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Abstract. The human semen sample carries a wealth of information of varying degrees of accessibility ranging from the

traditional visual measures of count and motility to those that need a more computational approach, such as tracking the
flagellar waveform. Although computer-aided sperm analysis (CASA) options are becoming more widespread, the gold
standard for clinical semen analysis requires trained laboratory staff. In this review we characterise the key attitudes
towards the use of CASA and set out areas in which CASA should, and should not, be used and improved. We provide an

overview of the current CASA landscape, discussing clinical uses as well as potential areas for the clinical translation of
existing research technologies. Finally, we discuss where we see potential for the future of CASA, and how the integration
of mathematical modelling and new technologies, such as automated flagellar tracking, may open new doors in clinical

semen analysis.

Additional keywords: clinical diagnostics, flagellar analysis, glyphs, image analysis, machine learning, mathematical
modelling, sperm, viscosity.
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Introduction

A human semen sample is a biologically complex entity, con-
taining a wealth of information regarding reproductive potential

and general health. Under magnification we see a wide range of
cells, in particular spermatozoa: some moving rapidly through
the field of view, others thrashing vigorously but not progressing

and still more barely moving or stationary. Beyond motility
characteristics, there are morphological variations in sperma-
tozoa, from gross features down to molecular damage to the

chromosomal cargo. It is simply unreasonable to expect to
integrate this complexity through visual assessment. Neverthe-
less, the integration of computer-aided sperm analysis (CASA)
into the world of clinical diagnostics has been limited, and in

many cases non-existent. Although there has been an amount of
healthy suspicion surrounding the use of ‘black-box’ semen
analysing systems, by not developing and integrating some form

of CASA into clinical analyses we are throwing away huge
quantities of latent information with wide-ranging potential
diagnostic impact.

Even before the introduction of computers in semen analysis,
the kinematic motion of spermatozoa has been characterised by
tracking the progression of the sperm head (Katz and Overstreet
1981; Holt et al. 1985). Although the presence of the flagellum

has been noted, it has often been treated as though it ismerely the
‘wheels’ of the cell, allowingmovement but providing little else.
This is far from true; in fact, until the spermatozoon reaches the

site of fertilisation, the head can be thought of as just causing
drag, with the flagellum acting as a motor through the axoneme
(Machin 1958), as a sensing apparatus (Brokaw 1991), respond-

ing to the presence of viscosity (Smith et al. 2009b), enabling
rheotactic behaviour (Miki and Clapham 2013) and guiding
migration through boundary sensing (Denissenko et al. 2012).

With all this inmind,we believe that the introduction of flagellar
tracking, as pioneered by Hiramoto and Baba (1978), is funda-
mental to the development of CASA-Mot, and the progress

towards a greater use of computer-aided analyses for clinical
diagnostics. Throughout this review, we aim to not only give a
view of what the community has been achieving in recent years,
but also to suggest areas where CASA can be used and updated

in order to give a more developed understanding of the health of
a semen sample, paying particular attention to what has been the
clinically underused area of flagellar analysis.

In the discussion surrounding CASA, and its potential for use
in human clinical laboratories, there are three overarching
voices: (1) those who are sceptical about CASA’s ability to

surpass trained human semen analysts; (2) those who think
future CASA systems will have a role to play in diagnostics,
althoughmore work needs to be done; and (3) those who believe
that the only way to do accurate, unbiased and reproducible

semen analysis is through the use of CASA. Each of these voices
have aspects of their view that will be crucial in forming a
consensus of need going forward.
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The more sceptical voices with regard to CASA’s involve-
ment in clinical semen analysis are typified by the position

taken by the Association of Biomedical Andrologists (UK),
believing that ‘no [CASA] is alternative to skilled and experi-
enced andrology staff’ (Sanders et al. 2017), and that it is

essential that CASA is, at a minimum, as accurate as manual
methods of semen analysis. This group is focused on developing
semen analysis to the level of an ISO standard, and therefore

correctly point out that you cannot use CASA to replace World
Health Organization (WHO)-trained staff; it is unlikely that a
CASA-Conc count will ever be as accurate as the conventional
European Society of Human Reproduction and Embryology

(ESHRE) count using a 50-mL semen sample and killing cells so
they can all be carefully observed. However, we believe that
concentrating on this runs the risk of missing all the potential

positive contributions that can be made through the use of
CASA. However, this sceptical voice is not constrained to
issues of count. A recent study by Talarczyk-Desole et al.

