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Abstract 

This paper is the first to examine the short term local economic impact of tropical cyclones by 

estimating the effects on monthly nightlight intensity.  More specifically, for Guangdong 

Province in Southern China, we proxy monthly economic activity with remote sensing derived 

monthly night time light intensity and combine this with local measures of wind speed derived 

from a tropical cyclone wind field model.  Our regression analysis reveals that there is only a 

significant (negative) impact in the month of the typhoon strike and nothing thereafter.  

Understanding that typhoons are inherently a short-term phenomenon has possible implications 

for studies using more aggregate data. 
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1. Introduction 

There is a growing literature that examines the economic impact of tropical cyclones.  Predictions 

that the intensity of tropical cyclones will increase with global warming means that understanding 

the economic consequences of these storms is of growing importance (Knutson et al. 2010 and 

Emanuel 2013).  To date, the evidence from previous research is rather mixed, with most studies 

showing only a small negative and relatively short-lived effect.1  Importantly though, previous 

papers have almost exclusively used low frequency, i.e., annual, data.  However, tropical cyclones 

are, as most natural disasters, relatively immediate events, where arguably much of the direct and 

indirect effects happen within the first few weeks of the disaster.  This aspect suggests that much 

of the short-term dynamics might be lost when only using annual data. As a matter of fact, the 

possible importance of looking at higher frequency data is highlighted by Mohan and Strobl 

(2017), who examine the impact of Typhoon Pam in the South Pacific and find very 

heterogeneous within year effects across different islands.2 

The purpose of this paper is to be the first to examine the very short-term impact of tropical 

typhoons on local economic activity.  The importance of examining the impact at the local rather 

than at a more aggregated level (for example, country or regional level) rests on the fact that the 

impact of tropical storms tends to be relatively local in nature.  This was previously shown by 

Bertinelli and Strobl (2013), who demonstrated for the Caribbean hurricane strikes that a large 

part of the local effect is ‘aggregated’ out when using more aggregate data.  In this paper we 

examine the impact of tropical cyclones on local areas within Guangdong Province in Southern 

China.  Our empirical approach is to measure local economic activity with local (approx. 1km) 

monthly nightlight intensity derived from satellite data.  In this regard, since Chen and Nordhaus 

(2011) and Henderson (2011) first used nightlight intensity as an indicator of local economic 

1 See Felbermayr and Groschl (2014) and duPont and Noy (2016) for recent reviews of the economics of natural 
disasters literature. 
2 Unlike our study they focus on a single event and only examine aggregate rather than local impacts. 
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activity, such data have become a popular proxy of local economic wealth when official data are 

not available.3  Our approach is to combine these measures with local measures of wind speed 

during typhoon strikes, estimated using a tropical cyclone wind field model.  The combination of 

these two data sets allows us to estimate the extent of the local damage caused by typhoons 

within a year rather than just over years, for a period greater than 20 years. 

We study Guangdong for a number of reasons.  The first is of a more practical nature. More 

precisely, the available nightlight intensity data we use, DMSP, records light intensity images at 

around 20h30, and thus will not usable for those parts of the year where the sun sets after this 

time. Since Guangdong is in southern China, the sun sets before 8:30 pm all year round, which 

provides us with remote sensing derived night time light measures for every month of the year, 

including the crucial summer and early autumn months when typhoons most often make landfall.  

However, Guangdong is an attractive case study for other reasons.  More specifically, 

Guangdong is located in the Northwest Pacific Basin, which has historically been subject to some 

of the most frequent and intense tropical cyclones in the world.  For instance, Liu et al. (2001) 

construct a 1,000 year time series of typhoon landfalls that struck Guangdong based on historical 

documentary evidence, and find that there have been at last 571 that equates to an average at least 

one typhoon strike every two years.  Finally, Guangdong is home to a large number of small and 

medium sized manufacturing plants and is one of the most economically important provinces in 

China.  As shown by Elliott et al. (2015), since annual costs due to typhoons in coastal areas in 

China is around $0.54 billion, Guangdong is likely to contribute an important component of 

these costs. 

