 1.09 0.40 1.32 1.26 73% 100%
5 0.18 0.35 0.09 0.21 0.28 0% 100%
All 1.00 1.08 0.41 1.39 1.30 74% 100%
3 - no failures 1.00 1.11 0.42 1.32 1.39 100% | 100%
4 - no failures 1.22 1.31 0.49 1.61 1.53 100% | 100%
All - no failures 1.23 1.30 0.5 1.72 1.60 100% | 100%

Table 1: Experimental results comparing A7 Z with 7P in different scenarios. Values of all performance measures (except accuracy) for
TP are expressed as a fraction of the values of the same measures for A7 Z. We notice that A7 Z improves accuracy and computational

efficiency, especially in dynamic domains.

o To measure execution time, we assumed a fixed execution
time for each concrete action, e.g., 15 units for moving
from a room to the neighboring room, 5 units to pick up an
object or put it down; and 5 units to open a door. Ground
truth is provided by a component that reasons with com-
plete domain knowledge.

Table 1 summarizes the results of ~ 800 paired trials in
each scenario described in Section 3.2; all claims made be-
low were tested for statistical significance. The initial con-
ditions, e.g., starting location of the robot and objects’ loca-
tions, and the goal were set randomly in each paired trial; the
simulation ensures that the goal is reachable from the chosen
initial conditions. Also, in suitable scenarios, a randomly-
chosen, valid (unexpected) domain change is introduced in
each paired trial. Given the differences between paired tri-
als, it does not make sense to average the measured time or
plan length across different trials. In each paired trial, the
value of each performance measure (except accuracy) ob-
tained with 7P is thus expressed as a fraction of the value
of the same performance measure obtained with A7 Z; each
value reported in Table 1 is the average of these computed
ratios. We highlight some key results below.

Scenario-1 represents a standard planning task with no
unexpected domain changes. Both 7P and A7 Z provide
the same accuracy (100%) and compute essentially the same
plans, but reasoning with intentions to compute plans takes
longer. This explains the reported average values of 0.45
and 0.81 for planning and total time in Table 1.

In Scenario-2 (unexpected success), both 7P and ATZ
achieve 100% accuracy. Here, A7 Z stops reasoning and
execution once it realizes the desired goal has been achieved
unexpectedly. However, 7P does not realize this because
it does not consider observations not directly related to the
action being executed; it keeps trying to find the objects of
interest in different places. This explains why 7P has a
higher planning time and execution time, and also computes
many more plans and executes more plan steps than A7 Z.

Scenarios 3-5 correspond to different kinds of unexpected
failures. In all trials corresponding to these scenarios, AT Z
leads to successful achievement of the goal, but there are a
significant number of instances in which 7P is unable to
recover from the unexpected observations and achieve the
goal. For instance, if the goal is to move two books to the

library, and one of the books is moved to an unexpected loca-
tion when it is no longer part of an action in the robot’s plan,
the robot may not reason about this unexpected occurrence
and will thus fail to achieve the goal. This phenomenon is
especially pronounced in Scenario-5 that represents an ex-
treme case in which the robot using 7P is never able to
achieve the desired goal because it never realizes that it has
failed to achieve the goal. Notice that in the trials corre-
sponding to all three scenarios, A7 Z takes more time than
TP to plan and execute the plans for any given goal, but this
increase in time is more than justified given the high accu-
racy and the desired behavior that the robot is able to achieve
in these scenarios using AT Z.

The row labeled “All” in Table 1 shows the average of
the results obtained in the different scenarios. The following
three rows in Table 1 summarize results after removing from
consideration all trials in which 7P fails to achieve the as-
signed goal. We then notice that AT Z is at least as fast as
T°P and is often faster, i.e., takes less time (overall) to plan
and execute actions to achieve the desired goal. In summary,
TP results in faster planning but results in lower accuracy
and higher execution time than A7 Z in dynamic domains,
especially in the presence of unexpected successes and fail-
ures that are common in dynamic domains. All these results
provide evidence in support of hypotheses H1 and H2.

