UNIVERSITYOF
BIRMINGHAM

iversit}/]ofBirmin am
esearch at Birmingham

Knowledge Representation and Interactive Learning
of Domain Knowledge for Human-Robot Interaction

Sridharan, Mohan; Meadows, Benjamin

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Sridharan, M & Meadows, B 2018, Knowledge Representation and Interactive Learning of Domain Knowledge
for Human-Robot Interaction. in T Vaquero, M Roberts, S Bernardini, T Niemueller & S Fratini (eds),
Proceedings of the 2nd Workshop on Integrated Planning, Acting, and Execution (IntEx 2018). International
Conference on Automated Planning and Scheduling, pp. 60-68, Workshop on Integrated Planning, Acting and
Execution at ICAPS 2018, Delft, Netherlands, 25/06/18. <http://icaps18.icaps-
conference.org/fileadmin/alg/conferences/icaps18/workshops/workshop09/docs/proceedings.pdf>

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 13/07/2018

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@Ilists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

http://icaps18.icaps-conference.org/fileadmin/alg/conferences/icaps18/workshops/workshop09/docs/proceedings.pdf
http://icaps18.icaps-conference.org/fileadmin/alg/conferences/icaps18/workshops/workshop09/docs/proceedings.pdf
https://birmingham.elsevierpure.com/en/publications/80422332-3ec7-487f-bade-54903e8bc34d

UNIVERSITYOF
BIRMINGHAM

Research at Birmingham

Knowledge Representation and Interactive Learning
of Domain Knowledge for Human-Robot Interaction

Sridharan, Mohan; Meadows, Benjamin

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Sridharan, M & Meadows, B 2018, Knowledge Representation and Interactive Learning of Domain Knowledge
for Human-Robot Interaction. in T Vaquero, M Roberts, S Bernardini, T Niemueller & S Fratini (eds),
Proceedings of the 2nd Workshop on Integrated Planning, Acting, and Execution (IntEx 2018). International
Conference on Automated Planning and Scheduling, pp. 60-68, Workshop on Integrated Planning, Acting and
Execution at ICAPS 2018, Delft, Netherlands, 25/06/18.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 13/07/2018

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

» Users may freely distribute the URL that is used to identify this publication.

» Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

» User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
« Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@Ilists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. Jul. 2018

https://research.birmingham.ac.uk/portal/en/publications/knowledge-representation-and-interactive-learning-of-domain-knowledge-for-humanrobot-interaction(80422332-3ec7-487f-bade-54903e8bc34d).html

In the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

Knowledge Representation and Interactive Learning of
Domain Knowledge for Human-Robot Interaction

Mohan Sridharan
School of Computer Science
University of Birmingham, UK
m.sridharan@bham.ac.uk

Abstract

This paper describes an integrated architecture for represent-
ing, reasoning with, and interactively learning domain knowl-
edge in the context of human-robot collaboration. Specifi-
cally, Answer Set Prolog, a declarative language, is used to
represent and reason with incomplete commonsense knowl-
edge about the domain. Non-monotonic logical reasoning
identifies knowledge gaps and guides the interactive learn-
ing of relations that represent actions, and of axioms that en-
code affordances and action preconditions and effects. Learn-
ing uses probabilistic models of uncertainty, and observations
from active exploration, reactive action execution, and human
(verbal) descriptions. The learned actions and axioms are
used for subsequent reasoning. The architecture is evaluated
on a simulated robot assisting humans in an indoor domain.

1 Introduction

Consider one or more robots!' assisting humans in an office
or a home, e.g., delivering desired objects or guiding peo-
ple to particular locations. Information about such domains
often includes commonsense knowledge, especially default
knowledge that holds in all but a few exceptional circum-
stances, e.g., “books are usually in the library, but cook-
books may be in the kitchen”. Domain knowledge may also
include some understanding of action preconditions and ef-
fects, and action capabilities, i.e., affordances. Human par-
ticipants will, however, lack the time and expertise to pro-
vide comprehensive domain information or elaborate feed-
back. Robots will thus need to reason with incomplete do-
main knowledge and revise this knowledge over time. The
architecture described in this paper is a step towards address-
ing these open problems; it is based on the following tenets:

e Knowledge elements encode symbolical content about
object constants, relations representing domain attributes
and actions at different levels of abstraction, and axioms
composed of these relations.

e Knowledge elements are revised non-monotonically by
reasoning with knowledge and observed outcomes of ac-
tions that may be immediate or delayed.

o Affordances are defined jointly over the attributes of
agents and objects in the context of particular actions.

CLITS

"'We use “robot”, “agent”, and “learner” interchangeably.

Benjamin Meadows
Electrical and Computer Engineering
The University of Auckland, NZ
bmealll@aucklanduni.ac.nz

e Reasoning, learning and interaction are coupled; values of
state-action pairs are revised using observations obtained
from active exploration and reactive action execution.

The combination of these tenets is novel, and we implement
them using the complementary strengths of declarative pro-
gramming, probabilistic reasoning, and relational learning
through induction and reinforcement. In this paper, we fo-
cus on the interplay between reasoning and learning, and ab-
stract away some aspects of our overall architecture, e.g., we
flatten some levels of the representation and do not describe
probabilistic modeling of perceptual uncertainty. Instead,
we describe the following key capabilities:

e Incomplete domain knowledge described in an action lan-
guage is translated into a relational representation in An-
swer Set Prolog (ASP) for inference, planning and diag-
nostics. ASP-based reasoning also automatically limits
interactive learning to the relevant part of the domain.

e Previously unknown actions’ names, preconditions, ef-
fects, and objects over which they operate, along with as-
sociated affordances, are learned using decision-tree in-
duction and relational reinforcement learning based on
observations of active exploration, reactive action execu-
tion, and verbal cues from humans.