 

  

3 For an example of the use of nightlights to examine the local economic impact of tropical cyclones using annual 
data see Elliott et al. (2015). 
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2. Data 

2.1 Nightlights Data 

The nightlights data consists of the monthly composites of the United States Air Force Defense 

Meteorological Satellite Program-Operational Linescan System (DMSP-OLS).  The raw data are 

processed to remove cloud obscured pixels and other sources of transient light, and are 

normalized to a range between 0 and 63.4  Here we use the monthly composites provided for 

satellites F10, F12, F14, F15, F16, and F18, which provide information on the average stable 

monthly nightlight intensity, as well as the number of cloud free days from which these averages 

are calculated.  In order to derive unique monthly values for overlapping satellite observations we 

calculate simple averages across satellites for each pixel, which are approximately 1km2.  Since the 

images are taken between 8:30 pm and 10:00 pm local time, for large parts of China there are no 

values during the summer months, which is one reason why we restrict our analysis to the 

southern province of Guangdong.  The average value of nightlights within Guangdong over our 

sample period 1992 to 2013 is 10.8, with a standard deviation of 16.9, derived from images with 

an average of 5.8 cloud free days.  Figure 1 depicts the annual average nightlight intensity relative 

to changes in Guangdong’s GDP, which are taken from the Chinese National Bureau of 

Statistics, for our time period.  As we can see, both series follow similar trends.  Figure 2 depicts 

the 2013 annual average nightlights value spatial distribution in Guangdong.  The main 

observation is the very unequal spatial distribution of economic activity in the province. 

2.2 Typhoon Data 

We use storm track data from the Regional Specialized Meteorological Centre (RSMC), which 

provides information on all tropical cyclones in the West Pacific that have a maximum sustained 

wind speed of at least 119km/h, including the position of the eye of the storm, central pressure, 

and the maximum wind speed. We linearly interpolate the six hourly data into hourly points of 

4 Unfortunately, given the normalization, the values can only be valued in relative terms. 
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location, and the accompanying characteristics of the storm.  We restrict the set of storms in our 

analysis to those that came within 500 km of the coast of Guangdong (since tropical cyclone size 

generally does not exceed a diameter of 1,000km).  The 104 typhoon tracks are shown in Figure 

2.  Table 1 provides details on the main typhoons to strike Guangdong during this period, their 

location and wind speed. 

2.3 Rainfall and Temperature 

In order to derive local rainfall and temperature data we use the gridded Climatic Research Unit 

(CRU), version TS v. 4.00.  This data provides, amongst other variables, global coverage of 

monthly precipitation and average temperature values at the 0.5 degree resolution.  We use this 

data to proxy local monthly temperature and rainfall for each nightlight grid within Guangdong 

province by using the centroid of the CRU that is closest. 

 

3. Methods 

3.1 Typhoon Destruction Index 

To measure the destruction due to tropical cyclones we employ the index proposed by Emanuel 

(2011) that proxies the fraction of property damaged: 

fij = 3
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where Vij  is the maximum wind experienced at point i due to storm j, Vthresh is the threshold 

below which no damage occurs, and Vhalf is the threshold at which half of the property is 

damaged.  Following Emanuel (2011) we use a value of 93 km (i.e. 50kts) for Vthres and a value of 

203 km (i.e. 110kts) for Vhalf.  At points i we take the centroids of the 136,378 DMSP nightlight 

cells that fall within Guangdong Province.   

3.2 Wind Field Model 

To estimate Vij  we use Boose et al.’s (2004) version of the well-known Holland (1980) 

wind field model.  More specifically, the wind experienced at time t due to storm j at any point 

P=i, i.e., Vijt, is given by: 
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where Vm is the maximum sustained wind velocity anywhere in the storm, and is provided by the 

storm track data.  T is the clockwise angle between the forward path of the storm and a radial line 

from the storm center to the point of interest, P=i, Vh is the forward velocity of the tropical 

storm, Rm is the radius of maximum winds, R is the radial distance from the center of the tropical 

storm to point P.  The remaining variables are the gust factor G and the scaling parameters F, S, 

and B, for surface friction, asymmetry due to the forward motion of the storm, and the shape of 

the wind profile curve, respectively. 

