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A B S T R A C T

Dried foods generally show poor rehydration ability and changes in the product properties. In this work,
strawberries, used as a model food, were processed using osmotic dehydration (OD) followed by freeze drying
(FD) to investigate the effects on the sample colour, texture, microstructure and rehydration. For the first time, a
new approach was implemented by adding firming agents (FA) in the osmotic solution to strengthen the cell
walls and applying ultrasounds (US) during the pre-treatment to enhance the process mass transfer. FA and US
have been implemented often separately but never combined. The resulting samples were then further dried
using FD. This strategy revealed to be successful in improving the properties of dried foods compared to FD
solely: rehydration capacity was enhanced; colour was better retained, showing colour coefficients closer to the
fresh fruit; texture was largely improved, exhibiting the same mechanical properties of the raw material; mi-
crostructure was well preserved.

1. Introduction

Drying is one of the main products processing in the food industry.
It inhibits the microbial spoilage and the enzyme activity, thus ex-
tending the product shelf life (de Bruijn et al., 2016). Dried products are
more convenient since their low volume allows reducing the packaging,
transport and storage costs (Brown, Fryer Norton, Bakalis, & Bridson,
2008).

One of the key parameters that quantify the quality of a dried
product is its rehydration capacity, i.e. the ability to reacquire the in-
itial amount of water within its structure. Generally, dried products
show moderate or low rehydration capacity, since cellular and struc-
tural ruptures occur during the drying process (Vega-Gálvez et al.,
2015).

Among the drying techniques, freeze-drying (FD) gained interest
since it provides both high water desorption and good retention of the
food characteristics (Karam, Petit, Zimmer, Baudelaire Djantou, &
Scher, 2016; Shishehgarha, Makhlouf, & Ratti, 2002). Long process
times and high-energy demands, however, are required to obtain safe
products, characterised by moisture content (MC) lower than 20–25 g/
100 g and water activity (aw) lower than 0.6. These conditions are
generally regarded as the threshold values to avoid bacteria prolifera-
tion and enzymatic activity that can cause degradation of the product
(Ratti, 2001; Stevenson et al., 2015; de Bruijn et al., 2016).

In order to overcome these limitations, some pre-treatments can be

applied, for instance osmotic dehydration (OD). OD is a low-cost
method, which allows more colour, aroma, nutritional constituents and
flavour retention (Sagar & Suresh Kumar, 2010; Yadav & Singh, 2014).
The application of osmotic dehydration allows an intermediate
moisture product to be produced, which can be dried further using a
conventional technique, with a reduced processing time (da Costa
Ribeiro, Aguiar-Oliveira, & Maldonado, 2016; Prosapio & Norton, 2017;
Ruiz-López, Huerta-Mora, Vivar-Vera, Martínez-Sánchez, & Herman-
Lara, 2010). In a recent paper Prosapio and Norton (2017) investigated
the influence of osmotic dehydration on freeze drying performance.
They studied the effect of OD operating parameters (type of osmotic
agent, temperature, concentration and processing time) and FD pro-
cessing time on water activity, moisture content, solid gain, texture and
rehydration. They showed that the application of the pre-treatment
with Fructose 60 °Bx, at 50 °C and 180min followed by 7-h freeze
drying allowed to obtain the same samples’ final water activity and
moisture content of 18-h freeze drying alone. Nevertheless, they noted
that, at the process conditions investigated, the rehydration capacity
was lower than that obtained for freeze drying, as previously reported
by (Ciurzyńska & Lenart, 2012; Seguí, Fito, & Fito, 2013). In their
paper, Prosapio and Norton hypothesized that the cause of the lower
rehydration capacity was related to the higher shrinkage that the
samples experienced during osmotic dehydration.

Another common pre-treatment in food drying involves the use of
ultrasounds (US). This technology has gained interest in recent years as
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Table 1
OD + FD experiments. Each value is expressed as mean ± standard deviation (n = 3).

