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ARTICLE

Large-scale genetic analysis reveals mammalian
mtDNA heteroplasmy dynamics and variance
increase through lifetimes and generations
Joerg P. Burgstaller1,2,3, Thomas Kolbe4,5, Vitezslav Havlicek6, Stephanie Hembach1, Joanna Poulton7,

Jaroslav Piálek8, Ralf Steinborn9, Thomas Rülicke10, Gottfried Brem1,2, Nick S. Jones3,11 & Iain G. Johnston 12

Vital mitochondrial DNA (mtDNA) populations exist in cells and may consist of hetero-

plasmic mixtures of mtDNA types. The evolution of these heteroplasmic populations through

development, ageing, and generations is central to genetic diseases, but is poorly understood

in mammals. Here we dissect these population dynamics using a dataset of unprecedented

size and temporal span, comprising 1947 single-cell oocyte and 899 somatic measurements

of heteroplasmy change throughout lifetimes and generations in two genetically distinct

mouse models. We provide a novel and detailed quantitative characterisation of the linear

increase in heteroplasmy variance throughout mammalian life courses in oocytes and pups.

We find that differences in mean heteroplasmy are induced between generations, and the

heteroplasmy of germline and somatic precursors diverge early in development, with a

haplotype-specific direction of segregation. We develop stochastic theory predicting the

implications of these dynamics for ageing and disease manifestation and discuss its appli-

cation to human mtDNA dynamics.
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M itochondrial DNA (mtDNA) exists in large copy
numbers in most eukaryotic cells, and encodes func-
tionally vital parts of bioenergetic machinery. Muta-

tions and gene therapies lead to different mtDNA sequences
present in the same cell: the population fraction of a non-wildtype
mtDNA in a cell is termed heteroplasmy1. The cell-to-cell mean
and variance of heteroplasmy dictate the inheritance and onset of
deadly mitochondrial diseases, but how these quantities change
with time and through generations is poorly understood2.
Cutting-edge gene therapies aiming to prevent mitochondrial
disease may be challenged if mean heteroplasmy changes over
time3–5, and changes in cell-to-cell heteroplasmy variability over
time and between generations influence the probabilities with
which mitochondrial diseases become manifest and the success of
therapeutic strategies4. However, technological and ethical lim-
itations mean that the dynamics of these populations are hard to
observe, especially in humans, challenging both our under-
standing of fundamental biology and our ability to optimise
therapies.

In particular, the cell-to-cell variance of heteroplasmy over
organismal lifetimes remains poorly understood, despite its
importance both for mtDNA diseases and for fertility strategies.
Higher heteroplasmy variance increases the probability that a
threshold heteroplasmy is crossed by cells, a requisite for disease
manifestation6. On the other hand, higher variance also increases
the probability of cells having low heteroplasmies. This is desirable
in pre-implantation genetic diagnosis (PGD), a therapeutic
approach aiming to address the inheritance of heteroplasmic
mitochondrial disease4. In PGD, several embryos from a carrier
mother are sampled for heteroplasmy before they are implanted.
These set of embryos will typically have a range of heteroplasmy
values – those with lowest measured heteroplasmy will be selected
for implantation. Clearly in this situation, high heteroplasmy var-
iance is desirable: the wider the spread of heteroplasmies, the
greater the probability that at least one embryo will have a low

heteroplasmy and will be suitable for implantation7. However, our
lack of knowledge about the features governing heteroplasmy var-
iance represents a comparative blind spot in our ability to optimise
clinical advice. In particular, the influence of maternal age – a
central consideration in fertility treatments – remains unclear.
Modelling and modern statistical approaches are beginning to shed
light on processes underlying mtDNA dynamics through develop-
ment and ageing3,8; however, the limited scale of existing datasets
has limited our ability to elucidate the dynamics and timescales of
these processes, particularly in the case of heteroplasmy variance,
which requires large sample sizes to characterise8,9.

The characterisation of heteroplasmy variance over time requires
the disambiguation of the set of stochastic processes that may
modulate it. A process known as the mtDNA bottleneck acts to
increase heteroplasmy variance during development1,7,10,11. This
increase in variance allows a circumvention of Muller’s ratchet (the
ongoing buildup of deleterious mutations) by segregating mutation
load across cells, and hence allowing the selection of lower-
heteroplasmy cells. The mechanism and timing of the mtDNA
bottleneck has been debated, but stochastic modelling has shown
that several of these competing hypotheses are compatible with the
induction of variance through a combination of random parti-
tioning and ongoing replication and degradation of mtDNA
molecules2,7,12. This random turnover of mtDNA, leading to drift
in heteroplasmy7,13–15, also occurs throughout ageing, but its
dynamics remain hard to characterise. These bottleneck and drift
components are often coarse-grained together into a single effective
bottleneck13,16–19. Flexibility in the developmental bottleneck7 and
differences in the amount of drift (potentially due, for example, to
differences in age20, or in physical dynamics of mitochondria21) can
then both be responsible for heterogeneity in this effective bottle-
neck size, making it hard to dissect the influence of ageing and
development on vital mtDNA statistics.