The forward velocity Vh is determined by following the storm’s movements between 

locations, and R and T are calculated relative to the point of interest P=i.  While we have no 

explicit information on the gust wind factor G, we follow other studies (e.g. Paulsen and 

Schroeder 2005) who suggest that it is around 1.5.  For surface friction F, Vickery et al. (2009) 

suggest that in open water the reduction factor was about 0.7, which means a reduction of about 

14% on the coast and 28% 50km inland.  We thus adopt a reduction factor that linearly decreases 
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within this range as we consider points i further inland.  For B we employ Holland’s (2008) 

approximation method: 
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where ∆p is the pressure drop due to the cyclone center, δpc/δt is the intensity change,  Ψ is the 

absolute value of latitude, Vt is the cyclone transition speed, and vmg/vm is the conversion factor 

from gradient to surface wind.5 

In order to derive a value for Rmax we employ the parametric model estimated by Xiao et 

al. (2009) for Hong Kong: 

lnRmax = 5.3259 + -0.0249∆p – 0.0161ψ       (7) 

where Rmax is constrained to remain above 8km and below 150km. 

 

3.3 Regression Model 

In order to estimate the impact of typhoon destruction on local nighlight activity we employ the 

following regression equation: 

5 Note that Holland (1980) uses a value of 1.6 for this conversion factor.  Instead we use 1.5 in order to be consistent 
with the value we use for F in equation (1).  Using 1.6 as an alternative made no noticeable qualitative or quantitative 
difference to our results. 
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where Nightlights is the nightlight intensity of cell i in month m and year y,  f is our damage index, 

and ε is the usual error term.  We include f both contempraneously (s=0) and in lagged form 

(s=1,…, N).  Vector X includes monthly climatic controls that might be correlated with storm 

incidence, in our case monthly rainfall and temperature.  The vector µi allows for unobserved cell 

time invariant effects that might be correlated with both typhoon destruction and economic 

activity.  More precisely, whilst one can convincingly argue that the actual storm incidence can be 

considered to be an exogenous shock, it may be that some areas are more prone to typhoons 

than others and that economic agents know this and hence may invest more in damage 

prevention and/or are less likely to locate economic activity in those areas.  We control for this 

possibility by using a fixed effects estimator (Woolridge 2002).  We also include year and month 

indicator variables, π and λ,  to account for other time varying common changes.  These indicator 

variables also allow us to take into account changes in satellites as well as their productivity and 

reduced accuracy as they age.  To allow for correlation in nightlight imagery across cells as well as 

over time we use Driscoll and Kraay (1998) standard errors.   

 

4. Results 

We used the RSMC storm tracks as inputs into equation (2) for all centroids of our nightlight 

data and inserted each local maximum wind speed into equation (1).  Of the 104 storms, 69 had a 

wind speed exposure above the threshold of 93km.  These 69 storms resulted in average values 

of f of 0.02 (i.e. 2% damage) with a maximum value of 0.46 (i.e. 46% damage).   

Before estimating equation (8) we determined the optimum number of lags of f by comparing the 

Akaike Information Criterion of models with different numbers of lags.  This suggested an 
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optimum lag length of 9, and we thus estimated all specification including this number of lags.  

The results from estimating the impact of f for up to ten months after the strike (based on the 

AIC results) on logged values of cell level nightlight intensity as in equation (8), including 

accounting for cell level fixed effects and time specific effects are shown in Table 2.6  We also 

include our climatic controls although we do not report the coefficients for reasons of space.  

Our results in Column (1) show that there is only a contemporaneous, and not a lagged, effect on 

nightlight intensity.  Taken at face value it implies that, on average, a damaging storm reduces the 

average nightlights by 1%, while the largest observed value would have reduced our proxy of 

economic activity by 24%. 

We conduct a number of robustness checks in the remaining columns of Table 2.  First, we 

include cell level measures of rainfall and temperature, including up to 10 lags, since these 

weather phenomena may be correlated with storm occurrence.  However, as can be seen from 

Column (2), this only marginally changes the coefficient on the contemporaneous measures and 

does not make any of the lags significant.  The coefficients on our monthly rainfall and 

temperature controls were not significant and are not reported for reasons of space.  In Column 

(3) we include the number of cloud free days as a control for how many daily images each cell’s 

monthly average was based on, since these may be reduced by the occurrence of a tropical 

storm.7  Although more cloud free days implies greater average nightlight intensity, it does not 

alter the effect of f.  Finally, following Emmanuel (2011) in Column (4) we experiment with using 

a higher Vhalf, namely 278 km/hr.  While this changes the coefficient due to the different 

functional form, the results remain qualitatively the same.  The coefficients imply an average 