4.2 Execution traces

The following execution traces illustrate the differences in
the decisions made by a robot using A7 Z in comparison
with a robot using 7°P. These traces correspond to scenarios
in which the robot has to respond to the observed effects of
an exogenous action.

Execution Example 1 [Example of Scenario-2]

Assume that robot Tob is in the kitchen initially, holding
book; in its hand, and believes that book; is in office,
and the library is unlocked.

e The goal is to have book; and book; in the library.
The computed plan is the same for A7Z and 7P, and

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

consists of actions:

move(roby, library), put_.down(roby, book;),
move(roby, kitchen), move(roby, office;),
pickup(roby, book,), move(roby, kitchen)
move(roby, library), putdown(rob;, book,)

e Assume that as the robot is putting book; down in the
library, someone has moved book; to the library.

e With A7 Z, the robot observes book; in the library, rea-
sons and explains the observation as the result of an ex-
ogenous action, realizes the goal has been achieved and
stops further planning and execution.

e With 7P, the robot does not observe or does not use the
information encoded in the observation of book,. It will
thus waste time executing subsequent steps of the plan
until it is unable to find or pickup book; in the library.
It will then replan (potentially including prior observation
of book;) and eventually achieve the desired goal. It may
also compute and pursue plans assuming book; is in dif-
ferent places, and take more time to achieve the goal.

Execution Example 2 [Example of Scenario-5]

Assume that robot rob; is in the kitchen initially, holding
book; in its hand, and believes that book, is in kitchen
and the library is unlocked.

e The goal is to have book; and book; in the library.
The computed plan is the same for A7Z and 7P, and
consists of the actions:

move(roby, library), put_.down(roby, booky),
move(roby, kitchen), pickup(roby, book;),
move(roby, library), putdown(rob, book,)

e Assume the robot is in the act of putting book; in the
library, after having already put down book; in the
library earlier. However, someone has moved book;
to the kitchen while the robot was moving book;.

e With A7Z, the robot observes book; in not in the
library, realizes the goal has not been achieved, and con-
tinues to replan until it finds book; and moves it to the
library.

e With 7P, the robot puts book; in the library and stops
execution because it believes it has achieved the desired
goal. In other words, it does not even realize that the goal
has not been achieved.

4.3 Robot Experiments

We also ran experimental trials with the combined architec-
ture, i.e., AT Z with refinement and zoom, on two different
robot platforms. These trials represented instances of the
different scenarios (in Section 3.2) in domains that are vari-
ants of the domain in Example 1.

First, consider the experiments with the Baxter robot ma-
nipulating objects on a tabletop as shown in Figure 1a. Some
other details of the domain include:

e The goal is to move particular objects between different
“zones” (instead of places) or particular cell locations on
a tabletop.

e After refinement, each zone is magnified to obtain grid
cells. Also, each object is magnified into parts such as
base and handle after refinement.

e Objects are characterized by color and size.

e The robot cannot move its body but it can use its arm to
move objects between cells or zones.

Next, consider the experiments with the Turtlebot robot
operating in an indoor domain as shown in Figure 1b. Some
other details of the domain include:

e The goal is to find and move particular objects between
places in an indoor domain.

e The robot does not have a manipulator arm; it solicits help
from a human to pickup the desired object when it has
reached the desired source location and found the object,
and to put the object down when it has reached the desired
target location.

e Objects are characterized by color and type.

o After refinement, each place or zone was magnified to ob-
tain grid cells. Also, each object is magnified into parts
such as base and handle after refinement.

Although the two domains differ significantly, e.g., in the
domain attributes, actions and complexity, no change is re-
quired in the architecture or the underlying methodology.
Other than providing the domain-specific information, no
human supervision is necessary; most of the other steps are
automated. In ~ 50 experimental trials in each domain, the
robot using the combined architecture is able to successfully
achieve the assigned goal. The performance is similar to
that observed in the simulation trials. For instance, if we
do not include AT Z, the robot has lower accuracy or takes
more time to achieve the goal in the presence of unexpected
success or failure; in other scenarios, the performance with
ATZ and TP is comparable. Also, if we do not include
zooming, the robot takes a significantly longer to plan and
execute concrete, i.e., fine-resolution actions. In fact, as the
domain becomes more complex, i.e., there are many objects
and achieving the desired goal requires plans with multiple
steps, there are instances when the planning starts becoming
computationally intractable. All these results provide evi-
dence in support of hypothesis H3.