To address this challenging lack of quantitative understanding,
we set out to explore how maternal age affects heteroplasmy
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Fig. 1 Analysing mtDNA heteroplasmy in genetically distinct wild-derived mouse models. a Two mouse strains, LE and HB, were selected from a diverse set
of mice captured across central Europe and sequenced. LE and HB display different degrees of mtDNA relatedness to lab mouse strain C57BL/6N. Mouse
models with admixed mtDNA populations were created using ooplasm transfer, yielding founder females with a wide range of heteroplasmies of LE and HB
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statistics in mammals. Here, we produce and use an mtDNA
dataset of unprecedented scale, linking mothers and offspring in
mouse models containing admixtures of lab and wild-derived
mtDNA, representing a controlled degree of population diversity3

(Fig. 1). We design and use a bottom-up mathematical model in
conjunction with statistical inference to characterise the dynamics
of admixed mtDNA populations as organisms age and produce
offspring. Our data allows us to quantitatively characterise six
variables that together govern both heteroplasmy shift and var-
iance between generations.

We find that mtDNA heteroplasmy variance in oocytes and
offspring increases linearly with maternal age, and characterise
this increase in unprecedented quantitative detail. We analyse
heteroplasmy shifts between mother and her oocytes and pups
both in a neutral and a non-neutral segregation model, and find
that heteroplasmy variance is strongly influenced by both
mtDNA composition and tissue type. Moreover, we pinpoint the
heteroplasmy shift in the non-neutral model to early develop-
ment, and formulate a method, with potential for clinical

application, for predicting the risk of embryonic heteroplasmy
exceeding pathogenic thresholds, given maternal age. Our find-
ings provide new insights into mtDNA inheritance and disease
manifestation, which may be leveraged to optimise human
reproductive techniques.

Results
Large-scale sampling of single oocyte and pup heteroplasmy.
Figure 1 illustrates the data sampling approach in our study. Two
genetically distinct mouse models, LE and HB, are used. Both
contain an admixture of a wild-derived mtDNA type from central
Europe and C57BL/6N mtDNA. The labels refer to the German
localities Lehsten and Hohenberg, where the original wild mice
were captured3. The LE mtDNA is closely related to the C57BL/
6N mtDNA (only 18 SNPs difference), while the HB mtDNA is
genetically more distant with a difference of 107 SNPs3. Reference
heteroplasmy samples were taken from tail or ear tissue,
according to animal welfare requirements, at the consistent age of
21 days. Tail and skin (comparable to ear) tissue in our models
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display negligible relative and absolute heteroplasmy shifts, par-
ticularly at this early age3,22. For some mice, single oocyte het-
eroplasmy measurements were taken at a subsequent time point
toocyte. For others, mice are allowed to conceive and produce pups,
and tail or ear samples are taken from these pups at age 21 days.
As a broad sampling of heteroplasmy behaviour across ages is
desirable to facilitate characterisations of the mechanisms gov-
erning mtDNA populations8, we took oocyte measurements from
mice of ages 3–388 days, and from pups from mothers of age
60–329 days. We obtained 795 LE oocyte samples, 1152 HB
oocyte samples, 347 LE pup samples, and 552 HB pup samples,
representing a spread of heteroplasmies from 0 to 100%. In LE, a
mean of 19 (s.d. 6.4) oocyte samples were taken from each of
43 females, and a mean of 6.6 (s.d. 2.8) pup samples were taken
linked to 56 distinct mothers. In HB, a mean of 21 (s.d. 6.8)
oocyte samples were taken from each of 56 females, and a mean
of 7.3 (s.d. 2.7) pup samples were taken linked to 77 distinct
mothers. All heteroplasmy samples are available as Supplemen-
tary Data 1.

Umbrella stochastic model unifying mtDNA dynamics. To
facilitate an unbiased and statistically powerful analysis of our
large-scale genetic data, we first construct a quantitative plat-
form using a family of parameters to describe the influence of a
set of possible processes that potentially affect mtDNA popu-
lation statistics. We initially assume nothing about these
influences: each parameter may be zero (indicating that the
corresponding process has no influence on mtDNA) or take a
nonzero value (indicating the presence of an influence and
quantifying its effect). The strength of coupled modelling and
inference approaches to harness and unify mtDNA

observations has been demonstrated across tissues in mice3 and
in human ontogenic phylogenies in ref. 8. Our stochastic plat-
form allows us to infer the possible values of each parameter,
and thus the influence of each process, harnessing our full
dataset for each genetic pairing.