# Firming agent CFA [%w/w] COS [°Bx] aw MC [g/100 g] RC %

1 – – 40 0.439 ± 0.098a 9.55 ± 0.75a 24.88 ± 3.12a

2 50 0.302 ± 0.074a,b 8.98 ± 2.82a 36.55 ± 1.02b

3 60 0.195 ± 0.006b 7.52 ± 0.79a 30.00 ± 2.04a,b

4 Calcium chloride 1 50 0.429 ± 0.018a 13.56 ± 1.25a,b 38.30 ± 3.93b

5 5 0.471 ± 0.040a,c 20.91 ± 1.08b 30.06 ± 1.04a

6 10 0.485 ± 0.011a,c 31.31 ± 3.14c 29.78 ± 1.27a

7 Calcium lactate 1 50 0.429 ± 0.007a 12.00 ± 2.38a 40.84 ± 1.23b

8 5 0.585 ± 0.064c 17.89 ± 1.71b 38.13 ± 1.35b

9 10 0.597 ± 0.015c 19.83 ± 4.38b 31.09 ± 1.10a,b

CFA: concentration of firming agent; COS: concentration of osmotic solution; aw: water activity; MC: moisture content; RC: rehydration capacity. The values followed
by the same letter (abc) in the columns are not significantly different according to one-way ANOVA and Tukey's multiple comparison tests.

Fig. 1. Effect of the concentration of calcium chloride (runs
#4-6): □ FD (data taken from (Prosapio & Norton, 2017)), ○
OD+FD calcium chloride 1% w/w, ● OD+FD calcium
chloride 5% w/w, ◊ OD+FD calcium chloride 10% w/w.

Fig. 2. Influence of the firming agent on the rehydration
capacity of osmotic + freeze dried samples (runs #2, 4, 7 in
Table 1): □ FD, ○ OD+FD 1% calcium lactate, ● OD+FD
1% calcium chloride, ◊ OD+FD.
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it is considered non-thermal and sustainable (Gamboa-Santos, Montilla,
Cárcel, Villamiel, & Garcia-Perez, 2014). It has been frequently ob-
served that the implementation of US during OD allows a reduction of
the processing time (Garcia-Noguera et al., 2010) and the solid intake
(Amami et al., 2017; Barman & Badwaik, 2017; Farhaninejad, Fathi,
Shahedi, & Sadeghi, 2017), and a better preservation of the product
colour (Garcia-Noguera, Oliveira, Weller, Rodrigues, & Fernandes,
2014). . However, it has also been observed that the use of US affects
the food tissue, with cellular breakdown and formation of micro-
channels, which cause the collapse of the microstructure (Fernandes,
Gallão, & Rodrigues, 2009; Rastogi, 2011).

In order to strengthen the structure of dried foods firming agents
can be used. Among them, calcium salts have been widely used in food
processing as fortifiers. Calcium can interact with the free carboxyl
groups of the pectin chains in the cell walls, forming the calcium pec-
tate, a cross-bridge that reduces cell separation and, therefore, the
tissue softening. In literature it has been observed that the addition of
calcium salts during OD produces a firmer structure (Guiamba, Ahrné,
Khan, & Svanberg, 2016; Quiles et al., 2004; Siramard & Charoenrein,
2014) and a good antimicrobial effect (Pereira, Carmello-Guerreiro,
Junqueira, Ferrari, & Hubinger, 2010).

Many papers have been published on US-assisted OD and the use of
firming agents in the osmotic solution, but no study has been carried

out so far on the combination of them with the aim of optimising the
drying process while improving the rehydration and retaining the
properties of the fresh products.

In this work, for the first time, calcium chloride and calcium lactate
have been employed during ultrasound-assisted osmotic dehydration
followed by freeze-drying. The effects of the kind and concentration of
firming agent and the sonication time have been investigated to identify
the conditions that allow minimising the process time and the damages
to the food microstructure. Strawberry has been used as model food,
using previous results as a reference (Prosapio & Norton, 2017).

2. Materials and methods

2.1. Materials

Fresh strawberries (Malling centenary, on average 4 cm in diameter
and 7 cm in length) were purchased by a local supermarket and stored
in a refrigerator at 5 °C before being used for the experiments. After
washing in tap water, draining with blotting paper and removing the
external impurities, strawberries (10 g for each experiment) were cut
into cubes of 1 cm3. Fructose (purity≥ 99%) used as osmotic dehy-
drator was supplied by Sigma Aldrich (UK). Calcium chloride
(purity≥ 93%) used as firming agent was supplied by Fisher Scientific
(UK). Calcium lactate used as firming agent was supplied by VWR
International (UK). All materials were used as received.