We evaluate these capabilities in the context of a simulated
robot delivering objects to particular people or locations in
an indoor domain. We first describe the proposed architec-
ture and algorithm (Section 2), followed by some results of
experimental evaluation (Section 3). Then, Section 4 re-
views related work, followed by a description of conclusions
and future work in Section 5.

2 Proposed Architecture

Figure 1 depicts key components of the overall architec-
ture. Incomplete domain knowledge is encoded in an ac-
tion language to construct tightly-coupled relational repre-
sentations at two resolutions. For any given goal, reason-
ing with commonsense knowledge at the coarse resolution
provides a sequence of abstract actions. Each abstract ac-
tion is implemented as a sequence of concrete actions by
a partially observable Markov decision process (POMDP)
that reasons probabilistically over the relevant part of the
fine-resolution representation, with action outcomes and ob-
servations updating the coarse-resolution history. As stated

In the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

Domain
knowledge -
Action language Relational |Inference P Ianmn_g,
- - > diagnostics,
description description .
execution
Inference . ASP +_
. POMDP
Generic Interat.:tlve Active + Reactive
actions + axioms Learning |inductive + RRL
Candidate actions,
axioms
Generalization

Figure 1: Architecture combines complementary strengths of
declarative programming, probabilistic reasoning, and interactive
learning for reasoning with and learning domain knowledge.

earlier, we abstract away the reasoning at different resolu-
tions and the probabilistic modeling of perceptual uncer-
tainty, and focus on the interplay between representation,
reasoning, and learning. The relational representation is thus
translated into an ASP program for planning and diagnos-
tics. ASP-based reasoning also guides the interactive learn-
ing of actions, affordances, and the preconditions and effects
of actions. This learning uses observations obtained through
active exploration, reactive execution, and human (verbal)
descriptions—the learned knowledge is used for subsequent
reasoning. We use the following domain to illustrate our ar-
chitecture’s capabilities.

Example 1. [Robot Assistant (RA) Domain] A simulated
robot/learner finds, labels, and delivers objects to people
or places (office, kitchen, library, workshop) in a building.
Each place may have one or more instances of objects such
as desk, book, cup and computer. Each human has a
particular role (e.g., engineer, manager, salesperson).
Objects are characterized by weight (heavy,light),
surface (brittle,hard), status (intact,damaged),
and labeled (true,false). The robot’s arm has a type
(electromagnetic, pneumatic). The actions available
to the robot include pickup, putdown, move, label, and
serve, but it may not know about some actions or axioms
(i.e., rules) governing domain dynamics such as:

e A pneumatic arm cannot be used to serve a brittle object.
e Serving an object to a salesperson causes it to be labeled.

e An object with a brittle surface cannot be labeled unless
the robot has an electromagnetic arm.

There may be other robots that (are assumed, for simplic-
ity, to) have identical capabilities and cannot communicate
with the learner. Humans and the learner can observe these
robots. Humans can verbally describe other robots’ activi-
ties, e.g., “Robot labeled the hard, hefty item” to help the
learner acquire knowledge of previously unknown actions
and axioms. Although this domain may appear simplistic, it
becomes complex as the number of ground instances of ob-
jects and their attributes increases, e.g., there were ~ 18, 000
combinations of ground static attributes and ~ 11 million
combinations of ground fluent terms in an instantiation.

2.1 Knowledge Representation and Reasoning

We first describe the action language encoding of domain
dynamics, and its translation to CR-Prolog programs for
knowledge representation and reasoning.

Action Language Action languages are formal models
of parts of natural language used for describing transition
diagrams of dynamic systems. We use action language
ALg4 (Gelfond and Inclezan 2013) to describe the transi-
tion diagrams at different resolutions. AL 4 has a sorted sig-
nature with statics, fluents and actions. Statics are domain
attributes whose truth values cannot be changed by actions,
whereas fluents are domain attributes whose truth values can
be changed by actions. Fluents can be basic or defined. Ba-
sic fluents obey the laws of inertia and can be changed by
actions. Defined fluents do not obey the laws of inertia and
are not changed directly by actions—their values depend on
other fluents. Actions are defined as a set of elementary op-
erations. A domain attribute p or its negation —p is a literal.
AL, allows three types of statements:

a causes ly, ifpo,...,Pm (Causal law)

Lif po,...,Pm (State constraint)

impossible ay, ..., ax if po, ..., pm (Executability condition)

where a is an action, | is a literal, 1, is a basic literal, and
Po, - .., Pm are domain literals.

Domain Representation: Signature and Axioms The
domain representation consists of system description D,
which is a collection of statements of AL4, and history H.
D has a sorted signature X and axioms that describe the
transition diagram T. X defines the basic sorts, and domain
attributes and actions. Basic sorts of the RA domain include
place, robot, role, book, weight, status etc, which
are arranged hierarchically, and sort step for temporal
reasoning. X includes ground instances of sorts, e.g.,
{office, workshop, kitchen, library} of sort place.
Domain attributes and actions are described in terms of
the sorts of their arguments. The RA domain has fluents
such as loc(entity, place), the location of the robot and
objects, with the locations of humans and other robots (if
any) modeled as defined fluents whose values are obtained
from external sensors; and in_hand(robot,object),
which denotes whether a particular object is in the robot’s
hand. Static attributes include arm_type(robot,type),
obj_status(object, status) etc, and actions include
move(robot,place), pickup(robot,object), and
serve(robot, object,person). The representation also
includes a relation holds(fluent, step) that implies a
particular fluent is true at a particular timestep.