The set of processes that we consider which could conceptually
influence heteroplasmy statistics from mother to pup are listed,
each with a corresponding parameter, in Fig. 2a. The potential
influence of each on the mean or variance of cell-to-cell
heteroplasmy levels is illustrated in Fig. 2b and some examples
of the range of possible behaviours under this umbrella model are
given in Supplementary Figure 1, with illustrations of the
corresponding biological observations that would be expected in
each case.

The combination of the influence of these processes, in
conjunction with our heteroplasmy transformation (see Methods
section, Eq 4), leads to the following expected distributions for the
transformed heteroplasmy observations Δh' in our dataset, for the
oocyte data and the pup data respectively:

Δ′hðhoocyteðtÞ; h0Þ � Nðδ þ β t; θ þ φ tÞ ð1Þ

Δ′hðhnext gen ref ðtÞ; h0Þ � Nðδ þ β t þ ε; θ þ φ t þ γÞ; ð2Þ

where N(μ, σ2) is the normal distribution with mean μ and
variance σ2. This model structure (Fig. 2b) underlies our analysis
of these genetic data. We will proceed by analysing the evidence
for individual processes within this model: we do not at first
directly infer the parameters, but instead construct summary
statistics which capture their core properties (Figs 3–5). Having
explored our data and observed clear summaries of the
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underlying behaviour, we will then jointly infer the values of each
parameter in the model using the full datasets, providing a
coherent quantitative picture of the processes involved in
modulating mtDNA population statistics. We will then demon-
strate the power of this stochastic model to make probabilistic
predictions of biologically and medically pertinent mtDNA
behaviour.

Time-independent mtDNA heteroplasmy segregation. We first
focus on processes influencing mean heteroplasmy through and
between generations (related model parameter: δ). Both patho-
logical23,24 and non-pathological25 mtDNA mutations and hap-
lotypes can be selected against between generations, shifting the
average heteroplasmy levels between mother and offspring.
However, the precise timing of these heteroplasmy shifts is cur-
rently unclear, and selection at the oocyte level23, prenatally in the
germline24, or both25 have been proposed. These shifts are
additionally based on the initial heteroplasmy of the mother, with
offspring never23,24, or only after a restrictive breeding regime25,
reaching 100% of the non-wildtype mtDNA.

First we aim to pinpoint the time-slots at which a heteroplasmy
shift can occur during (early) development, thereby characterising
parameter δ (heteroplasmy shift in bottleneck/early develop-
ment). These heteroplasmy shifts are first analysed time-
independently; mouse age will be included subsequently. To
assess heteroplasmy shift, we analysed mother-oocyte and
mother-pup pairs of two heteroplasmic mouse lines. Figure 3a
shows the heteroplasmy levels between mothers and their
respective oocytes or pups. In both heteroplasmic mouse models,
heteroplasmy levels readily reached 0–100% of all haplotypes
(C57BL/6N; LE, HB) without special breeding regimes, which
contrasts with existing models23–25.

In the LE model, the individual heteroplasmy distributions
from oocytes and pups are comparable with the corresponding

reference measurement (Fig. 3a, b; p > 0.05 for Mann–Whitney
tests comparing reference and measured heteroplasmies). How-
ever, we detected a shift from oocyte to pup heteroplasmy
(p= 0.024, Mann–Whitney test comparing oocyte and pup
heteroplasmies). In contrast, in the HB model, the majority of
oocytes have a higher level of HB mtDNA than the respective
mother, indicating a biased segregation towards the wild-mouse
derived mtDNA (p ~ 10−6, Mann–Whitney test as above). HB
mice also demonstrated a shift from oocyte to pup heteroplasmies
(p < 10−14, Mann–Whitney test as above). Interestingly, this shift
in heteroplasmy from oocyte to pup is of different directions in
the different mouse models, with LE heteroplasmy increasing
between generations and HB heteroplasmy decreasing between
generations; our full model fit below will characterise this
divergence in more detail. Previous work3 found a difference in
segregation directions between LE and HB in some somatic
tissues (heart and muscle) that mirror these observations
(see Discussion section).