(2017) suggests that although there are positives to using
CASA, the time CASA-Morph takes to perform a sperm
morphology assessment, as well as the differences shown
between CASA-Mot results and trained laboratory staff, mean

that there are still improvements needed before CASA is
routinely used in clinical practice.

The second, more moderate voice is that which cautions

against CASA being used as the be-all and end-all of clinical
semen analysis while suggesting that CASA could be useful for
a strict subset of analyses (often for categorising kinematic

measures of semen quality). Advocates of this position have
stated that CASA can be useful for a subset of analyses, but that
‘we should stop trying to use CASA for applications that

are inherently problematic for the underlying technology’
(Mortimer et al. 2015). However, what differentiates this view
from the sceptical position is the belief that ‘robust method[s]
of automated semen analysis [are] clearly desirable and

could provide unparalleled levels of intra- and interlaboratory
consistency’ (Tomlinson et al. 2010).

Finally, the third voice is that of those who not only believe

that CASA can improve upon manual semen analyses, but also
that ‘[sperm functional tests] can only be done accurately and
objectively with CASA systems’.1

Taking these voices into account, we believe that one should
not view CASA as a replacement for WHO-trained laboratory
staff in performing a sperm count. However, that does not
mean that new and innovative tests, the likes of which can only

be performed by a computer, should be ignored. Tomlinson
(2016) warns that unless testing procedures and good practice
guidelines have a strong evidence base, ‘the progress towards

the development of more innovative methods for investigating
male infertility will be slow’. In this review, we discuss areas
where development of CASA can provide such evidence,

particularly through the use of cutting-edge technology and
modelling.

Current CASA-Mot technologies

Current CASA-Mot systems focus almost exclusively on
analysing and tracking the sperm head, with some newer
systems beginning to check for the presence of a tail in order to

help exclude debris and other extraneous objects from analyses.
However, mechanistically it is the flagellum that propels the
spermatozoon and, as such, the behaviour of the flagellum is
the fundamental characteristic governing the motility of sper-

matozoa. We believe that the introduction of high-throughput
analysis of the flagellar waveform through CASA-Mot has the
potential to dramatically increase the quality and quantity of

clinically relevant information that can feed into diagnostics
alongside more traditional semen analysis results (for a dis-
cussion of such flagellar parameters in fish, see Prokopchuk and

Cosson 2017).
Not only is it common sense to discuss the flagellar

waveformwhen analysing the kinematics of spermatozoa (after

all, it is the flagellum that dictates the movement of the cell),
but the movement of the flagellum also gives insight into
new areas in which current analyses are lacking. The viscosity
of a semen sample is one such area. It is well documented

that the viscosity of a medium significantly affects aspects of
sperm kinematics, including the flagellar waveform, trajectory
and rate of rolling (Suarez et al. 1991; Smith et al. 2009b). As

we discuss later, the WHO (2010) test for viscosity provides
a binary outcome; samples are either normally or abnormally
viscous. Although such a test provides some information

about a sample’s viscosity, it precludes more quantitative
investigations. An example of this is the statistically significant
relationship between semen hyperviscosity and leucocytosper-

mia demonstrated by Flint et al. (2014), a relationship that
was not seen using the WHO (2010) manual guidelines.
Although conventional head-based CASA-Mot systems may
give some indication of the effect of viscosity on spermmotility

(Hyun et al. 2012), it may be that an improved test for seminal
viscosity can be built into CASA-Mot, and thus provide an
additional diagnostic parameter.

Introducing high-throughput real-time flagellar capture
into CASA-Mot would also enable investigation into the
metabolic requirements of human spermatozoa (for a discus-

sion of the metabolism of sea urchin spermatozoa, see Tyler
and Rothschild 1951; for reviews into the metabolism of
mammalian spermatozoa, see Storey 2008; Ford 2006). Math-
ematical modelling of flagellar mechanics and low Reynolds

number fluid dynamics can be combined with live cell imaging
(in the form of tracked flagellar tangent angle data) tomodel the
energy requirements of a spermatozoon as it swims through a

viscous medium (Ooi et al. 2014) in the case of tethered
spermatozoon. For such investigations, it will be crucial to
develop fast algorithms for tracking the flagellum accurately

because current CASA-Mot systems that rely on head tracking
do not provide the necessary information.