Axioms of the RA domain include causal laws, state con-
straints and executability conditions such as:

move(robq, L) causes loc(roby, L)

serve(roby, O,P) causes in_hand(P, O)

loc(O, L) if loc(roby, L), in_hand(roby, O)

impossible pickup(robq,O) if loc(robq,Ly),
loc(O, L), L1 #12

In the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

The history H of a dynamic domain is usually a record of
fluents observed to be true or false at a particular time step,
i.e., obs(fluent,boolean, step), and the occurrence of an
action at a particular time step, i.e., occurs(action, step).
This notion was expanded to represent defaults describing
the values of fluents in the initial state (Sridharan et al.
2017), e.g., “books are usually in the library and if not there,
they are normally in the office” is encoded as:

initial default loc(X, library) if book(X)
initial default loc(X, office) if book(X),
—loc(X, library)

We can also encode exceptions to these defaults, e.g., “‘cook-
books are in the kitchen”.

Domain Representation: Affordances We define affor-
dances, i.e., action capabilities, as relations between at-
tributes of robot(s) and object(s) in the context of particu-
lar actions. Negative (i.e., forbidding or dis-) affordances
describe unsuitable combinations of objects, robots, and
actions. Positive affordances describe permissible uses of
objects in actions by agents, including exceptions to exe-
cutability conditions that prevent the use of the correspond-
ing action during planning. In AL4, we represent affor-
dances in a distributed manner, as follows:

impossible A if aff_forbids(ID,A)
aff_forbids(idi, A) if ...

impossible A if ..., not aff_permits(ID,A)
aff_permits(id;, A) if ...

The first two statements say that action A cannot occur if it
is not afforded, and specify the conditions (i.e., attributes of
robot and object) under which the action is not afforded. The
last two statements say that an action A that is not consid-
ered during planning due to an executability condition may
have a positive affordance as an exception, and define the
positive affordance. Each action can have multiple affor-
dances indexed by the ids. This representation of knowledge
improves generalization, and can simplify inference.

ASP-based inference The domain representation is trans-
lated into a program TT1(D,H) in CR-Prolog?, a variant of
ASP that incorporates consistency restoring (CR) rules (Bal-
duccini and Gelfond 2003). ASP is based on stable model
semantics, and supports default negation and epistemic dis-
Jjunction, e.g., unlike “—a” that states a is believed to be
false, “not a” only implies a is not believed to be true,
and unlike “p V' —p” in propositional logic, “p or —p” is
not tautologous. ASP can represent recursive definitions and
constructs that are difficult to express in classical logic for-
malisms, and it supports non-monotonic logical reasoning,
i.e., the ability to revise previously held conclusions based
on new evidence. The program TT includes the signature and
axioms of D, inertia axioms, reality checks, and observa-
tions, actions, and defaults from . Every default also has
a CR rule that allows the robot to assume the default’s con-
clusion is false under exceptional circumstances, to restore

2We use the terms “ASP” and “CR-Prolog” interchangeably.

consistency. Each answer set of an ASP program represents
the set of beliefs of an agent associated with the program.
Algorithms for computing the entailment, and for planning
and diagnostics, reduce these tasks to computing answer sets
of CR-Prolog programs.

Reasoning with incomplete or incorrect knowledge may
overlook valid plans, find suboptimal plans, or provide plans
whose execution has unintended outcomes. For instance,
the robot in the RA domain is asked to deliver textbook
book; to the office. It uses default knowledge to compute
the plan move(roby,library), pickup(robs,booky),
move(roby, office), putdown(roby, book;). This does
not succeed because (unknown to the robot) its electromag-
netic arm cannot pick up the heavy book. We next describe
the interactive learning of such unknown knowledge.

2.2 Interactive Learning

Obtaining labeled samples to learn previously unknown ac-
tions, and axioms is difficult in complex domains, and hu-
mans may have limited time and expertise. Also, the effects
of actions may be observed immediately or after a delay. We
thus enable the robot to interactively acquire labeled exam-
ples. To speed up learning and to simulate learning without
running many trials on a robot, we introduce two schemes:
(i) active learning from verbal cues provided by humans;
(ii) relational reinforcement learning based on observations
from active exploration or reactive action execution. We de-
scribe these schemes below.

Learning from Human Interaction To acquire domain
knowledge from the verbal cues provided by humans de-
scribing the observed behaviors of other robots, the learner
makes the following assumptions:

e Other robots have the same capabilities as the learner;

e Learner can generate logic statements corresponding to
attributes of robot(s) or object(s) in the observed action;

e Humans correctly describe one activity at a time.

These assumptions are reasonable for many robotics do-
mains, and simplify interaction with humans.

The learner solicits human input when available and re-
ceives a transcribed verbal description of an action and ob-
servations of the action’s consequences, e.g., the learner
may receive “The robot is labeling the fairly big textbook.”
and labeled(book;). We use the Stanford log-linear part-
of-speech (POS) tagger (Toutanova et al. 2003). We em-
ploy a left, second-order sequence information model to de-
termine each word’s POS tag and append it to the word.
In our example, the output is a string such as “The DT
robot NN is_VBZ labeling VBG the DT fairly_ RB big_JJ
textbook_NN”, where “VB” represents a verb, “NN” is a
noun etc. The learner transforms this string to <word,
POS> pairs, and transforms the sentence’s verb into first-
person present-tense using rules from a lemma list (Someya
1998) and WordNet (Miller 1995), e.g., < is,VBZ > <
labeling, VBG > becomes the verb “label”. The learner
also marks each noun phrase as a sequence of zero or more
adjectival terms followed by a noun, discarding other inter-
leaved words. Our example sentence’s noun phrases are

In the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

robot and big textbook. Nouns signify object sorts and
adjectival terms signify values of static attributes. To de-
termine terms’ referents, WordNet relations such as linked
synsets are used to find a synonym that is also a do-
main symbol, e.g., “big” and “heavy” share a WordNet
synset, heavy is an attribute value, and book(book;) and
obj_weight(booky, heavy) are domain attributes. The
matched domain symbols combine to refer to particular ob-
jects. We require static attributes’ values to be disjoint sets,
and each noun phrase to signify an existing object—these
are true by design in our domain.