Time-dependent mtDNA heteroplasmy segregation. Second, we
aimed to see whether heteroplasmy segregation can be influenced
by the age of the mother (related model parameter: β). If a change
in mean heteroplasmy does occur over time, there is a possibility
of mutations getting lost in consecutive litters of the same mouse.
We thereby characterise parameter β (segregation between
germline and reference tissue over time).

Figure 4 shows mean heteroplasmy behaviour over time,
derived from transformed single-cell heteroplasmy measurements
in mothers and samples from pups in our two genetically distinct
mouse models. We initially view mother and oocyte/pup data as
decoupled and explore their behaviours individually (they are
used jointly in the umbrella model below). Little support exists for
strong changes (Supplementary Note 1); a decrease in pup
heteroplasmy with mother’s age is observed but is of rather low
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magnitude – the rate of heteroplasmy change is several times
lower than that observed in somatic tissues in previous work3,
suggesting that other processes may play more substantial roles in
dictating mtDNA behaviour.

A generational shift in heteroplasmy behaviour with time is
visible in both models, with heteroplasmy shifts in pups generally
more pronounced than in oocytes: that is, the observed change in
heteroplasmy with maternal age is of higher magnitude in pups
than in oocytes. This observed difference is confirmed through a
likelihood ratio test (Supplementary Note 1, LE, p= 0.002; HB, p
< 10−16), showing statistical support for a mechanism acting to
change heteroplasmy between generations, which we characterise
with our umbrella model below.

Several other features of the raw data demonstrate results
which we will analyse in detail in later sections. Increases in
heteroplasmy variance with mother’s age can be
observed in oocytes and LE pup measurements, manifest as
growing error bars over time. The vertical intercept of the mean
heteroplasmy measurements is above zero in HB oocytes,
reflecting the systematically higher heteroplasmy in oocytes
than reference tissue (see above). Justifying one of our
modelling assumptions, the distributions of transformed
heteroplasmy we observe are not incompatible with
being normally distributed (only one of our 232 sample sets
displayed p < 0.001 for the Kolmogorov-Smirnov normality
test; the distribution of p-values was roughly uniform, Supple-
mentary Figure 2). We underline here that we are not
claiming that heteroplasmy is normally distributed – it is

constrained by the limits zero and one and so cannot
generally follow a normal distribution. Rather, our transforma-
tion Eq. 4 casts heteroplasmy values onto the full real line, and
given the rarity of homoplasmic observations we find the
resulting transformed heteroplasmy distributions – which we
use in the followup analysis – to be approximately normally
distributed.

Heteroplasmy variance increases linearly over lifetimes. Having
characterised changes in mean heteroplasmy occuring within and
between generations, we turn to heteroplasmy variance (related
model parameters: φ and θ). We aimed to see whether hetero-
plasmy variance increase with the age of the mother, both in
oocytes and pups. We thereby characterize the model parameters
φ (increasing germline variance with time), and θ (variance
induced in bottleneck/ early development).

To quantify the increase of heteroplasmy variance over
time, we first consider the data on oocytes and the data on
pups as separate, uncoupled entities. We use the well-
known normalisation of V(h) by μ(1− μ), where μ is mean
heteroplasmy, to account for differences between samples,
defining V'(h)= V(h)/μ(1− μ). We use the model-free approach
using the fourth central moment in ref. 9 to estimate sampling
errors in variance measurements. This approach naturally
accounts for the difficulty of sampling heteroplasmy variance,
and the corresponding uncertainty in variance measurements9.
We also fit a linear model to the data accounting for the
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uncertainty in variance data, so that points with high uncertainty
are correspondingly penalised in the model fit (diminishing, for
example, the contribution from the points with large error bars in
Fig. 5). Finally, we performed a naive fit to the variance
measurements alone with no quantified error, weighting all
observations equally. The increase of heteroplasmy variance with
time is clear and robust across cases except for the weighted fit in
HB pups (Fig. 5; statistical details in Supplementary Note 1).
The rate of change of heteroplasmy variance increase of roughly
2 × 10−4 day−1 is consistent with recent theoretical work20 and
observations in other mouse tissues3.

We also observe that, for HB oocytes, the inferred behaviour of
heteroplasmy variance extrapolates to a nonzero value at
fertilisation (t= 0), suggesting that an early increase in hetero-
plasmy variance occurs before the ages involved in our data
(hence θ ≠ 0). This observation is compatible with processes
during development (the mtDNA bottleneck) inducing cell-to-
cell variability in the germline, as found in ref. 7, and indeed the
observed shift here is of the same magnitude as identified by
previous studies in mice7,22,26, where V′(h) values around
0.02–0.04 have been reported as arising during the developmental
bottleneck.