1van der Horst, G. (2016). Standardization of semen analysis for humans. Microptic S. L. Blog. Available at http://www.micropticsl.net/wordpress/

standardization-of-semen-analysis-for-humans/, [verified accessed August 2017]. van der Horst, G. (2017). IVF including ICSI needs CASA sperm

functionality more than ever before! Microptic S. L. Blog. Available at http://www.micropticsl.net/wordpress/ivf-including-icsi-needs-casa-sperm-function-

ality-more-than-ever-before-2/, [verified accessed August 2017].
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The newest additions to the CASA family have been in the
form of smartphone attachments (Kanakasabapathy et al. 2017;

YO Sperm Test (www.yospermtest.com, accessed 28 February
2018); TENGA Men’s Loupe (www.tenga.co.jp/, accessed 28
February 2018)), and other home tests (Björndahl et al. 2006).

These applications provide access to indicative diagnostics to a
wide range of peoples who may not have access to traditional
fertility clinics. Although such devices are in their infancy, they

offer a potential platform for improving access to services and
information that previously would be out of reach.

Clinical translation of current research systems

Outside the clinical world of male reproductive health there has
been a rapid rise in the number and quality of new and innovative

experimental imaging systems and associated algorithms for
analysis coming from the basic science communities. In order to
envision the best possible translation of current research systems

into a clinical environment, it is important to have an under-
standing of the development of these techniques and how they
differ from current clinical technologies. Here we focus on
improvements in the analysis of the three-dimensional (3D)

motility of spermatozoa, from small-depth imaging using pie-
zoelectric devices to more modern large-volume holographic
imaging techniques.

Over the past few years there has been significant progress
in the technology required for analysing freely swimming
spermatozoa in an unconstrained 3D environment. The first

such system was constructed by Crenshaw (1990), consisting of
two microscopes, each with a camera, orientated perpendicular
to each other in order to capture images of a subject in two

orthogonal planes. The original work, involving large amounts
of frame-by-frame analysis of single sea urchin spermatozoa,
was time consuming and limited by the camera technology of
the time. This led to a large body of theoretical investigation into

helical swimming patterns (Cortez et al. 2005; Friedrich and
Jülicher 2009).

The concept of multiplane imagingwas improved by Corkidi

et al. (2008), with the introduction of a piezoelectric device
mounted to the objective (on a single microscope), the oscilla-
tion of which allowed images to be taken in 60 planes spanning a

depth of 100 mm. This system, combinedwith a 4200-frames per
second (f.p.s.) camera, had a depth-resolution of 3.2 mm,
enabling the tracking of freely swimming sea urchin spermato-
zoa. Work in this field has been continued by Silva-Villalobos

et al. (2014), where the flagellar movement of a single human
spermatozoon has been captured and analysed in three dimen-
sions. Such advances of technology bring with them other

challenges: the huge amount of data (in the form of images)
generated by a camera operating at approximately 4200 f.p.s.
must be analysed. This has led to the conception of advanced

algorithms for the processing of the sizeable datasets output by
systems such as Corkidi’s (Corkidi et al. 2008), such as the
algorithms of Pimentel et al. (2012), as well as the use of

morphodynamic models (da Silva 2017) for quantitative image
analysis of spermatozoa.

Alongside the development of the piezoelectric imaging
setup of Corkidi et al. (2008), the scientific community were

beginning to realise the possibility of digital holographic
microscopy (DHM) in the 3D analysis of micro-organisms. First

proposed as a tool for electron holography by Gabor (1948) and
then extended for optical holography (Goodman and Lawrence
1967), DHM involves a coherent monochromatic light source

split into two beams, the reference and object beams, the latter
of which illuminates an object. The object causes the incoming
light to scatter, and the wavefront caused by this scattering

is captured. The reference beam and scattered object beam are
then recombined and numerically back-propagated to produce
an image of the object. The first use of DHM to record images
of spermatozoa was by Micó et al. (2008), but it was not

until the work of Di Caprio et al. (2010) that such imaging
modalities were used to improve the understanding of sperm
kinematics.