The robot constructs a literal for the action from the verb
and the object referents, e.g., label(roby, bookq). The ar-
guments’ lowest-level sorts are assumed to be the valid argu-
ments, e.g., label(#robot, #book). If this candidate action
does not match any known action literal, the robot lifts the
literal, its arguments and the observed action consequences.
This forms the basis for constructing candidate causal laws
and generalizing over time. For instance:

label(rob, bookq) causes labeled(book)
is lifted to:
label(R,B) causes labeled(B)

If, on the other hand, the new literal matches an existing one,
the first common ancestor of each argument’s sort is found.
For instance, if the learner knows label(#robot, #cup)
and finds that label(#robot, #book) has matching conse-
quences, it will generalize to Llabel(#robot, #object). This
method for learning from interaction with humans adapts
existing natural language processing methods to work with
our representation. It helps the learner acquire a previously
unknown action’s name, and the sorts of objects the action
operates on. However, this knowledge is not sufficient be-
cause the learner may still not know axioms that govern the
domain dynamics related to this action. This missing knowl-
edge is acquired using the second learning scheme below.

Relational Reinforcement Learning The second learn-
ing scheme enables axiom discovery by active exploration
of the transition corresponding to a particular action, or by
exploration in response to unexpected and unexplained tran-
sitions. To explore a particular transition, the resultant state
is set as the goal of a reinforcement learning (RL) problem,
i.e., the objective is to find state-action pairs most likely to
lead to this (and other similar) states. The underlying MDP
is defined by a set of states (S), set of actions (A), state tran-
sition function Ty : S x A x S’ — [0, 1], and reward function
R¢: S x A xS’ — . Similar to classical RL formulations,
T¢ and Ry are unknown to the agent. Each state has ground
atoms formed of the domain attributes (i.e., fluent terms and
statics), and a boolean literal describing whether the most
recent action had the expected outcome. Each action is a
ground action of the system description. T¢ and Ry are con-
structed from statistics collected in an initial training phase;
T¢ is a probabilistic model of the uncertainty in state transi-
tions, while R¢ provides instantaneous rewards for executing
particular actions in particular states. The RL formulation
is constructed automatically from the system description—
(Sridharan et al. 2017) describes a method for translating an

ASP-based system description to a representation for prob-
abilistic sequential decision making.

The values of state-action pairs are estimated in a series
of episodes, until convergence, using the Q-learning algo-
rithm (Sutton and Barto 1998). In each episode, the agent
executes a sequence of actions chosen using an e-greedy al-
gorithm and eligibility traces. The combinations of states
and actions invalidated by existing axioms are not explored.
Each episode terminates when a time limit is exceeded or
the target action succeeds. The physical configuration of
objects is then reset to its state from the beginning of the
episode, and a new episode begins. Such a formulation can
become computationally intractable for complex domains.
A key advantage of our architecture is that ASP-based rea-
soning can be used to automatically restrict the object con-
stants, domain attributes and axioms relevant to the desired
transition, i.e., to those that influence or are influenced by
the transition, significantly reducing the search space. This
notion of relevance is based on the following desiderata re-
garding the relations that may appear in a discovered axiom:

e For any static attribute that may exist in the body of
the discovered axiom, we wish to explore all possi-
ble elements in the range of the attribute, e.g., for ac-
tion serve(roby,cupi,persony), all possible weights
of cup; and roles of person; are explored.

e For any fluent that may appear in the body of the axiom,
we wish to explore only those elements in the range of the
fluent that occur in the state before or after the state transi-
tion. Any other element cannot, by design, be influenced
by this transition anyway.

ASP-based reasoning is used to encode these requirements
and automatically construct the system description D(T),
the part of D relevant to the transition T. To do so, we
first define the object constants relevant to the transition of
interest. These definitions are adapted from the definitions
introduced in (Sridharan et al. 2017).

Definition 1. [Relevant object constants]

Let aiq4 be the target action that when executed in state oy
resulted in the unexpected transition T = (07, atq, 02). Let
relCon(T) be the set of object constants of £ of D identified
using the following rules:

1. Object constants from a4 are in relCon(T);

2. If f(x1y...,%n,y) is a literal formed of a domain at-
tribute, and the literal belongs to o7 or 0, but not both,
then x1,...,Xn, Yy are in relCon(T);

3. If the body B of an axiom of aty contains an occurrence
of f(X1,...,%n,Y), a term whose domain is ground,
and f(x7,...,%xn,Yy) € o7, then xq,...,xn,Yy are in
relCon(T).

Constants from relCon(T) are said to be relevant to T, e.g.,
for action aty = serve(roby,cups,person) in the RA
domain, with loc(roby,office), loc(cupy,office), and
loc(persony, office) in oy, the relevant object constants
include roby, cupy, persony, and office.

Definition 2. [Relevant system description]
The system description relevant to the desired transition T =

El the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

root

serve(robot1,book1,p0)?

(action)
N

labeled(book1)? Q-value: 0.02 (683 examples)

(fluent) In MDPs: {#1, #2, #4, #5, ...}
S

Q-value: 0.00 (13 examples) obj_status(book1,damaged)?

In MDPs: {#1, #2, #3, #6, ...} (fluent)
N

Q-value: 0.01 (10 examples)
In MDPs: {#1, #2, #3, #7, ...}

N

/

N

Q-value: 11.01 (182 examples)
In MDPs: {#1, #2, #3, #7, ...}

Figure 2: Illustrative example of a Binary Decision Tree (BDT)
with nodes representing tests of domain literals. The BDT is con-
structed incrementally over time.