For interpretation, an increase in V'(h) from 0 to 0.1
corresponds, for a mean heteroplasmy of 50%, to an increase
from a 0% heteroplasmy interval to a range of 19–81%.
Correspondingly, Supplementary Figure 3 shows the maximum
heteroplasmy interval in percentage points through time in our
dataset, rising, for example, from 22 points to 69 points in LE

oocytes from females aged 3–353 days, and from 13 to 80 points
in LE pups from maternal ages 70–244 days.

Joint inference of all influences on mtDNA statistics. To har-
ness the statistical power of our combined dataset we now jointly
infer the values of each of our mechanistic parameters (Fig. 2a),
using two combined datasets, each amalgamating mother and
pup data for one of our genetic pairings. We use bootstrapping
(see Methods section) to infer distributions for each parameter.
We use the percentile method (see Methods section) to determine
if these inferred distributions are compatible with a given para-
meter being zero (and hence the corresponding process not
providing an important contribution to mechanisms influencing
heteroplasmy).

Figure 6a shows the inferred joint behaviour of mtDNA
statistics over time from the combined dataset. Note that the
confidence intervals in this plot are for the summary statistics
(mean and variance) and are not directly connected to the
spread of datapoints: Supplementary Figure 4 shows the
corresponding confidence intervals on the spread of heteroplasmy
values, illustrating the model’s ability to capture heteroplasmy
observations. Figure 6b shows the bootstrapped distributions
on mechanistic parameters. We find statistical support
(all p-values and 95% c.i.s from bootstrapping with the percentile
method) for nonzero variance increase with time in mothers
(nonzero φ, mean HB= 2.24 × 10−3 day−1 with p < 2 × 10−3, c.i.
(1.83 to 2.71) × 10−3 day−1; mean LE= 3.25 × 10−3 day−1 with
p < 2 × 10−3, c.i. (2.58 to 3.87) × 10−3 day−1), as expected from
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Fig. 4. We also find support for a weak decrease of mean
heteroplasmy throughout mother’s lives, corresponding to the
mtDNA segregation bias observed in other tissues in these
models3 (nonzero β, mean HB=−5.83 × 10−4 day−1 with p=
0.008, c.i. (1.97 to 9.89) × 10−4 day−1; mean LE=−8.89 × 10−4

with p= 0.002, c.i. (−4.48 to −13.8) × 10−4 day−1). A transient
increase in mtDNA variance due to the mtDNA bottleneck is also
supported and of magnitude compatible with results from a
previous study looking at the bottleneck in detail7 (nonzero θ,
mean HB= 0.197 with p < 2 × 10−3, c.i. 0.150 to 0.240; mean
LE= 0.0735 with p < 2 × 10−3, c.i. 0.0187 to 0.140).

Additionally, we find support for heteroplasmy-based selection
of oocytes for the next generation, with the direction of this
selection depending on the genetic details of the admixed
population (nonzero ε, mean HB=−0.233 with p < 2 × 10−3,
c.i. −0.171 to −0.300; mean LE= 0.105 with p= 0.013, c.i. 0.024
to 0.19). We do not find strong statistical support for nonzero
values of the γ parameter (mean LE 0.11, c.i. −0.0079 to 0.24;
mean HB 0.091, c.i. −0.017 to 0.168), suggesting that this
selection may not strongly modulate heteroplasmy variance. We
also note the small magnitudes of the observed decreases of mean
heteroplasmy over time; in some somatic tissues we previously
found segregation an order of magnitude greater (for example,
rates approaching 0.01 day−1 in HB muscle).

Age-dependent probability of heteroplasmy observations. In
addition to verifying theoretical models for mtDNA dynamics7,
the observation of increasing variance has important implications

for fertility strategies (see Discussion section). Motivated by the
goal of optimising the implementation of these strategies, our
data can be used to parameterise a platform to predict hetero-
plasmy statistics as organisms age. As transformed heteroplasmy
distributions are reasonably normal, we employ a normality
assumption to predict the features of heteroplasmy distributions
over time, and so the probability of a given cell’s heteroplasmy
being higher or lower than a given threshold with time.

To compute this probability for a given initial heteroplasmy
distribution, we first compute the transformed heteroplasmy
change from initial heteroplasmy h0 required to reach a threshold
h, which is Δ'h(h; h0)= log((h(h0− 1))/(h0(h− 1))) (see Methods
section).