Traditional DHM setups require a traditional light microsco-
py setup as well as additional equipment for holography and,
as such, can be expensive with a key cost being the objective

lens of themicroscope. To reduce this cost, as well as to simplify
the imaging process, digital in-line holographic microscopy
(DIHM) was introduced wherein the interference pattern is
recorded directly onto a charge-coupled device (CCD) camera

chip. The early work with DIHM was reviewed by Garcia-
Sucerquia et al. (2006). This early work has been improved
greatly and has, with some incredible engineering advances,

been used to uncover new understanding about full 3D sperm
navigation and behaviour (Crha et al. 2011; Su et al. 2012, 2013;
Merola et al. 2013; Di Caprio et al. 2014; Jikeli et al. 2015;

Daloglu and Ozcan 2017).
The importance of examining sperm swimming patterns in

three dimensions was reviewed by Guerrero et al. (2011).

Although full 3D sperm tracking (headþ flagellum) has merit
in aiding the scientific understanding of sperm behaviour,
particularly regarding fertilisation in marine species, there are
several practical downsides to the implementation of such

analyses in a clinical human fertility environment, and more
generally in internally fertilising species, the most obvious
drawback being the need for additional equipment (although

on-chip digital holography options are cheaper than traditional
objective lens setups, most clinics will already have access to
the latter) and training. These costs could be justified if it could

be shown that there are significant relevant aspects of semen
behaviour that can be seen in three dimensions but not in a
conventional two-dimensional (2D) analysis. However, we
believe that far from 3D analysis giving a clearer picture of

how a human spermatozoon behaves in vivo, the behaviours
seen in free-swimming human spermatozoa may have limited
physiological relevance for reasons described below.

It is well documented in both experimental (Cosson et al.

2003) and theoretical (Rothschild 1963; Smith et al. 2009a;
Denissenko et al. 2012) studies that free-swimming spermato-

zoa will accumulate at, and be guided by, surfaces present in
their environments. For some externally fertilising marine
species (e.g. sea urchins), the journey the spermatozoa must

undergo to the site of fertilisation means that knowledge of
the swimming patterns of such spermatozoa in a full 3D
environment is essential. As such, looking at such spermatozoa
with a traditional microscopy setup will not produce an accurate
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representation of their kinematic properties. In contrast, human
spermatozoa swim in increasingly complex liquid film-like

environments from the uterine cavity, which has a fluid
volume of only 80–180 mL (Casslén 1986), to the labyrinth-like
structure of the oviductal lumen (Suarez 2015). Environments

like this make it unlikely that human spermatozoa will be freely
swimming with no surface effects and, thus, it seems likely
that the study of such free-swimming spermatozoa in a large-

volume environment is less clinically relevant than convention-
al microscopy techniques. In addition, it has been shown
that as spermatozoa accumulate at surfaces, the flagellar
waveform becomes planar (Woolley 2003). Such planar

beating reduces the need for full 3D analyses of the flagellar
waveform, especially when considering the clinical case of
human fertility.

Outside of the world of spermatozoa, the method of
differential dynamic microscopy (DDM), has been devel-
oped for characterising the motility of micro-organisms in

three dimensions, and has been suggested as a method to
assess spermatozoa for biomedical purposes (Martinez et al.

2012). Instead of attempting to track individual cells direct-
ly, DDM measures characteristics analogous to the CASA

motility parameters, such as the average speed and motile
fraction of a sample. One of the advantages of this method is
the ability to analyse a large sample (,104 cells) in a few

minutes using a standard microscopy setup. Although this
method would not be suitable for the analysis of single cells
(e.g. to select a single cell in intracytoplasmic sperm injec-

tion (ICSI)), it could provide a useful method for the rapid
screening of samples.

It is clear that there has been great technological progress in

the 3D imaging of sperm swimming patterns in recent years.
Although there is some evidence to suggest that investigations
into the 3D swimming patterns of spermatozoa could have some
diagnostic relevance, it seems that the relevance of 3D analyses

in a clinical setting is yet to be established.
We suggest, then, that there is much to be gained from

developing fast, efficient 2D algorithms for flagellar tracking.