(01, atg,02), i.e., D(T), is defined by signature Z(T) and
axioms. L(T) is constructed to comprise the following:

1. Basic sorts of X that produce a non-empty intersection
with relCon(T).

2. All object constants of basic sorts of £(T) that form the
range of a static attribute.

3. The object constants of basic sorts of X(T) that form the
range of a fluent, or the domain of a fluent or a static, and
are in relCon(T).

4. Domain attributes restricted to basic sorts of X(T).

Axioms of D(T) are those of D restricted to £(T). For
aig = serve(roby,cupy,person;) in our current exam-
ple, D(T) does not include other robots, cups or people in
the domain. It can be shown that for each transition in the
transition diagram of the system description D, there is a
transition in the transition diagram of D(T). States of D(T),
i.e., literals formed of fluents and statics in the answer sets
of the ASP program, are states in the RL formulation, and
actions are ground actions of D(T). Furthermore, it is pos-
sible to pre-compute or reuse some of the information used
to construct D(T) for any given T.

Once the D(T) relevant to the target transition has been
identified, the RL formulation is constructed as before to
compute the values of state-action combinations. The ex-
tent to which computing D(T) reduces the search space de-
pends on the relationships between the domain attributes and
axioms. For instance, although there are several thousand
static attribute combinations and more than a million ob-
ject configurations in our instantiation of the RA domain,
computing D(T) often reduces the space of attribute com-
binations to as few as 12 for the serve action. However, in
other domains with complex relationships between objects,
exploration may need to be further limited to a fraction of
this restricted state space. Furthermore, Q-learning does not
generalize to relationally equivalent states.

Inspired by the RRL-TG algorithm (Driessens and Ramon
2003), we facilitate generalization to relationally equivalent
states by constructing a binary decision tree (BDT) whose

nodes represent tests of domain literals—Figure 2 shows an
example BDT. Unlike the destructive branching of RRL-TG,
we model the partial description of a state-action pair as a
path to a leaf where we store the remaining state informa-
tion. When Q-value variance is reduced by adding a test at
a leaf, the BDT is expanded and used to compute policies
in subsequent RL episodes. To learn generic versions of ax-
ioms, the robot explores different values of static attributes
and fluent literals. ASP-based reasoning automatically se-
lects relevant combinations to make exploration tractable,
and uses sampling if the search space is too large. Unlike
traditional RRL methods, the learned Q-values now repre-
sent values across different MDPs.

After learned values converge, axioms are constructed
from the BDT. A partial description (path to leaf) is selected
if it is associated with the high accrued value, and all sub-
sets of its literals become candidate axioms. Since each can-
didate axiom could correspond to different branches of the
BDT, the learner randomly draws a number of samples with-
out replacement, considers additional literals stored at the
leaves, and alters candidates that match the sample. Can-
didates with sufficient support are validated, i.e., tested un-
der conditions that are simulated to match the transition that
triggered learning. Candidates that do not pass these tests
are removed from further consideration. For instance, if a
learned executability condition is correct, executing the ac-
tion when literals in the body are true should not provide
the expected outcome. Note that these tests are guaranteed
to not eliminate any valid axioms although they may not re-
move all false positive candidates. The final candidates are
lifted by replacing ground terms with variables, and added
to the ASP program as axioms for subsequent reasoning. We
refer to this RRL approach as “Q-RRL”.

Control Loop Algorithm 1 describes the overall control
loop for reasoning and learning in our architecture. The
baseline behavior (lines 5-17) is to plan and execute actions
to achieve the given goal as long as a consistent model of
history is can be computed (lines 7-9). If such a model can-
not be constructed, it is attributed to an unexplained, un-
expected transition, and the robot triggers Q-RRL (lines 9-
12) to discover the corresponding unknown axioms (lines
20-21). If there is no active goal to be achieved, the robot
triggers active learning (lines 13-16) using Q-RRL (lines 25-
27) or verbal descriptions obtained from a human participant
(lines 23-25) to learn previously unknown actions or axioms.
When in the learning mode, the robot can be interrupted if
needed (lines 18-19), e.g., to pursue a new goal.

3 Experimental Setup and Results

In this section, we describe the results of experimentally
evaluating the following hypotheses:

e HI1: Active learning of actions from verbal descriptions
provides a foundation for further learning;

e H2: Q-RRL provides a mechanism for discovering ax-
ioms related to an action;

e H3: Learned knowledge improves plan quality.

In the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

Algorithm 1: Overall control loop.

Input: TT(D, H); goal description; initial state o7.
Output: Control signals for robot to execute.

/* Start with planning =/
1 planMode = true, learnType = 0

2 while true do

3 Add observations to history.

4 ComputeAnswerSets(TT(D, H))

5 if planMode then

6 if existsGoal then

/* Goal exists, consistent
model, execute plan =*/

7 if explainedObs then

8 | ExecutePlanStep()

9 else

/* Q-RRL x/

10 planMode = false

11 learnType = 1

12 end

13 else

/* Active learning =/

14 planMode = false

15 learnType = 2

16 end

17 else

/+ Interrupt learning if needed
*/
18 if interrupt then
19 | planMode = true
/* Continue learning */

20 else if learnType == I then
21 | ContinueRRL()
22 else if learnType == 2 then
23 if verbalCue then
24 | ContinueActiveLearn()
25 else
26 | ContinueActiveRRL()
27 end
28 end
29 end

These hypotheses were evaluated in the RA domain (Exam-
ple 1) in the context of two actions (serve and label). We
considered the following target axioms to be discovered by
the robot, for the action serve:

(1) Serving an object to a salesperson causes it to be labelled
(causal law);

(2) A damaged object cannot be served to a person who is not
an engineer (executability condition);

(3) Arobot with a pneumatic arm cannot serve a brittle object
(negative affordance); and

(4) A damaged object cannot be served to a person who is not
an engineer, unless it is labeled (positive affordance).

and for the action label:

(5) An object with a brittle surface cannot be labeled by a
robot (executability condition);

(6) A damaged object cannot be labeled by a robot with a
pneumatic arm (negative affordance);

(7) Labelling a light object with a pneumatic arm causes it to
be damaged (causal law); and

(8) An object with a brittle surface cannot be labelled by a
robot, unless the object is heavy and the robot has an elec-
tromagnetic arm (positive affordance).