Table 2
USOD + FD experiments. Each value is expressed as mean ± standard de-
viation (n = 3).

# Firming
agent

tOD [min] aw MC [g/100 g] RC %

10 Calcium
chloride

15 0.698 ± 0.139a 41.35 ± 11.39a n.p.
11 30 0.655 ± 0.119a 30.77 ± 5.73b n.p.
12 60 0.504 ± 0.040b 23.23 ± 8.54b 41.59 ± 1.91a

13 90 0.473 ± 0.026b 18.97 ± 4.99c 44.86 ± 4.34a

14 180 0.412 ± 0.068b 17.38 ± 0.94c 36.60 ± 6.15b

15 Calcium
lactate

15 0.686 ± 0.102a 27.87 ± 1.93b n.p.
16 30 0.421 ± 0.014b 20.14 ± 2.49c 49.74 ± 1.40c

17 60 0.395 ± 0.009a 18.76 ± 2.14b 39.23 ± 2.57b

18 90 0.328 ± 0.039a 12.91 ± 4.98b 32.07 ± 4.66b

19 180 0.285 ± 0.074a 10.01 ± 7.33a 29.45 ± 1.59b

tOD: osmotic dehydration time; n.p.: not performed. The values followed by the
same letter (abc) in the columns are not significantly different according to one-
way ANOVA and Tukey's multiple comparison tests.

Fig. 3. Comparison of the RC % trends: □ FD (data taken
from (Prosapio & Norton, 2017)), ◊ OD + FD, ● OD (with
calcium lactate)+FD, ○ USOD (with calcium lactate)+ FD.

Table 3
Degree of porosity in dried strawberry. Each value is
expressed as mean ± standard deviation (n=3).

Sample Porosity %

FD 80.90 ± 3.56a

Run #2 41.07 ± 11.58b

Run #7 57.52 ± 6.76c

Run #16 61.25 ± 0.03c

The values followed by the same letter (abc) in the
columns are not significantly different according to
one-way ANOVA and Tukey's multiple comparison
tests.
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2.2. Osmotic dehydration (OD)

Osmotic dehydration experiments were carried out by immersion of
10 g of strawberry cubes into 100 g osmotic solution (formed by 40, 50
or 60 g of fructose dissolved in 60, 50 or 40 g of water to make 40, 50 or
60 °Bx, respectively), under stirring for 180min at 250 rpm (Stuart,
SB162-3, UK). The temperature of the medium was set at 50 °C, in
agreement with an optimisation of the process conditions conducted in
a previous work (Prosapio & Norton, 2017). The fruit to solution ratio
was fixed at 1:10. At the end of each treatment, samples were taken
from the beaker and blotted with paper to remove surface water. OD
experiments were performed in triplicate for each condition in-
vestigated.

2.3. Ultrasound-assisted osmotic dehydration (USOD)

USOD experiments were performed by immersion of 10 g of
strawberry cubes in a beaker containing 100 g of osmotic + firming
agent solution (formed by 50 g of fructose to make 50 °Bx and calcium
chloride or calcium lactate 1% w/w dissolved in water, the fruit to
solution ratio fixed at 1:10). The beaker was then placed in a sonicating
bath (Branson Ultrasonic cleaner 3510, UK) with frequency of 40 kHz,
power of 130 W and the temperature of the medium was set and kept
constant at 50 °C. The time of ultrasound application was varied from
15 to 180 min. At the end of each experiment, samples were taken and
blotted with paper to remove surface water. USOD experiments with
calcium chloride or calcium lactate were performed in triplicate for
each condition investigated.

2.4. Freeze-drying (FD)

Samples were first placed in a freezer at −20 °C for 18 h, applying a
freezing rate of around 0.2 °C/min, previously measured by use of
thermocouples at both sample core and surface. Frozen samples were
then lyophilised using a bench top Freeze Dryer (SCANVAC Coolsafe™,
model 110–4, Denmark), condenser temperature −110 °C, pressure
0.2 mbar, condition that is defined by the equipment. The processing
time was set at 18 h for samples processed only with FD and at 7 h for
osmotically pre-treated samples, in agreement with an optimisation of
the process conditions performed in a previous work (Prosapio &
Norton, 2017). Experiments were performed in triplicate for each
condition investigated.