We then model the distribution of transformed heteroplasmy
as a normal distribution with a linearly increasing variance and
with a potentially changing mean. The overall probability of
reaching the threshold h is then

P h; h0; tð Þ ¼ 0:5erfcððβt � Δðh; h0ÞÞÞffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðφt þ θÞp ; ð3Þ

where erfc(x) is the complementary error function.
After training the model in Eq. 3 on experimental data,

it can be used to make predictions about heteroplasmy
statistics over time. To illustrate this process, we first
trained the model on a training subset of our data (inferring
parameters as above, but only using 50% of the data for
each haplotype), and then tested its predictions on the
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remaining, distinct test subset. Figure 7 shows the success
of probabilistic predictions made with this approach,
motivated by two medically pertinent cases: the probability that
an embryo observed during development (for example, in the
context of PGD4; see Discussion section) has a heteroplasmy
below a given value, and the probability that cells in an ageing
organism exceed a given value. It can readily be observed how the
probability that a given oocyte will cross a threshold substantially
increases over time, validating the predictions of the trained
model. To quantify this agreement we analysed the correlation
between predicted and observed threshold crossings, with
p-values against the null hypothesis of no link between prediction
and observation. Each correlation was strong with strong
statistical support (Fig. 7).

Implementation of this model to make predictions about
optimised PGD requires a connection with human data reporting
heteroplasmy data between generations: in the discussion we
outline how this platform would be constructed. We also note
that the question of when during development to implement a
PGD sampling strategy is complex, influenced by the detailed
dynamics of the mtDNA bottleneck; previous theory has
addressed the question of when best to sample7.

Discussion
Both the cell-to-cell mean and the cell-to-cell variance of het-
eroplasmy are of central importance in the inheritance and onset
of mitochondrial diseases, and in the design of therapies to
address these diseases. Heteroplasmy mean and variance are
related, but not completely coupled, and the cellular pressures
governing how they change over time – and indeed, the very
questions of whether and when such changes occur – remain
hotly debated. Mounting evidence suggests that changes in het-
eroplasmy mean are influenced by several mechanisms acting in
the germ line (purifying selection23,27) and/or embryo/foetus
(biased segregation25); in the pre-implantation embryo28; and
during gestation24. In concert, the mtDNA bottleneck leads to
heteroplasmy variance increase in the offspring due to mechan-
isms that most likely involve a reduction of mtDNA copy num-
ber, variance induced through cell divisions, and continued
turnover of mtDNA within cells (7; reviewed in ref. 29), but the
factors that influence this process are still debated.

This work has explored, in unprecedented detail, the dynamics
of these statistics in two mouse models with different genetic
distances between their admixed mtDNA populations, and over a
wide range of initial heteroplasmy values. We analysed the
mtDNA segregation in two heteroplasmic mouse lines, with 1947
oocyte measurements (1152 HB, 795 LE) and 899 pup mea-
surements (552 HB, 347 LE), with mother ages ranging from 24
dpc (i.e. 3 days after birth) to 409 dpc. Among the most impor-
tant of our results are the observations that (i) germline hetero-
plasmy variance continues to increase throughout organismal
ageing, challenging the picture of a single bottleneck process; (ii)
in addition to this time dependence, inferred heteroplasmy var-
iance and segregation statistics may differ if exclusively oocyte, or
exclusively pup, samples are analysed; and (iii) the variance
increase of heteroplasmy in ageing mothers can be predicted with
quantitative theory. These findings are applicable to human
reproductive therapies; we outline how future expansion of data
characterising the human system will facilitate predictive advan-
ces in therapy design.

Our experiments show that heteroplasmy variance increases
linearly over time in mammals. This is compatible with theore-
tical results describing mtDNA turnover20, our previous results
demonstrating linear increase in early post-bottleneck develop-
ment7, and results in Drosophila30–32. Our observations provide,

to our knowledge, the most detailed quantitative characterisation
of single-cell heteroplasmy dynamics in mammals to date. Pre-
vious approaches describing mtDNA drift have typically used a
coarse-grained heuristic measure of time, often by employing an
effective number of generations via the Wright formula (dis-
cussed in ref. 20). Some studies take this coarse-graining to its
limit, describing the buildup of heteroplasmy variance as the
result of a single effective bottleneck event which combines the
developmental bottleneck and the subsequent buildup of drift.
Without a detailed quantitative accounting for drift, this simpli-
fication leads to heterogeneity in the reported bottleneck
size7,26,33,34. Our results simultaneously illustrate the importance
of, and provide quantitative means to allow, accounting explicitly
for separated drift and developmental processes for determing
heteroplasmy distributions. For this reason, we advocate using the
term “heteroplasmy variance” rather than the shorthand “bot-
tleneck”, to explicitly separate out contributions to variance from
the developmental bottleneck and from ongoing drift.