Videos of the trials on the Baxter robot and Turtlebot cor-
responding to different scenarios can be viewed online”. For
instance, in one trial involving the Turtlebot, the goal is to
have both a cup and a bottle in the library, and these ob-
jects and the robot are initially in office,. The computed
plan has the robot pick up the bottle, move to the kitchen,
move to the library, put the bottle down, move back to the
kitchen and then to office;,, pick up the cup, move to the
library through the kitchen, and put the cup down. When
the Turtlebot is moving to the library holding the bottle,
someone moves the cup to the library. With ATZ, the
robot uses the observation of the cup, once it has put the
bottle in the library, to infer the goal has been achieved

nttps://drive.google.com/drive/u/1/
folders/1cWXVib82K7qVSIP5i_cT7HEBEE5cGB4G

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

and thus stops planning and execution. With just 7P, the
robot continued with its initial plan and realized there was a
problem only when it went back to office, and did not find
the cup.

Similarly, in one trial with the Baxter, the goal is to have
blue and green blocks in zone Y (right side of the screen) and
these blocks are initially in zone R (left side of the screen).
The computed plan has the Baxter move its arm to zone R,
pick up a block, move to zone G (center) then to zone Y
to put the block down, and repeat this process until it has
moved all blocks. When the Baxter has moved one block
and is moving back to pick up the second block from zone
R, an exogenous action puts the first block in zone G (cen-
ter). With A7 Z, as the Baxter is moving over zone G on the
way to zone R, it observes the block (it had previously put
in zone Y), performs diagnostics and realizes his current ac-
tivity will not achieve the goal. It then re-plans and manages
to move all blocks to zone Y. With 7 P, the robot is not able
to use the observation of the first block in zone G, continues
with the initial plan and never realizes that the goal has not
been achieved.

5 Discussion and Future Work

In this paper we presented a general architecture that rea-
sons with intentions and beliefs using transition diagrams
at two different resolutions. Non-monotonic logical reason-
ing with a coarse-resolution domain representation contain-
ing commonsense knowledge is used to provide a plan of
abstract intentional actions for any given goal. Each such
abstract intentional action is implemented as a sequence of
concrete actions by reasoning with the relevant part of a fine-
resolution representation that is a refinement of the coarse-
resolution representation. Also, the architecture allows the
robot to automatically and elegantly consider the observa-
tions that are relevant to any given goal and the underlying
intention. Experimental results in simulation and on differ-
ent robot platforms indicate that this architecture improves
the accuracy and computational efficiency of decision mak-
ing in comparison with an architecture that does not reason
with intentional actions and/or does not include refinement
and zooming.

This architecture opens up directions for future research.
First, we will explore and formally establish the relationship
between the different transition diagrams in this architec-
ture, along the lines of the analysis provided in (Sridharan
et al. 2017). This will enable us to prove correctness and
provide other guarantees about the robot’s performance. We
will also instantiate the architecture in different domains and
to further demonstrate the applicability of the architecture.
The long-term goal will be enable robots to represent and
reason reliably and efficiently with different descriptions of
knowledge and uncertainty.

Acknowledgments

The authors thank Michael Gelfond for discussions related
to the 7Z architecture (Blount, Gelfond, and Balduccini
2015) and his contributions to the refinement-based archi-
tecture (Sridharan et al. 2017) we build on in this paper. The

authors also thank Evgenii Balai for providing support with
the SPARC software.

References

Balai, E.; Gelfond, M.; and Zhang, Y. 2013. Towards An-
swer Set Programming with Sorts. In International Confer-
ence on Logic Programming and Nonmonotonic Reasoning.