2.5. Moisture content analysis

Moisture content (MC) analyses were carried out using a moisture
analyser (MB 25, OHAUS, Switzerland). Two grams of sample were
placed within the aluminium pans and located over the pan support of
the moisture meter. A halogen element inside the moisture meter pro-
vides uniform infrared heating. It heats the sample at a set temperature
of 120 °C until the sample weight becomes constant. Moisture percen-
tage as a function of weight change is recorded and displayed.

2.6. Water activity analysis

Water activity (aw) of fresh and dried samples was measured using
an AquaLab® dew point water activity meter (model 4 TE, Decagon
Devices Inc., Pullman, WA, USA). The temperature controlled sample
chamber was set to 25 °C.

Fig. 4. Comparison of pore size distributions of samples dried using different approaches: (brown) FD, (orange) run#2, (yellow) run#7, (green) run#16. Each value
is expressed as mean± standard deviation.
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2.7. Rehydration

Rehydration tests were performed by immersing a weighed amount
of dried samples into distilled water at room temperature (samples to
water mass ratio 1:100). Samples were removed at regular intervals,
blotted with paper to eliminate the surface water and then reweighed.
Rehydration capacity (RC %) was measured for all the samples using
the following equation:

=
−

−

RC w t w
w w

( ( ) )
( )

100d

d0 (1)

Where:

- w(t) is the sample weight at time t (g);
- wd is the dried sample weight (g);
- w0 is the sample initial weight (g).

Then, the rehydration behaviour was determined plotting RC as a
function of the time (min). Rehydration tests were performed in tri-
plicate for each treatment.

2.8. Microstructure

The structure of dried strawberries was analysed using a Skyscan
1172 X-ray micro-computed tomography (μCT) (Bruker μCT, Belgium)
system, with 80 kV maximum X-ray energy, 8W beam power, 1150ms

Fig. 5. Micro-CT images of dried samples: (a) FD; (b) OD+FD run#2; (c) OD(FA)+FD run#7; (D) USOD+FD run#16.

Table 4
Colour coefficients of fresh and dried strawberry. Each value is expressed as mean ± standard deviation (n= 5).

Sample L* a* b* Cab* ΔE

Fresh strawberry 57.54 ± 1.79a 65.34 ± 5.15a 53.48 ± 8.58a 84.52 ± 9.09 –
FD strawberry 74.00 ± 11.35b 32.96 ± 11.45b 30.06 ± 7.10b 45.11 ± 11.20 43.65 ± 15.71
Run #2 60.00 ± 14.32a,b 48.70 ± 15.91a,b 34.81 ± 12.42b,c 59.91 ± 19.98 28.77 ± 19.17
Run #7 59.72 ± 15.51a,b 47.43 ± 7.90b,c 36.11 ± 9.79a,b 58.89 ± 8.79 29.94 ± 9.91
Run #16 55.57 ± 4.04a 58.39 ± 4.21a,c 44.47 ± 3.75a,c 73.53 ± 2.84 12.99 ± 2.00

L*: lightness coefficient; a*: red colour coefficient; b*: yellow colour coefficient; Cab*: chroma; ΔE: relative colour difference index. The values followed by the same
letter (abc) in the columns are not significantly different according to one-way ANOVA and Tukey's multiple comparison tests.
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exposure per projection and 5.95 μm pixel size. Data was reconstructed
using NRecon (1.6.10.2, Bruker) and then visualised in 2D and 3D using
DataViewer (version 1.5.1.2, Bruker) and CTVox (version 3.0, Bruker)
software, respectively. CTAn (version 1.15.4.0, Bruker) software was
thereafter used to determine the porosity of the dried bulk structure and
the pore size distribution. For each condition investigated, three sam-
ples were analysed.