The genetic bottleneck can account for random (but marked)
changes in mtDNA heteroplasmy between generations7. How-
ever, it is becoming increasingly evident that additional
mechanisms influence heteroplasmy dynamics between genera-
tions11. The increase in variance due to the bottleneck is
sequence-dependent17, and evidence exists that both pathological
and apparently non-pathological mtDNA mutations can be
selected against between generations (recently reviewed in ref. 10).
Mice expressing a proofreading-deficient mitochondrial DNA
polymerase, non-synonymous mutations were underrepresented
compared to synonymous mutations in the mtDNA of the off-
spring27. In another study a severe heteroplasmic mt-Nd6
mutation was eliminated within four generations23. This selec-
tion seems to act intraovarially, most likely by removal of affected
oocytes. In contrast, a slightly deleterious tRNAMet mutation was
selected against in the developing embryo, by selection acting at
the cell or organelle level in the embryo24.

In addition to these pathological cases, a heteroplasmic mouse
model harbouring 129S6 and NZB mtDNA (both apparently
non-pathological haplotypes), heteroplasmy segregated to unde-
tectable levels of NZB mtDNA within two generations. In con-
trast, it took ten generations of selective breeding to reach a single
female that proved to be 100% homoplasmic for NZB. In this case
selection seemed to work partly in the ovary, and partly during
gestation25. Taken together, these observations suggest that both
pathological and non-pathological mtDNA pairings experience
segregation between generations10.

Here we show, with a much larger dataset, the dynamics of two
different segregation regimes (LE, more neutral; HB, more biased)
through ageing and between generations. Both LE and HB
mtDNA haplotypes derive from wild-derived mouse strains, and
both heteroplasmic lines reach 100% homoplasmy without
selective breeding. This capacity to reach homoplasmy sets our
lines apart from previous pathogenic and non-pathogenic models,
apparently avoiding issues from mixing mitochondria35 and
allows a simpler disambiguation of segregation bias and variance
increase in mtDNA dynamics.

We prove that segregation bias can already occur at the oocyte
level (HB oocytes, Fig. 3). This shift appears less pronounced
when observing samples from pups in the next generation, sug-
gesting that processes may exist to ameliorate this bias between
generations. While we already showed in a recent report that
heteroplasmy levels can change during gestation in a tissue-
specific way (HB, heart3), the changes found in this study are best
explained by selection of cells with relatively lower heteroplasmy
levels in the germ line early in development, as compared to the
somatic precursor cells. Based on analysis of two heteroplasmic
rhesus monkey fetuses a “preimplantation bottleneck” was
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proposed28. Further research is necessary to see if a similar
mechanism works both in rhesus monkeys and mouse, but the
timing seems to be comparable.

Our study shows that when analysing offspring or oocyte data
separately, heteroplasmy variance statistics may differ (Fig. 4).
Correspondingly, heteroplasmy shifts between mother and off-
spring may not reflect those between mother and oocyte due to
shifts during oogenesis or embryonic development (Fig. 3). Taken
together, these results clearly indicate that, for a complete picture
of mtDNA segregation (and of the bottleneck in particular), both
oocyte and offspring data, together with the age of the mother at
the time of analysis/ birth should ideally be available (Fig. 6). An
umbrella picture where the developmental history of, and rela-
tionship between, measured samples increases the power with
which mechanisms can be identified, as demonstrated in recent
work on mtDNA segregation in mice3, and in mtDNA dynamics
in humans8, which notably employed an “ontogenic phylogeny”
for developmental history to jointly infer dynamics from obser-
vations from ref. 36.

Increasing variance in oocyte heteroplasmy is desirable for
therapeutic approaches like PGD, where a greater variance of
heteroplasmies increases the probability that a low-heteroplasmy
embryo can be identified4. For a prospective mother carrying a
pathological mtDNA mutation at some heteroplasmy, therefore, a
rational approach (based on mtDNA statistics alone) would be to
undergo PGD at later ages, where the probability of obtaining a
low-heteroplasmy embryo is higher. Of course this must be
tempered by possible negative effects of increased age in fertility.

The model in Eq. 3 and illustrated in Fig. 7 provides a
mechanism to leverage our findings on increasing heteroplasmy
variance to optimise therapeutic strategies. To implement this
prediction of threshold crossing probabilities and timescales in a
clinical context, a (potentially small) set of training data would be
required, providing a parameterisation for Eq. 3. Appropriate
data would consist of coupled samples of mean mother hetero-
plasmy and samples of heteroplasmy in offspring produced
at different maternal ages. Examples of this type of data do
exist in the literature36 but often amalgamate heteroplasmy levels
of different mtDNA mutations, challenging our ability to
control for the potentially different levels of selection acting upon
each mutation. Data focussed on a small number of mtDNA
variants, in conjunction with Eq 3, would characterise the
increase in heteroplasmy variance over time in the human system
(which importantly may differ according to the genetic parti-
culars of the system37, allowing predictions of threshold crossing
and other statistics of importance in fertility treatments in the
same manner as illustrated in Fig. 7. The probabilistic benefit
arising from later fertility treatment can then be weighed against
the probabilistic risk of an age-related fertility issue, and the costs
and benefits of older PGD therapies can be quantitatively
assessed.

