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Abstract10

Stronger and more resistant alloys are required in order to increase the performance and efficiency11

of jet engines and gas turbines. This will eventually require planar faults engineering, or a complete12

understanding of the effects of composition and temperature on the various planar faults that13

arise as a result of shearing of the γ′ precipitates. In this work, a combined scheme consisting14

of the density functional theory, the quasi-harmonic Debye model, and the axial Ising model, in15

conjunction with a quasistatic approach are used to assess the effect of composition and temperature16

of a series of pseudo-binary alloys based on the (Ni75−xXx)Al25 system using distinct relaxation17

schemes to assess observed differences. Our calculations reveal that the (111) superlattice intrinsic18

stacking fault energies in these systems decline modestly with temperature between 0 K and 1000 K.19
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I. INTRODUCTION20

In precipitation-strengthened alloys, the shearing of particles is often one of the active21

deformation mechanisms. Superalloys are no exception to this, and their complex shearing22

mechanisms are indeed partly responsible for their superior mechanical properties at high23

temperatures. Over the last few decades, increasing focus has been spent on understanding24

these shearing mechanisms, which change with composition and temperature. The crystal25

structure of the matrix (γ, fcc) and precipitate (γ′, L12) phase is such that a full dislocation26

in the matrix results in the introduction of an anti-phase boundary (APB) in the precipitate27

phase. Other partial dislocations can also shear these precipitates, leading to a diverse range28

of faults: superlattice intrinsic stacking faults (SISFs), superlattice extrinsic stacking faults29

(SESFs), complex stacking faults (CSFs), which can themselves be intrinsic or extrinsic,30

twin structures and more complicated planar defects.31

The energies of these planar faults are extremely important as they determine the nature32

of the complex dislocation structures shearing the precipitates, as well as the segregation of33

solute elements to the fault energies, which in turns can affect the motion of dislocations34

through the precipitates. As a result, a number of mechanical properties, such as minimum35

grain size due to milling, strain hardening and yield stress depend on planar fault ener-36

gies. Creep resistance is also affected by the planar fault energies1. As microstructure and37

processing methods are refined further, it may be possible to achieve even higher strengths38

and high-temperature properties through planar faults engineering. Therefore, a complete39

understanding of the effect of composition and temperature on planar fault energies must40

be developed in order to exploit these opportunities.41

Planar fault energies can be measured experimentally, by determining the separation42

between partials using transmission electron microscopes. However, the thin-film effects43

and uncertainty about how to apply relevant corrections make this type of experimental44

work very difficult2–4. These issues also make it very difficult to systematically study the45

effect of composition and temperature on these planar fault energies.46

On the other hand, recent experimental work has shown robust evidence of solute seg-47

regation to these planar faults in the superalloys, often referred to as Suzuki segregation5.48

Several studies have successfully employed scanning transmission electron microscopy, often49

coupled with energy dispersive spectroscopy, to map solute concentration at SISFs, SESFs50
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and twin structures in both Ni- and Co-based superalloys6,7. At the same time, the density51

functional theory (DFT) has been employed to compute relevant planar fault energies, and52

to assess the effect of composition on these values. Two main approaches exist for calculating53

planar fault energies using the DFT. A more traditional approach involves calculating the54

energy differences between a perfect and a faulted supercell, thereby simulating the planar55

fault explicitly8,9. An alternative approach is to employ the Ising model to describe the56

energy of a large supercell as a sum of contributions arising from the interactions of pairs57

of planes10. Both methods have been used to compute various planar fault energies and the58

effect of composition on planar fault energies for γ′- Ni3Al-based alloys8,9,11.59

One of the main limitations of the available theoretical studies is that all values are60

computed at 0 K. This may be a problem since the superalloys are usually operating at61

appreciable temperatures. Thus, it becomes necessary to assess how these energies may62

change as temperature is increased. In our recent major work11, we have established the63

effect of composition on the SISF energies in all γ′- Ni3Al-based alloys at 0 K. We have64

as well addressed the temperature effect on the SISF energies for several Ni3Al-based sys-65

tems, specifically: (Ni75−xCox)Al25, (Ni75−xCux)Al25, (Ni75−xPdx)Al25, (Ni75−xPtx)Al25.66