2.9. Colour measurement

The determination of colour was carried out via image analysis,
using a methodology adapted from Yam and Papadakis (2004). The
external surface colour of fresh and dried samples was evaluated using a
high-resolution photographic camera (Canon EOS 5D Mark III) by
capturing the images under a proper lighting. The lighting system was
formed by two source lamps, positioned on the two sides of a white
frame, where the sample was placed, 30 cm above it and at an angle of
45° to the sample plane. The camera was held on a tripod and the lens
faced towards the sample. The lens was zoomed to have the whole field
of view covered by the sample and focused. Photographs were taken
and saved as JPEG files. Colour attributes of samples in each image
were measured by Matlab R2016b Image processing software. Images
were imported and analysed using an algorithm written in Matlab,
which returns the values of the lightness coefficient L*, the red colour
coefficient a* and the yellow colour coefficient b*. The colour in-
dicators were then calculated using the following formulas:

= +
∗ ∗ ∗C a bab

2 2 (4)

= − + − + −
∗ ∗ ∗ ∗ ∗ ∗ΔE L L a a b b( ) ( ) ( )0 2 0 2 0 2 (5)

Where:

- Cab
∗ is the Chroma;

- ΔE is the relative colour difference index;
- the subscript 0 is referred to fresh strawberry.

Measurements were carried out analysing 5 samples for each con-
dition investigated.

2.10. Texture analysis

A texture analyser (TA.XT plus, Stable Micro System Ltd, UK) with a
cylinder probe (2mm diameter) was used for puncture penetration
tests. The probe was used to measure the maximum force required to
penetrate an individual rehydrated piece of strawberry, to a depth of
2mm, positioned horizontally over a heavy-duty platform. The speed of
approach of the probe was 2mm/s and a 5 kg load cell was used. For
each experiment, the mean maximum penetration force (N) was re-
corded. Measurements were carried out analysing 10 samples for each
condition investigated.

2.11. Statistical analysis

All experiments and measurements were performed in triplicate and
reported as mean and standard deviation. Data were analysed by one-
way analysis of variance (ANOVA) and Tukey's multiple comparison
tests, using SigmaPlot 12.5 Statistical Software. The level of sig-
nificance was defined as p≤ 0.05.

3. Results and discussion

Fresh strawberries were characterised by initial moisture content
equal to 91.00 ± 0.05 g/100 g and water activity equal to
0.982 ± 0.004. In order to investigate the properties of the dried
samples, two set of experiments were performed carrying out OD under
stirring (section 3.1) and under ultrasounds (section 3.2).

3.1. Osmotic dehydration + freeze-drying (OD + FD)

Experiments were performed using osmotic dehydration (OD) under
stirring prior to freeze-drying (FD). The following effects were in-
vestigated: the osmotic solution concentration (COS), the firming agent
(FA) and its concentration (CFA). Table 1 shows a list of the performed
experiments, with the indication of the operating conditions employed,
the percentage of moisture content (MC) in the final samples (after FD),
their water activity (aw) and rehydration capacity (RC %) after 24 h.

The effect of the osmotic solution concentration was investigated at
40, 50 and 60 °Bx (runs #1–3 in Table 1). As observed from the data
reported in Table 1, an increase of the sugar concentration resulted in a

Fig. 6. Puncture penetration testing of strawberries dried using different approaches and rehydrated at room temperature. Each value is expressed as mean±
standard deviation.
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decrease of the sample moisture content and water activity, especially
for 60 °Bx. However, a different trend was observed for the rehydration
capacity, which increased to 36.55 ± 1.02% when the sugar con-
centration was set at 50 °Bx and then decreased at the higher con-
centration (30.00 ± 2.04%). These results suggest that higher the
driving force, higher the sample shrinkage which, in conjunction with
the higher sugar impregnation, limits the rehydration process. There-
fore, in order to maximise the rehydration capacity, a concentration
equal to 50 °Bx was fixed for the following experiments.