We provide execution traces in support of hypothesis H1;
hypotheses H2 and H3 are evaluated quantitatively.

3.1 Experimental Setup

The initial setup included experimentally setting the values
of some parameters in Q-RRL by trading off accurate esti-
mation of policies against processing time, e.g., learning rate
and exploration preference were fixed at 0.1. Candidate ax-
ioms were constrained to have no more than two positive lit-
erals and two negative literals formed of domain attributes—
this limit can be increased as needed in other domains at the
expense of a corresponding increase in computational com-
plexity. Up to 10 validation tests were conducted to evaluate
candidate axioms.

In the experimental trials reported below, the robot
learned the representation for each action and associated
causal law from verbal descriptions. The robot then used
Q-RRL to learn one causal law, one executability condition,
one positive affordance and one negative affordance for each
of the two actions (serve, label). Axioms for each action
can be discovered concurrently. Unless stated otherwise,
each value of the performance measures reported below was
averaged over 1000 repetitions (e.g., for each axiom). We
used precision and recall as the performance measures. Ax-
ioms were required to exactly match the ground truth to be
counted as true positives; under-specifications (e.g., some
missing literals) and most over-specifications (e.g., unnec-
essary literals) were considered false positives. Plan quality
was measured as the ability to compute a minimal plan to
achieve the desired goal.

3.2 Execution Trace

The following execution trace supports H1 by illustrating
learning of actions and the objects those actions operate on,
using verbal cues from human participants.

Execution Example 1. [Learning from human input]
Suppose the robot in the RA domain (Example 1) does not
know that it can label and serve objects, and does not know
the related axioms. For each of the actions, we gave the
agent five descriptive examples of the action being applied,
with descriptions that were grammatically-correct English
statements that upheld our assumptions, but otherwise varied
arbitrarily. First consider the label action:

e The learner receives “A robot is labeling the lightweight
cup”, with the observation labeled(cupy). It parses
the statement, matches it to the domain, lifts it to store
label(#robot, #cup), and infers:

label(R,B) causes labeled(B)

In the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

e Next, the learner receives “Robot labeled one com-
puter”, and labeled(comp;). It learns the signature
label(#robot, #computer) and generalizes over the
learned signatures to obtain label(#robot, #object).

o Further input descriptions are automatically reconciled ei-
ther when specific sorts are subsumed by more general
ones, e.g., when it learns from “The pneumatic robot la-
bels the light breakable cup”, or the parse results in an ex-
act match for the action description, as in “Next the robot
labeled the hard, hefty item”.

Next, in the context of learning the serve action:

e The learner receives “A robot serves a man-
val to the manager” and the observation
in_hand(pj,book;). It produces the action de-
scription serve(#robot, #book, #person) and extracts
the causal law:

serve(R, O, P) causes in_hand(P,O)

e Next, the learner is given “The pneumatic robot is serving
the breakable cup to the clerical person over there” and
in_hand(po,cupi). Generalizing over the two exam-
ples results in serve(#robot, #object, #person). The
remaining sentences, “Robot serves ledger to clerical per-
son” and “A robot served a lightweight cup to an expert”,
fit the inferred structures and do not change them.

For both actions, two examples were sufficient to reach the
required level of generality to model the action and an initial
causal law. A key advantage of learning from verbal cues
is that only a small number of examples are needed to learn
the actions and the objects that they operate on. This is espe-
cially useful when actions have irreversible effects. The dis-
advantage is that humans are expected to provide correct de-
scriptions of the behaviors they observe, although the robot
can identify and revise any incorrect information learned and
included in the ASP program.

It is important to appreciate the benefits of the distributed
representation used in the architecture. First, this represen-
tation simplifies inference and information reuse. For in-
stance, if a cup has a graspable handle, this relation also
holds true for other objects with handles. If an affordance
prevents the robot from picking up a heavy object, this infor-
mation may be used to infer that it cannot open a large win-
dow. This relates to research in psychology which indicates
that humans can judge action capabilities of others without
actually observing them perform the target actions (Ramen-
zoni et al. 2010). Second, it becomes possible to respond ef-
ficiently to queries that require consolidation of knowledge
across different attributes of objects or robots, and to develop
composite affordance relations, e.g., a hammer may afford
an “affix objects” action in the context of a specific agent
because the handle affords a pickup action and the hammer
affords a swing action, for the agent. Finally, learning from
verbal descriptions can be used to provide more meaningful
explanations of decisions.

3.3 Quantitative Evaluation
We experimentally evaluated hypotheses H2 and H3.

Action | Recall | Precision | Precision (validated)
label 0.92 0.82 0.96
serve 0.88 0.70 0.95

Table 1: Accuracy when Q-RRL was used to discover multiple
axioms corresponding to two specific actions. High recall and pre-
cision are attained, especially after candidate axioms are validated.

H2: Q-RRL enables reliable discovery of axioms We
explored whether Q-RRL can learn new axioms related to a
known (or newly learned) action. Results averaged over the
four axioms for each action are summarized in Table 1. We
observe that Q-RRL attains high recall and precision, espe-
cially after the candidate axioms are validated. The accu-
racy of discovering the axioms corresponding to the serve
action is a little lower than that for the label action, as it
is more complex, i.e., it has more arguments. There were
very few differences in the values of performance measures
for causal laws, executability conditions and negative af-
fordances. The recall and precision measures were a little
lower for positive affordances since axioms corresponding
to positive affordances are more complex—they add context
to an executability condition to make the corresponding ac-
tion applicable. Note that human input is not essential for
this learning—a robot could learn from experiences accu-
mulated over time.