Balduccini, M., and Gelfond, M. 2003. Logic Programs with
Consistency-Restoring Rules. In AAAI Spring Symposium
on Logical Formalization of Commonsense Reasoning, 9—
18.

Baral, C., and Gelfond, M. 2005. Reasoning about intended
actions. In Proceedings of the National Conference on Arti-
ficial Intelligence, volume 20, 689.

Blount, J.; Gelfond, M.; and Balduccini, M. 2014. Towards
a theory of intentional agents. In Knowledge Representation
and Reasoning in Robotics. AAAI Spring Symp. Series, 10—
17.

Blount, J.; Gelfond, M.; and Balduccini, M. 2015. A theory
of intentions for intelligent agents. In International Confer-
ence on Logic Programming and Nonmonotonic Reasoning,

134-142. Springer.

Bratman, M. 1987. Intention, Plans, and Practical Reason.
Center for the Study of Language and Information.

Erdem, E., and Patoglu, V. 2012. Applications of ac-
tion languages in cognitive robotics. In Correct Reasoning.
Springer. 229-246.

Gabaldon, A. 2009. Activity Recognition with Intended
Actions. In International Joint Conference on Artificial In-
telligence (IJCAI).

Gelfond, M., and Inclezan, D. 2013. Some Properties
of System Descriptions of ALy. Journal of Applied Non-
Classical Logics, Special Issue on Equilibrium Logic and
Answer Set Programming 23(1-2):105-120.

Gelfond, M., and Kahl, Y. 2014. Knowledge Representa-
tion, Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. Cambridge University
Press.

Hanheide, M.; Gobelbecker, M.; Horn, G.; Pronobis, A.;
Sjoo, K.; Jensfelt, P.; Gretton, C.; Dearden, R.; Janicek, M.;
Zender, H.; Kruijff, G.-J.; Hawes, N.; and Wyatt, J. 2017.
Robot Task Planning and Explanation in Open and Uncer-
tain Worlds. Artificial Intelligence 247:119-150.

Kelley, R.; Tavakkoli, A.; King, C.; Nicolescu, M.; Nico-
lescu, M.; and Bebis, G. 2008. Understanding Human In-
tentions via Hidden Markov Models in Autonomous Mobile

Robots. In International Conference on Human-Robot In-
teraction (HRI).

Rao, A. S., and Georgeff, M. P. 1995. BDI Agents: From
Theory to Practice. In First International Conference on
Multiagent Systems, 312-319.

Saribatur, Z. G., and FEiter, T. 2016. Reactive policies with
planning for action languages. In Michael, L., and Kakas,
A., eds., Logics in Artificial Intelligence, 463—480. Springer
International Publishing.

In the Workshop on Planning and Robotics at ICAPS, Delft, The Netherlands, June 26, 2018.

Saribatur, Z. G.; Baral, C.; and Eiter, T. 2017. Reactive
maintenance policies over equalized states in dynamic envi-
ronments. In Oliveira, E.; Gama, J.; Vale, Z.; and Lopes Car-
doso, H., eds., Progress in Artificial Intelligence, 709—723.
Cham: Springer International Publishing.

2018. Software and Results for Architecture com-
bining Theory of Intentions and Refinement. Re-
trieved March 2018 from https://github.com/
hril230/theoryofintentions/tree/master/
simmulation.

Sridharan, M., and Gelfond, M. 2016. Using knowledge
representation and reasoning tools in the design of robots.
In IJCAL

Sridharan, M.; Gelfond, M.; Zhang, S.; and Wyatt, J. L.
2017. A refinement-based architecture for knowledge repre-
sentation and reasoning in robotics. CoRR abs/1508.03891.

Zhang, Q., and Inclezan, D. 2017. An application of asp
theories of intentions to understanding restaurant scenarios.
International Workshop on Practical Aspects of Answer Set
Programming.

Zhang, S.; Sridharan, M.; and Wyatt, J. 2015. Mixed Log-
ical Inference and Probabilistic Planning for Robots in Un-
reliable Worlds. IEEE Transactions on Robotics 31(3):699—
713.