6 We add 1 to all values so cells with zero values are not dropped. 
7 For months when we use the average across different satellites, we also use the average of the number of cloud free 
days across satellites.   
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contemporaneous reduction of 3 per cent and a maximum of 27% which are broadly similar to 

our Column (1) results.8 

Finally, we follow Elliott et al. (2015) to convert the estimated coefficients from the final column 

of Table 2 into monetary values to calculate the monthly losses due to typhoons over our sample 

period.  The calculations suggest that when a damaging typhoon occurs the result is net losses in 

economic activity in Guangdong province of about $US 0.4 billion, with a maximum value of 

$US 7.5 billion.  Total losses over our sample period amounted to $US 30.7 billion. 

 

4. Discussion 

This paper is the first to examine the local short-term impact of tropical storms using monthly 

nightlight imagery and simulated storm damages.  Our analysis is undertaken for the case of the 

Guangdong province for the period 1993-2013.  The results show that, on average over our 

sample period, there is only a significant and negative effect within the month of the typhoon 

strike and no evidence of any more longer-term effect within the first twelve months of a 

typhoon.  This may explain why a large part of the current literature tends to find only relatively 

short-term effects using annual data.   

Arguably, our result has important policy implications as it suggests that resources that 

are provided quickly might be able to counter-act any negative effects of storms.  More precisely, 

in China, disaster management falls under the China National Committee for Disaster Reduction 

(NCDR), which is comprised of 34 ministries and departments and includes the relevant military 

agencies and social groups. Its main function is to coordinate across agencies and to instigate 

plans and policies for disaster mitigation.  In this regard, the Ministry of Civil Affairs is currently 

responsible for disaster relief.  Its contingency plan for disaster relief includes plans issued at the 

8 We also estimated each specification using 12 lags to investigate how the monthly coefficients changed over the 
period of one year (which is the usual data frequency used in studies of natural disasters).  The main results did not 
change and are available from the authors upon request. 
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province, city and county-level, as well as for individual towns, schools and factories.  In addition 

stockpiles for disaster relief have been built up across 22 cities and smaller disaster prone 

localities in China.  A campaign of public awareness has also been undertaken and a booklet 

“Handbook of Disaster Prevention and Self-Rescue” has been published.  There are also plans 

for a well-equipped national chain of emergency shelters that will include schools and stadiums 

and other public buildings.  Moreover, rural and urban communities will have their own 

emergency response plan (ADRC 2013).  For example, following the Sichuan (2008) earthquake 

the Chinese government obtained resources from across the country and a three-year target was 

announced that all homeless households would be rebuilt.  Grants were also provided to 

households that were homeless and these could also apply for additional loans.  Although the 

subsidy and loan system was directed by the central government, the implementation was at the 

discretion of county governments and village committees (Tse et al. 2013). 

Importantly, the disaster management strategies in China are often considered remarkably 

successful, which may have dampened any negative impact on economic activity due to 

typhoons.  The limited temporal effect of typhoons that we find here further cements this claim, 

suggesting that China’s well-established emergency response mechanisms and early warning 

release platforms may have been effective in reducing the short-term economic damage from 

typhoons. 9  However, further analysis for other countries where such an extensive disaster 

management is not in place would need to be conducted to further substantiate this claim.  

Moreover, future research may also want to focus on what role adaption has played in the short-

turn response (Onuma et al. 2017).  Finally, future studies should prioritize focusing on the short- 

rather than long-term effects of tropical storms, and perhaps natural disasters more generally, if 

we are to gain a better economic understanding of these phenomena. 