The effect of different concentrations of FA used (1, 5, 10% w/w)
was investigated (Table 1). For both salts it was observed that in-
creasing their concentration in the osmotic solution, the water activity
and moisture content increased, whereas the rehydration ability de-
creased, as already reported by (Udomkun, Mahayothee, Nagle, &
Müller, 2014). This evidence is probably related both to the formation
of the calcium pectate that, at high concentration, may obstruct the
mass transfer, and the binding between pectin and water, which forms
more viscous solutions (Albano & Nicoletti, 2018). Fig. 1 shows the
effect of the calcium chloride concentration on the final rehydration
ability and compares it with the RC% of freeze-dried samples. At the
lowest concentration of firming agent, the samples’ aw and MC were
below the safety thresholds (0.6 and 20 g/100 g, respectively) and re-
hydration capacity was higher than that obtained in absence of the
firming agent (as shown in Fig. 2). From Fig. 2, it can be observed that
the use of calcium lactate results in a slightly higher RC than calcium
chloride, but it is still lower than the rehydration exhibited by freeze-
dried samples. Despite the formation of the calcium pectate, osmoti-
cally pre-treated samples still experienced some shrinkage, as shown
later in Fig. 5c. Therefore, the effect of combining ultrasounds (US) and
firming agent during the pre-treatment was investigated.

3.2. Ultrasound-assisted osmotic dehydration + freeze-drying
(USOD + FD)

The osmotic solution used for these experiments was fructose 50 °Bx
and 1% w/w firming agent at 50 °C. The effect of the osmotic dehy-
dration time (tOD) was investigated (Table 2). Rehydration tests were
not performed (n.p.) when the water activity of the sample was higher
than 0.6 as they were not safe from bacteria proliferation. As shown in
Table 2, when samples were processed using calcium chloride (runs
#10–14) over 180min, aw and MC decreased progressively. In terms of
rehydration, the highest value (44.86 ± 4.34%) was observed in cor-
respondence of a processing time equal to 90min. The reason of this
trend is that samples processed for 180min are stressed for too long,
causing cell disruption, microstructure collapse and, therefore, a de-
crease in the rehydration ability. In the case of calcium lactate (runs
#15–19 in Table 2), the trend was similar, but the highest RC
(49.74 ± 1.40%) was obtained using a processing time equal to
30min. This result allows a reduction of the OD processing time of
83.3% (from 180 to 30min) and, therefore a substantial decrease of the
energy consumption (lower running costs) and the possibility to process
more products in the same time period.

As observed from the results reported in Tables 1 and 2, the si-
multaneous use of ultrasounds and calcium lactate as firming agent
increases the rehydration capacity of the dried samples, achieving
about 50%. Fig. 3 reports a comparison among the RC curves of freeze-
dried samples (data taken from (Prosapio & Norton, 2017)), OD + FD
samples (run #2 in Table 1), OD (with FA)+FD samples (run #7 in
Table 1) and USOD + FD (run #16 in Table 2). At short rehydration
times (up to 120min), freeze-dried samples rehydrate faster since the
structure did not shrink during drying. When OD is applied, the samples
undergo shrinkage. For this reason, they require more time to swell and
absorb water. However, after 120min, samples osmotically pre-treated
with US and calcium lactate showed the highest RC.

3.3. Microstructure

During the freezing step, ice crystals are formed, which leave pores
on sublimation. The degree of porosity and the pore size distribution
affect the rate and the extent of rehydration.

Samples previously discussed (FD and runs #2, 7, 16) were analysed
using X-ray micro-computed tomography. Porosity data are reported in
Table 3, whereas the pore size distributions and a cross-section of the
dried samples are reported in Figs. 4 and 5, respectively.

Table 3 shows that the freeze-dried samples had the highest por-
osity, which explains the faster rehydration rate at short time (Fig. 3),
with mean pore size around 100 μm (Fig. 4). When osmotic dehydration
is applied prior to freeze-drying, a partial collapse of the structure oc-
curs, as shown in Fig. 5b in which white zones, characterised by high
density of cell wall membrane, and shape distortion can be observed. As
a consequence, porosity was significantly lower (about half of FD
samples), with consequent reduced rehydration ability, as previously
shown in Fig. 3. The addition of the firming agent contributed to pre-
serve the integrity of the cell walls, thus reducing the collapse. In effect,
porosity increased by 57% and larger pores are visible in Fig. 5c. The
application of ultrasounds for 30min during OD gave a porosity of 61%
and pores of about 150 μm. This last observation helps explaining the
rehydration trends of Fig. 3: at short times, USOD samples rehydrate
slower than freeze-dried samples because of the lower porosity; how-
ever, at longer times the presence of larger pores allows the absorption
of a higher amount of water within the network. In addition Fig. 5d
shows that the reduced exposure to heat reduced the collapse of the
structure, as dense areas into the samples are less evident, and the
shape was more preserved.