H3: Learning improves plan quality To evaluate hy-
pothesis H3, we explored the effects of the discovered ax-
ioms on the system’s ability to generate plans that provide
the desired outcome. For each axiom of each target action,
we conducted 1000 paired ASP-based planning trials with
and without the corresponding target axiom in the system
description. The trials used randomized scenarios in which
the target action was required to achieve the goal.

We found that adding the learned executability condi-
tions or negative affordances resulted in 13% (serve) or
23% (label) fewer plans found. Adding the positive affor-
dances resulted in 17% (serve) or 23% (label) more plans.
These results are expected, as executability conditions and
negative affordances preclude actions in some contexts, and
knowledge of positive affordances serves to enable particu-
lar transitions. We performed additional trials which added
or removed all the learnable axioms collectively, resulting
in a difference of 19% (serve) or 58% (label) in the plans
found. Furthermore, we verified that all the plans that were
computed after including the target axioms were correct.

In the paired trials that included or excluded the causal
laws extracted from the verbal cues, there was no measur-
able difference in the number of plans found. This is ex-
pected; a causal law for serve produces outcomes which
impact the applicability of other actions, and similarly for
label. This will be the case for any scenario in which the
plan produced does not repeat the action influenced by the
causal law. Given alternative runs that involve planning for
a random goal, we observed that the presence or absence of
causal laws had an impact on the number of plans found.

Our evaluation also included other findings. For instance,
in our experiments, we found that using the ASP-based in-
ference to guide learning makes the learning significantly

In the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

more efficient. We also observed that RL with the relational
representation significantly speeds up the learning in com-
parison with not using the relational representation. Finally,
we introduced a percentage chance per action to encounter
actuator noise during learning to test the system’s robust-
ness, and found a steady decline in accuracy, e.g., 0.89 re-
call and 0.95 validated precision without noise, 0.69 recall
and 0.53 validated precision at 10% noise, or 0.56 recall and
0.34 validated precision at 20% noise. Most false positives
were merely overly-specific variations of correct axioms.

4 Related Work

Agents often have to represent and reason with incomplete
domain knowledge, and learn from observations. Early work
used a first-order logic representation and incrementally re-
fined the action operators but did not allow for different out-
comes in different contexts (Gil 1994). It is also difficult,
with such approaches, to perform non-monotonic logical
reasoning or merge new, unreliable information with exist-
ing beliefs. Research in logics has provided non-monotonic
logical reasoning formalisms, e.g., ASP has been used in
cognitive robotics (Erdem and Patoglu 2012). Researchers
have combined ASP with inductive learning to monoton-
ically learn causal laws (Otero 2003), and expanded the
theory of actions to revise system descriptions (Balduccini
2007). Architectures have been developed to reason with hi-
erarchical knowledge in first-order logic and process percep-
tual information probabilistically (Laird 2008). Many gen-
eral frameworks have been developed that combine logical
and probabilistic reasoning, e.g., Bayesian logic (Milch et
al. 2006), first-order relational POMDPs (Juba 2016), and
probabilistic extensions to ASP (Lee and Wang 2015). Al-
gorithms based on classical first-order logic are often not
expressive enough, e.g., modeling uncertainty by attaching
probabilities to logic statements is not always meaningful.
Algorithms based on logic programming tend not to support
some of the desired capabilities such as efficient and incre-
mental learning of knowledge, learning from interactions,
and reasoning with large probabilistic components. Existing
algorithms and architectures also do not support generaliza-
tion as described in this paper.

Many formalizations have been proposed for represent-
ing, reasoning with, and learning affordances (Zech et al.
2017). Existing approaches represent affordances as pos-
sible effects of actions or behaviors (Guerin, Kruger, and
Kraft 2013), or as emergent, functional and/or contextual
properties based on attributes of the domain and the ob-
jects (Sarathy and Scheutz 2016). These approaches have
used logics, probabilistic reasoning or a combination of
both. Unlike these approaches, we build on research in psy-
chology to formulate affordances as joint relations over at-
tributes of one or more agents and objects in the context of
specific actions (Langley, Sridharan, and Meadows 2018).

Interactive task learning is a general approach that in-
cludes learning concepts from domain observations and hu-
man demonstrations or instructions (Kirk, Mininger, and
Laird 2016). It has often been posed as an RL problem,
and relational RL (RRL) uses relational representations and
regression for efficient Q-function generalization (Driessens

and Ramon 2003; Tadepalli, Givan, and Driessens 2004).
However, interactive relational learning algorithms typically
limit generalization to a single planning task at a time,
based on different function approximation or learning algo-
rithms (Driessens and Ramon 2003; Bloch and Laird 2017),
and do not support the commonsense reasoning capabili-
ties desired in robotics. One exception was our prior work
that combined ASP with RRL to discover some domain
axioms and conditions under which specific actions can-
not be executed (Sridharan, Meadows, and Gomez 2017,
Sridharan and Meadows 2017). The architecture described
in this paper combines the complementary strengths of
declarative programming and relational learning through in-
duction and reinforcement, for reasoning with and interac-
tively revising incomplete domain knowledge.

5 Conclusions

This paper described an architecture for representing, rea-
soning with, and interactively learning actions’ names, pre-
conditions, effects, and objects over which they operate,
along with associated affordances. Answer Set Prolog was
used to represent and reason with incomplete domain knowl-
edge for planning and diagnostics, and to guide interactive
learning. The learning is achieved using decision-tree induc-
tion and relational reinforcement learning from observations
obtained through active exploration, reactive action execu-
tion, and verbal descriptions from humans. Experimental
results in a simulated domain indicate that our architecture
supports reliable and efficient reasoning, and learning of ac-
tions and axioms corresponding to different types of knowl-
edge. Inclusion of the learned actions and axioms in the sys-
tem description improves the quality of the computed plans.
In the future, we will explore the learning of actions and ax-
ioms in more complex domains and evaluate the architecture
on physical robots, which will require the use of the compo-
nent that reasons about perceptual uncertainty probabilisti-
cally. The long-term objective is to enable robots assisting
humans to represent, reason with, and interactively revise
different descriptions of incomplete domain knowledge.