The role of viscosity as a diagnostic tool

The importance of viscosity in the analysis of semen is largely
overlooked in current practices. As already discussed, the
WHO (2010) binary test for viscosity disregards the clinical
relevance of the viscosity of a sample, except when it is con-

sidered to be very viscous. It has been demonstrated that it is
straightforward to obtain a quantitative assessment of semen
viscosity; the work of Rijnders et al. (2007), based on theory by

Douglas-Hamilton et al. (2005), showed that accurate results
can be calculated by timing how long it takes a sample to fill a
20-mm deep Leja chamber by capillary action. It may be pos-

sible to use slides with additional markings or chambers (such
as the Proiser ISAS D4C) to increase the ease and accuracy by
which the filling time can be measured, and thus, in the future,

to make a more accurate viscosity measurement of a sample
routine. The challenge for this, as for any change, is to generate
the underpinning evidence that supports inclusion into stan-
dard diagnostic practice.

It is essential to note that, on the microscopic scales in which
spermatozoa swim, the inertial forces in a fluid are minuscule

when compared with viscous forces, corresponding mathemati-
cally to a very small Reynolds number. This viscous dominance
is a consequence of the size of the spermatozoa rather than the

value of the viscosity per se. Thus, one must be extremely
careful in using intuition in thinking about such flows, because a
major characteristic of low Reynolds number flows is the

absence of any inertia. For excellent introductions to the field
of small Reynolds number fluid dynamics, see Purcell (1977)
and Lauga and Powers (2009).

There is clear evidence from both experimental studies and

mathematical modelling and simulation that the presence of
viscosity modulates sperm swimming behaviour (Brokaw 1966,
1975; Suarez et al. 1991; Smith et al. 2009b). However, it is

not only viscous effects that are important; recent work by
Tung et al. (2017) has demonstrated that bovine spermatozoa
exhibit marked collective swimming behaviours when placed in

viscoelastic fluids, behaviour that was not present in Newtonian
fluids of low and high viscosity (Woolley et al. 2009). Although
such behaviours have not yet been demonstrated in humans,
it has been shown that there are significant variations in the

viscoelasticity of cervical mucus during the ovulatorymenstrual
cycle (Wolf et al. 1977).

An interesting, but as yet unexplored, question is how

the ratio of viscosity between cervical mucus and semen
affects penetration. Unpublished experiments by our group
(J. C. Kirkman-Brown, D. J. Smith, T. J. Connolly and

R. Frettsome, unpubl. data) indicate that there is a significant
difference in the results of a capillary penetration assay (for
an explanation of the methods used, see Ivic et al. 2002), with

prepared spermatozoa performing much worse. Traditionally,
poor penetration is viewed as a deficiency in kinematic
behaviour of spermatozoa. In the situation where the ratio in
viscosities is large, we should potentially be considering this as

a viscosity problem rather than a swimming problem. However,
more data need to be gathered to investigate this.

An in-depth review into the need for understanding the effect

of viscosity was presented by Kirkman-Brown and Smith
(2011). We feel that this is an area where more progress is
needed, and one that could have a large effect on clinical

diagnostics.

Mathematical modelling for mechanical and metabolic
insight from imaging

There is an increasingly large body of work in the mathematical
fluid mechanics of motile cells in low Reynolds number flows,

and particularly relating to spermatozoa (Gaffney et al. 2011).
The simplest model is that of Gray and Hancock (1955), who
established the resistive force theory for sperm propulsion,

stating that the thrust exerted by the propagation of a flagellar
wave can be approximated by calculation of the tangential
and normal components of the flagellar velocity, multiplied by

drag coefficients associated with motion in each direction
(Cn and Ct respectively, with Cn/Ct E 2). Given tracking data
of the flagellar waveform (see Fig. 1), it is straightforward to
parameterise the waveform by tangent angle as a function of
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the arc length along the flagellum and time, from which one
can calculate the velocities of the flagellum in the tangential

and normal directions. Such velocity data can then bemultiplied
by the drag coefficients to give the resistive force theory
approximation to the tangential and normal force exerted by the

flagellum on the surrounding fluid (for an example of this from
tracked data, see Fig. 2 and Ooi et al. 2014). In order to exploit
the information available from coupling efficient flagellar

tracking algorithms with live cell imaging data, the sliding

filament model for flagellar bend propagation proposed by
Brokaw (1971) can be extended to couple the total force pro-

duced by a flagellum with a model for the relative contributions
of the constituent components of force in the flagellum to
investigate the internal activity and rate of working of inter-

filament active forces, and answer questions regarding the
energy transport along the flagellum.More details regarding the
calculation of such aspects of the flagellum are provided by