 

9 See, for instance, the discussion in Bier (2017).   
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Figure 1: Average Cell Nightlight Intensity vs. Annual GDP (1992-2013) 
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Figure 2: Cyclone Tracks (1992-2013) and Nightlight Imagery (2013) of Guangdong Province 

 

Note: (a) Guangdong outline in blue; (b) 2013 average annual nightlight imagery; (c) Orange portion of cyclone track is non-damaging (<92km/hr), red portion is 
damaging (92km/hr+)  
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Table 1: The main typhoons affecting Guangdong Province, 1993-2013 

Name Wind Speed (km/h) Start date End date Location 
Tasha 120 13/08/1993 22/08/1993  Yangxi County 
Becky 259 13/09/1993 18/09/1993  Yangjiang City 
Sally 148 02/09/1996 09/09/1996 Leizhou Peninsula 
Dujan 148 29/08/2003 03/09/2003 Huidong County 
Damery 82 21/09/2005 28/09/2005 Wanning City 
Fengshen 120 19/06/2008 26/06/2008  Shenzhen City 
Kalmagegi 139 15/07/2008 21/07/2008  Xiapu County 
Fung-wong 93 25/07/2008 31/07/2008  Fuqing City 
Kammuri 139 05/08/2008 08/08/2008  Yangxi County 
Nuri 167 18/08/2008 23/08/2008  Sai Kung Town 
Hagupit 65 19/09/2008 26/09/2008  Dianbai County 
Higos 120 30/09/2008 04/10/2008  Wuchuan City 
Molave 139 16/07/2009 20/07/2009  Shenzhen City 
Morakot 120 09/08/2009 12/08/2009  Xiapu County 
Koppu 185 13/09/2009 16/09/2009  Taishan City 
Parma 130 29/09/2009 14/10/2009  Wanning City 
Nida 130 12/07/2010 18/07/2010  Wuchuan City 
Chanthu 102 19/07/2010 23/07/2010  Wuchuan City 
Meranti 232 08/09/2010 11/09/2010  Shishi 
Megi 185 13/10/2010  24/10/2010  Zhangpu County 
Nanmadol 148 23/08/2011  31/08/2011  Jinjiang City 
Nesat 176 24/09/2011  30/09/2011  Xuwen County 
Nalgae 148 28/09/2011  05/10/2011  Wanning City 
Vicente 120 21/07/2012  25/07/2012  Taishan City 
Kai-tak 194 13/08/2012  18/08/2012  Tsankiang 
Utor 204 10/08/2013  18/08/2013 Yangxi County 
Usagi 120 17/09/2013  23/09/2013  Shanwei City 
Wutip 139 27/09/2013  01/10/2013  Vietnam 
Nari 120 09/10/2013  15/10/2013  Vietnam 
Source: www.weather.com.cn, 2008-2013 and previous data from various sources. 
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Table 2: Regression Results 

 (1) (2) (3) (4) 
f -0.728* -0.727* -0.687* -2.608* 
 (0.343) (0.328) (0.334) (1.277) 
f(t-1) -0.312 -0.240 -0.232 -0.845 
 (0.229) (0.275) (0.289) (1.093) 
f(t-2) -0.254 -0.253 -0.307 -1.128 
 (0.274) (0.313) (0.322) (1.212) 
f(t-3) -0.579 -0.706 -0.656 -2.482 
 (0.363) (0.377) (0.378) (1.466) 
f(t-4) 0.0821 -0.0822 -0.0979 -0.337 
 (0.176) (0.175) (0.177) (0.656) 
f(t-5) -0.243 -0.395 -0.391 -1.550 
 (0.230) (0.232) (0.231) (0.797) 
f(t-6) 0.0262 -0.0484 -0.0620 -0.265 
 (0.206) (0.203) (0.191) (0.784) 
f(t-7) 0.108 0.0413 0.0413 0.115 
 (0.565) (0.547) (0.524) (2.234) 
f(t-8) -0.392 -0.424 -0.358 -1.377 
 (0.212) (0.226) (0.226) (0.817) 
f(t-9) -0.198 -0.197 -0.194 -0.730 
 (0.136) (0.150) (0.150) (0.574) 
Cloud-free Days   0.00706** 0.00708** 
   (0.00203) (0.00202) 
Rainfall controls No  Yes Yes Yes 
Temperature controls No  Yes Yes Yes 
Observations 29,304,494 29,304,494 29,304,494 29,304,494 
Number of groups 136,378 136,104 136,104 136,104 
F-test 2.85** 1.73** 1.81** 1.85** 
Notes: (1) Driscoll and Kraay (1998) Standard errors in parentheses. (2) ** p<0.01, * p<0.05. (3) 
Time specific effects included in all specifications. 
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