Acknowledgements

This work was supported in part by the Asian Office of
Aerospace Research and Development award FA2386-16-
1-4071, and the US Office of Naval Research Science of
Autonomy award N00014-17-1-2434. All opinions and con-
clusions described in this paper are those of the authors.

References

Balduccini, M., and Gelfond, M. 2003. Logic Programs with
Consistency-Restoring Rules. In AAAI Spring Symposium
on Logical Formalization of Commonsense Reasoning, 9—
18.

Balduccini, M. 2007. Learning Action Descriptions with
A-Prolog: Action Language C. In AAAI Spring Symposium
on Logical Formalizations of Commonsense Reasoning.

Bloch, M. K., and Laird, J. E. 2017. Deciding to Specialize
and Respecialize a Value Function for Relational Reinforce-

In the Workshop on Integrated Planning, Acting and Execution at ICAPS, Delft, The Netherlands, June 25, 2018.

ment Learning. In Multi-disciplinary Conference on Rein-
forcement Learning and Decision Making (RLDM).

Driessens, K., and Ramon, J. 2003. Relational Instance-
Based Regression for Relational Reinforcement Learning.
In International Conference on Machine Learning, 123—

130. AAAI Press.

Erdem, E., and Patoglu, V. 2012. Applications of Action
Languages to Cognitive Robotics. In Correct Reasoning.
Springer-Verlag.

Gelfond, M., and Inclezan, D. 2013. Some Properties
of System Descriptions of ALy. Journal of Applied Non-
Classical Logics, Special Issue on Equilibrium Logic and
Answer Set Programming 23(1-2):105-120.

Gil, Y. 1994. Learning by Experimentation: Incremental Re-
finement of Incomplete Planning Domains. In International
Conference on Machine Learning, 87-95.

Guerin, F.; Kruger, N.; and Kraft, D. 2013. A Survey of
the Ontogeny of Tool Use: from Sensorimotor Experience
to Planning. IEEE Transactions on Autonomous Mental De-
velopment 5:18-45.

Juba, B. 2016. Integrated Common Sense Learning and
Planning in POMDPs. Journal of Machine Learning Re-
search 17(96):1-37.

Kirk, J.; Mininger, A.; and Laird, J. 2016. Learning Task
Goals Interactively with Visual Demonstrations. Biologi-
cally Inspired Cognitive Architectures 18:1-8.

Laird, J. E. 2008. Extending the Soar Cognitive Archi-
tecture. In International Conference on Artificial General
Intelligence.

Langley, P.; Sridharan, M.; and Meadows, B. 2018. Rep-
resention, Use, and Acquisition of Affordances in Cognitive
Systems. In AAAI Spring Symposium on Integrating Rep-
resentation, Reasoning, Learning and Execution for Goal
Directed Autonomy.

Lee, J., and Wang, Y. 2015. A Probabilistic Extension of
the Stable Model Semantics. In AAAI Spring Symposium on
Logical Formalizations of Commonsense Reasoning.

Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.;
and Kolobov, A. 2006. BLOG: Probabilistic Models with
Unknown Objects. In Statistical Relational Learning. MIT
Press.

Miller, G. A. 1995. Wordnet: A lexical database for english.
Communications of the ACM 38(11):39-41.

Otero, R. P. 2003. Induction of the Effects of Actions by
Monotonic Methods. In International Conference on Induc-
tive Logic Programming, 299-310.

Ramenzoni, V. C.; Davis, T. J.; Riley, M. A.; and Shockley,
K. 2010. Perceiving Action Boundaries: Learning Effects
in Perceiving Maximum Jumping-Reach Affordances. Af-
tention, Perception and Psychophysics 72(4):1110-1119.

Sarathy, V., and Scheutz, M. 2016. A Logic-based Com-
putational Framework for Inferring Cognitive Affordances.
IEEE Transactions on Cognitive and Developmental Sys-
tems 8(3).

Someya, Y. 1998. e_lemma.txt (Version 2 for WordSmith
4).

Sridharan, M., and Meadows, B. 2017. A Combined Ar-
chitecture for Discovering Affordances, Causal Laws, and
Executability Conditions. In International Conference on
Advances in Cognitive Systems (ACS).

Sridharan, M.; Gelfond, M.; Zhang, S.; and Wyatt, J. 2017.
A Refinement-Based Architecture for Knowledge Represen-
tation and Reasoning in Robotics. Technical report, http:
//arxiv.org/abs/1508.03891.

Sridharan, M.; Meadows, B.; and Gomez, R. 2017. What
can I not do? Towards an Architecture for Reasoning about
and Learning Affordances. In International Conference on
Automated Planning and Scheduling.

Sutton, R. L., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, MA, USA.

Tadepalli, P.; Givan, R.; and Driessens, K. 2004. Relational
Reinforcement Learning: An Overview. In Relational Rein-
forcement Learning Workshop at International Conference
on Machine Learning.

Toutanova, K.; Klein, D.; Manning, C.; and Singer, Y. 2003.
Feature-Rich Part-of-Speech Tagging with a Cyclic Depen-
dency Network. In International Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 252-259.
Zech, P.; Haller, S.; Lakani, S. R.; Ridge, B.; Ugur, E.;
and Piater, J. 2017. Computational Models of Affordance
in Robotics: A Taxonomy and Systematic Classification.
Adaptive Behavior 25(5):235-271.