Gaffney et al. (2011). There are also more accurate methods for
fluid mechanics, such as the regularised Stokeslet methods of
Gillies et al. (2009) and the use of boundary element and prin-
cipal component analysis by Ishimoto et al. (2017).

Existing tracking techniques in CASA-Mot, as well as the
majority of wider image processing, is performed through the
use of algorithmic manipulation of images in order to generate

useful data, for example the thresholding of pixel data and fitting
of curves. Although this approach has been very successful, and
often provides useful information, there is an untapped oppor-

tunity to analyse data throughmodelling the biology and physics
that produced the image. To this end, we developed the concept
of model-based image analysis, discussed in the context of
imaging nanowire sensors by Gallagher et al. (2017). Through

knowledge of the physics of image formation, including models
of optical effects, such as diffusion, and understanding of how
the imaging subject behaves, we can construct a mathematical

framework for the inverse problem of image formation; that is,
given an experimental image, how do we measure the subject
without introducing extra errors into the results through ad hoc

manipulations? The principles of using a mathematical basis for
analysing spermatozoa can be seen in the work of da Silva
(2017) and van der Horst and Sanchez (2016).

Although the focus of improving CASA-Mot has historically
been on improving the accuracy of CASA-Mot results, it is
also imperative to consider how those results are displayed. TheFig. 1. An example of in-progress flagellar capture results.
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Fig. 2. Tangential and normal force exerted on surrounding fluid by the flagellum of a tracked spermatozoon, calculated through the use of

resistive force theory. s, arc length along the flagellum; t, time.
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increasingly large amounts of data generated from CASA-Mot
analyses need to be visualised for diagnostic use. To this

end, van der Horst et al. (1999) introduced the use of star glyphs
for displaying five kinematic parameters of spermatozoa,
namely curvilinear velocity (VCL), straight line velocity

(VSL), average path velocity (VAP), linearity (LIN) and dance
(DNC). Subsequently, Duffy et al. (2015) developed a way of
displaying the multitude of data from a semen analysis, as well

as additional mechanical parameters, in a glyph schematic (see
Fig. 3), thus reducing the need for repetitive watching of videos
or digesting endless tables of data.

Conclusions

There has been a tendency to characterise CASA as solely a tool

for performing current semen analyses through the use of a
computer instead of the eyes of a technician. There ismerit in the
view that one should be sceptical about how accurately CASA,

for example in a sperm count, can be when compared with a
trained technician. However, where CASA can be revolutionary
is in the areas where traditional semen analyses are unable to

tread; a prime example of this is through in-depth flagellar
tracking and analysis, the value of which we hope we have
convinced the reader of. We believe that the development and

inclusion of flagellar tracking into current CASA-Mot systems
will greatly improve its use as a tool for clinical diagnostics.

There is certainly room for new tests involving a more
holistic approach to semen analysis. As discussed, investigations

into the effect of viscosity and the energy requirements of the
cell are two areas where current analyses are lacking, but one

could also consider the sensory abilities of the flagellum,
response to ambient flow and biochemical stimuli, statistics on
the metabolic state of clinical samples and many other aspects of

spermatozoa. In the future, it may then be possible to combine
all these data, together with knowledge of clinical outcomes, and
apply the ideas of machine learning and pattern recognition to

develop a complete model for the prediction of penetration,
migration and fertilisation, and implement such a model in a
clinically and diagnostically relevant manner.
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Fig. 3. Glyph schematic. This schematic shows how 20 parameters are explicitly encoded into the glyph. Parameters such as

LIN, WOB and STR are implicitly represented by how the velocity parameters are laid out in the glyph. Reproduced, with

minor modification, with permission from Duffy et al. (2015).
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