However, our temperature-dependence results (section IV.B.311) are preliminary, since they67

did not involve local atomic relaxations of the D019 structure. Thereby, the SISF energies68

temperature-dependence presented earlier11 was tentative. In this work, we try to establish69

the SISF energies variation as a function of temperature. The investigated alloys are those70

recently11 addressed: (Ni75−xXx)Al25 pseudo-binary system, where X = Co, Cu, Pd or Pt,71

and x= 4.62975, 9.2595, 13.88925 and 18.51825 at. % X. We employ a combined scheme con-72

sisting of DFT, the quasi-harmonic Debye (QHD) model, and the axial Ising model (AIM),73

in conjunction with a quasistatic approach. Furthermore, we assess the effect of relaxations74

on the overall results by applying two distinct schemes: full internal relaxation where atoms75

within the structure are allowed to relax to their lowest energy position, and internally static76

whereby the positions of atoms are kept fixed within the structures.77

II. COMPUTATIONAL METHOD78

We combine DFT calculations with the AIM and the QHD model in order determine79

the temperature dependence of SISF energies in L12 Ni3Al-based alloys. This paper does80
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not focus on the methodology behind both models, nor on their advantages/disadvantages81

relative to other approaches (Supercell method and phonon calculations). However, we will82

adequately introduce the main formalisms of both AIM and QHD models that helped us to83

have direct access into SISF energies and their thermal dependence. For more details, the84

reader is referred to Refs. 11 and 12 and references therein.85

A. AIM model86

We employ the axial nearest-neighbor Ising model (ANNI) which is the first-order ap-87

proximation of the AIM model. The (111) SISF formation energy of L12 alloys using the88

ANNI model is given by:89

γL12ANNI =
8(ED019 − EL12)

V
2/3
L12
·
√

3
, (1)90

where VL12 is the volume of 4-atoms L12 unit cell and V
2/3
L12
·
√

3 is the area of 4-atoms in the91

L12 (111) plane over which the stacking fault extends. EL12 and ED019 are the energies per92

atom of the L12 and D019 structures.93

B. QHD model94

The QHD model is able to establish the equation of state of a solid, i.e., the volume95

temperature-dependence V=f(T ) where V is the equilibrium volume at a given temperature96

T . This is achieved through minimizing the non-equilibrium Gibbs function as:97 (
∂G∗

∂V

)
T,P

= 0 , (2)98

where99

G∗(T, P, V ) = Ee(V ) + PV + Avib(T, V ) . (3)100

Ee is the total energy of the system at a given volume V , calculated using the DFT. P is101

the ambient pressure, Avib(T, V ) is the Helmholtz vibrational energy term. This term is the102

core-element of the model as it consists of an approximation of the vibrational density of103

states (DOS) known as Debye’s phonon DOS. The minimization of G∗ is implemented in104

the gibbs code13.105

Let’s mention here that the computational method presented here was used recently11 to106
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calculate a preliminary temperature-dependence of SISF energies in L12 Ni3Al-based alloys,107

with the exception that in this study we take into account the local atomic relaxations108

of the D019 phase, which makes the approach more robust and complete in establishing109

qualitatively and quantitatively the desired thermal dependence.110

C. Supercell modeling and first-principles techniques111

The Ni75−xXxAl25 alloy was modeled using 108-atom L12-based 3×3×3(×4-atoms) and112

216-atom D019-based 3×3×3(×8-atoms) supercells. The transition metal ternary element X113

(Co,Cu,Pd,Pt) occupy exclusively the Ni-sites as the latter manifest strong site-preference114

to the Ni-sublattice14–17. In our study, the alloy compositions fall within the experimen-115

tal solubility of X in Ni3Al alloys14. The used supercells were generated to satisfy the116

chemical disorder on the Ni-sublattice where the Warren-Cowley short-range order (SRO)117

parameters18,19 were minimized at several nearest neighbor coordination shells.118

The first-principles calculations were performed using the Density–functional theory DFT20,21
119

as implemented in the Vienna Ab initio Simulation Package (VASP)22–24, which employs120

the Projector Augmented Wave PAW method to determine the total energies and forces.121

The exchange–correlation (XC) energy of electrons is described in the generalized gradient122

approximation (GGA) using the functional parameterization of Perdew–Burke–Ernzerhof25.123

The energy cut–off was set to 400 eV. A mesh of a 112 and 63 special k-points for 108-124