3.4. Colour

Colour is one of the main quality attributes that influence the pro-
duct acceptance by the consumer (Holzwarth, Korhummel, Carle, &
Kammerer, 2012; Kalt, 2005). During drying, colour changes not only
due to water removal, but also because some chemical and biochemical
reactions take place, such as Maillard reactions, enzymatic browning,
oxidation and some heat-sensitive compounds may be destroyed by
thermal exposure (Fellows, 2009; Hii & Law, 2010; Rahman, 2007).

In Table 4, the colour coefficients, measured following the method
described in Section 2.10, were reported for fresh strawberries and
samples dried with freeze-drying (Prosapio & Norton, 2017, osmotic
dehydration + freeze-drying (run #2), osmotic dehydration (with
calcium Lactate)+ freeze-drying (run #7) and ultrasound assisted os-
motic dehydration (with calcium Lactate)+ freeze-drying (run #16).

The data in Table 4 shows that drying caused alteration change of
the colour for all samples. Freeze-drying had the biggest effect: the
lightness coefficient value L* was increased whereas the red and yellow
coefficients were reduced. Consequently, the colour difference index
(ΔE) is the highest among the investigated samples (43.65). The ap-
plication of the osmotic pre-treatment prior to freeze-drying (run #2)
retained more the colour (lower ΔE); this result is in agreement with the
literature (Ciurzyńska, Lenart, & Gręda, 2014; de Bruijn & Bórquez,
2014). The use of the firming agent (run #7) had no effect on the colour
of dried strawberries, since all the parameters were essentially the same
as observed for samples processed without calcium lactate. When os-
motic drying was performed with ultrasounds, the colour indicators are
the closest to the original colour of fresh strawberries and ΔE has the
lowest value (about 13.00). This result is probably due to the reduced
heat exposure during osmotic drying (30min instead of 180min).

3.5. Texture

Texture is another important parameter for food acceptability,
especially for dried products. During drying, the food tissues are sub-
jected to stress, which causes cracks and deformations, with consequent
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softening of the tissues (Lewicki & Pawlak, 2003).
Fig. 6 shows the bar chart with the results of the puncture tests for

fresh strawberries and rehydrated samples processed with FD, OD+ FD
(run #2), OD (with calcium Lactate)+FD (run #7) and USOD (with
calcium Lactate)+FD (run #16).

As reported in a previous work (Prosapio & Norton, 2017), freeze-
drying causes a large reduction in firmness. This result can be explained
by the formation of large crystals during the freezing step. These
crystals would be the responsible of the breaking the cells, resulting in a
weaker structure. The application of osmotic dehydration allows more
retention of the structure and caused less effect, as shown in Fig. 4. This
can be explained as at intermediate moisture less ice is formed. In ad-
dition, the presence of sugar will result in smaller crystals since it fa-
vours the nucleation kinetic rather than the crystal growth (Petzold &
Aguilera, 2009). When calcium lactate is added to the osmotic solution,
the textural properties were further retained since, as mentioned in the
Introduction, the formation of the calcium pectate increases the pectin
retention (Mauro et al., 2016). The highest firmness preservation was
observed for samples treated with ultrasounds for 30min during OD. In
this case, the force required to puncture the sample is comparable to
that of the fresh material (Fig. 6). In fact, the reduced exposure time to
heat (30min instead of 180min) combined with the use of the firming
agent allows more preservation of the fruit texture than conventional
osmotic dehydration.

4. Conclusions

In this work, it was shown that the simultaneous application of ul-
trasound and firming agent during osmotic dehydration prior to freeze-
drying is a promising strategy to improve the quality properties of dried
foods: rehydration capacity was enhanced as compared to freeze-dried
samples; colour was better retained, showing colour coefficients closer
to the fresh strawberry; texture was largely improved, exhibiting the
same mechanical properties of the fresh fruit; the fruit shape was
maintained as the microstructure was well preserved and the cell walls
were not damaged. Moreover, it was possible to shorten the osmotic
dehydration process time, resulting in a potential reduction of the en-
ergy costs.
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