Atom L12 and 216-Atom D019 phases, respectively, were taken in the irreducible wedge of125

the Brillouin zone for the total energy calculations. These input parameters stabilized the126

energy differences between L12 and D019 phases and guaranteed the uncertainty in SISF127

energy to be less than 2 mJ/m2.128

During relaxation of the L12 phase, the supercell shape was kept fixed. Only volume and129

atomic positions were allowed to change in order to fully minimize the total energy. This130

technique prevents the L12 supercell from deviating to a low symmetric phase.131

Concerning the D019 phase, only local atomic relaxations were allowed. The D019 volume-132

per-atom was intentionally set to the corresponding L12 equilibrium value, while the c/a133

ratio was kept constant at the D019 ideal value. This insured that aD019 and cD019 corre-134

spond to the underlying L12 lattice, i.e., aD019/aL12 =
√

2 and cD019/aL12 =
√

4/3. For135

both phases, the local atomic relaxations were carried out using the conjugate gradient136
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algorithm26, a powerful scheme commonly used to relax the atoms into their instantaneous137

ground state.138

III. RESULTS139

The (111) SISF energy temperature dependence in L12 Ni3Al-based alloys is calculated140

through a combined DFT-AIM-QHD approach. Let us mention here that this approach141

is quasistatic since the temperature-dependence of the SISF energy is obtained through a142

DFT calculation of the of L12 and D019 energies at a volume V corresponding to a sought-143

after temperature T . Hence, it becomes clear now that this approach assumes that the144

temperature-dependence of SISF energies is attributed only to thermal expansion i.e., other145

thermal effects, namely, electronic, vibrational and magnetic thermal excitations are not146

accounted for.147

The SISF energy temperature-dependence is realized by firstly feeding the gibbs code13148

a set of L12 Energy-Volume values being determined with VASP code as demonstrated149

above. gibbs will search for an equilibrium volume that minimizes the non-equilibrium150

Gibbs energy at a given temperature, hence volume temperature-dependence of lattice L12151

is established. Then, upon selecting a desired temperature T , we simulate the D019 energy152

with VASP at the corresponding equilibrium volume. Finally, the SISF energy corresponding153

to a temperature T is evaluated using the AIM model as expressed by Eq. 1154

Several experimental reports27–29 back this quasistatic approach. It has been shown to155

be effective in calculating the elastic constants of Ni3Al30,31. It has been as well shown156

to be successful when calculating the elastic constants of Ta32 where thermal expansivity157

was the dominant temperature contribution, while other thermal effects such as phonon158

and electronic excitation contributions were found to be quite minor at constant volume.159

Of particular importance to this study is the recent success in applying this approach to160

calculate the SISF energies in unaries33, pure compounds12 and alloys34 characterized by161

complex magnetic structures.162163164165

Figs. 1, 2, 3 and 4 present the SISF energy temperature dependence of the L12 Ni75−xCoxAl25,166

Ni75−xCuxAl25, Ni75−xPdxAl25 and Ni75−xPtxAl25 alloys, respectively. Some of the compo-167

sitions studied, taking into account the volume relaxation only (i.e., with atomic positions168

fixed, as in the left panels of Figs. 1-4), have been preliminarily reported by us11. The169
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FIG. 1. Variation of the SISF energies as a function of temperature for the System L12

Ni75−xCoxAl25. Panels (a) and (b) stand for fixed atomic positions and local atomic relaxations

respectively. The star symbols designate spin-polarized calculations. In panel (a) the data corre-

sponding to the composition 4.62975 at.% Co are not visible because they are extremely close to

those of 9.2595 at.% Co. The lines going through the data are purely for visual reasons.

first thing to notice upon analyzing the results is the significant reduction in SISF energies170

upon performing local atomic relaxations observed in all compositions and systems. It171

is worth mentioning at this point that the values predicted with local-atomic-relaxation172

scheme should be more close to the experimental values. The magnitude of the reduction173

varies significantly between the studied systems and across the alloying compositions. The174

reduction is highly pronounced in Ni75−xPdxAl25 and Ni75−xPtxAl25, and less pronounced175

in Ni75−xCoxAl25 and Ni75−xCuxAl25. For the sake of comparison, consider the composition176

13.88925 at. %. Given this composition, the average difference (across temperature) between177

volume and local-atomic-relaxation schemes reaches a value as large as 138 mJ/m2 when178

substituting Ni by Pt, to be compared with 26 mJ/m2 when substituting Ni by Cu.179

The drop in the calculated SISF energies due to inclusion of atomic relaxations can be180

explained in terms of the size-argument i.e., the atomic-radius mismatch. If we consider the181

system Ni75−xPtxAl25, Pt atoms characterized by large Wigner-Seitz (WS) radii (1.5319 Å)182

are substituting small Ni atoms (WS=1.3756 Å) and this atomic-size mismatch is responsi-183

ble for important atomic relaxations leading the system into its lowest energy configuration184

which is very much different from that of fixed-atomic-positions calculations. While, Cu185
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FIG. 2. Change of SISF energies upon temperature increase in the system L12 Ni75−xCuxAl25.

Panels (a) and (b) stand for fixed atomic positions and local atomic relaxations respectively. The

star symbols designate spin-polarized calculations. The lines going through the data are purely for

visual reasons.
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FIG. 3. Temperature dependence of SISF energies in L12 Ni75−xPdxAl25. Panels (a) and (b) stand

for fixed atomic positions and local atomic relaxations respectively. The star symbols indicate spin-

polarized calculations. The lines connecting the points are only to help guiding the eyes through

the data.

characterized by WS=1.4107 Å which is not much larger than Ni (WS=1.3756 Å), hence186

the effect of local-atomic-relaxations is less pronounced in comparison with systems having187

Pt and Pd (1.52 Å) as alloying elements. We need to emphasize here that we have derived188
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stand for fixed atomic positions and local atomic relaxations respectively. The lines connecting the

points are only to help guiding the eyes through the data.

the equilibrium Wigner-Seitz radii (WS) from the room temperature (R.T.) experimental189

atomic volumes35 (V RT
exp = 4

3
πWS3) of the alloying element ground state structure.190

On the other hand, the variation of the local-atomic-relaxation SISF energies upon increas-191

ing temperature exhibits a small linear decrease relative to 0 K values for the whole studied192

compositions. The magnitude of this decrease barely reaches 10 mJ/m2 at its maximum.193

In fact, in our previous investigation11 we have shown that the change in SISF energies as194

a function of alloying compositions, upon allowing local-atomic-relaxations, for the solutes195

Co, Cu, Pd and Pt is not significant, which is in contrast to the large increase induced by196

solutes substituting for Al sites. Consequently, it follows from the results presented here197

and Ref.11 that both alloying and temperature effects have little impact on changing the198

SISF energies in Ni75−xXxAl25 alloys.199

IV. CONCLUSIONS200

A combined computational scheme consisting of DFT, QHD and AIM in conjunction with201

a quasistatic approach enabled us to establish the temperature-dependence of SISF energies202

in L12 Ni75−xXxAl25 alloys. We find that a proper relaxation of both L12 and D019 phases203

is indispensable to predict a reliable estimation of the SISF energies. Our results, without204

an exception, all display a linear decline of the SISF energies as a function of composition.205
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Interestingly, this decline is very modest, in average it is less than 10 mJ/m2 (SISF value206

at 1000 K relative to 0 K). This insignificant decrease in SISF energies and consequently207

the minor effect of temperature on the 0 K value is motivating, as it reduces drastically208

the computational cost required to calculate the SISF energies at every single temperature.209

Hence, it seems plausible to consider the 0 K SISF energy of a L12 multicomponent alloy210

(Ni,Cu,Pd,Pt)75Al25 valid to use in physics-based deformation models36 needed to predict211

primary creep of Ni-superalloys at their operating temperature. We assert that this conclu-212

sion is only valid for alloying elements substituting for Ni-sites, and therefore can not be213

extended to include elements substituting for Al-sites. We also emphasize that our SISF214

energy temperature-dependence is based on volume expansion as the only thermal effect.215
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List of figure captions

Figure 1: Variation of the SISF energies as a function of temperature for the System275

L12 Ni75−xCoxAl25. Panels (a) and (b) stand for fixed atomic positions and local atomic276

relaxations respectively. The star symbols designate spin-polarized calculations. In panel277

(a) the data corresponding to the composition 4.62975 at.% Co are not visible because they278

are extremely close to those of 9.2595 at.% Co. The lines going through the data are purely279

for visual reasons.280

Figure 2: Change of SISF energies upon temperature increase in the system L12 Ni75−xCuxAl25.281

Panels (a) and (b) stand for fixed atomic positions and local atomic relaxations respectively.282

The star symbols designate spin-polarized calculations. The lines going through the data283

are purely for visual reasons.284

Figure 3: Temperature dependence of SISF energies in L12 Ni75−xPdxAl25. Panels (a) and285

(b) stand for fixed atomic positions and local atomic relaxations respectively. The star286

symbols indicate spin-polarized calculations. The lines connecting the points are only to287

help guiding the eyes through the data.288

Figure 4: Temperature dependence of SISF energies in L12 Ni75−xPtxAl25. Panels (a) and289

(b) stand for fixed atomic positions and local atomic relaxations respectively. The lines290

connecting the points are only to help guiding the eyes through the data.291
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