Methods
Two heteroplasmic mouse models with mtDNA admixtures. The study was
discussed and approved by the institutional ethics committee in accordance with
Good Scientific Practice (GSP) guidelines and national legislation. FELASA
recommendations for the health monitoring of SPF mice were followed.

Heteroplasmic mice were obtained from two heteroplasmic mouse lines
(denoted HB (Hohenberg) and LE (Lehsten), according to the German localities of
original collection) we created previously by ooplasmic transfer3. These mouse
lines contain the nuclear DNA of the C57BL/6N mouse, and mtDNAs both of
C57BL/6N and of a wild-derived house mouse (either HB or LE). All three mtDNA
variants belong to the same subspecies, Mus musculus domesticus. For details on
sequence divergence see3.

Ear-clip and tail reference tissue and DNA extraction. All mother and offspring
calculations are measured in either ear-clip or tail samples that were obtained at the
weaning (at the age of 21 days) of the respective animals24. Samples were stored at

−20 °C. DNA was extracted using the NucleoSpin Tissue Kit (Macherey-Nagel,
Germany) according to the protocol for animal tissue (no RNase treatment).

Isolation and lysis of oocytes. Mice were killed at the indicated ages by cervical
dislocation. Ovaries were extracted and immediately placed in cryo-buffer con-
taining 50% PBS, 25% ethylene glycol and 25% DMSO (Sigma-Aldrich, Austria)
and stored at −80 °C.

For oocyte extraction, ovaries were placed into a drop of cryo-buffer and
disrupted using scalpel and forceps. Oocytes were collected and remaining cumulus
cells were removed mechanically by repeated careful suction through glass
capillaries. Naked oocytes were then washed in PBS before they were individually
placed into compartments of 96-well PCR plates (Life Technologies, Austria)
containing 10 μl oocyte-lysis buffer28 composed of 50 mM Tris-HCl, (pH 8.5),
1 mM EDTA, 0.5% Tween-20 (Sigma-Aldrich) and 200 μg/ml Proteinase-K
(Macherey-Nagel). Samples covered stages from primary oocytes of 3-day-old mice
up to major oocytes of adult mice. Samples were lysed at 55 °C for 2 h, and
incubated at 95 °C for 10 min to inactivate Proteinase K. The cellular DNA was
finally diluted in 190 μl Tris-EDTA buffer, pH 8.0 (Sigma-Aldrich).

Heteroplasmy quantification by ARMS-qPCR. Heteroplasmy quantification was
performed by Amplification Refractory Mutation System (ARMS)-qPCR3,38–40.

Consensus assay (103 bp amplicon): Co2-f: TCTTATATGGCCTACCCATTCC
AA, Co2-r: GGAAAACAATTATTAGTGTGTGATCATG, Co2-FAM: FAM-TTG
GTCTACAAGACGCCACATCCCCT-BHQ1

ARMS assays:
1. mt-Rnr2 assay (for HB, LE and C57BL/6N; 142 bp amplicon)
16SrRNA2340(3)G-f: AAATCAACATATCTTATTGACCgAG, where the small

letter designates a base mismatching with both the target and the non-target alleles
(haplotype C57BL/6N; used for heteroplasmy analysis of LE samples)
16SrRNA2340(3)A-f: AATCAACATATCTTATTGACCgAA (haplotype HB, LE),
16SrRNA2458-r: CAC CAT TGG GAT GTC CTG ATC, 16SrRNA-FAM: FAM-
CAA TTA GGG TTT ACG ACC TCG ATG TT-BHQ1

2. mt-Cyb assay (for C57BL/6N; used for HB heteroplasmy analysis; 79 bp
amplicon)

Cyb240(3)-f C57 240 ARMS: TAGCAATCGTTCACCTCgTC, Cyb318-r: ATT
TTATCTGCATCTGAGTTTAAT, Cyb-FAM: FAM-ACGAAACAGGATCAAAC
AACCCAACAGG-BHQ1

Every qPCR run included the consensus and the ARMS assay each performed
in triplicate. The master mix contained 1 × buffer B2 (Solis BioDyne, Estonia), 4.5
mM MgCl2, 200 µM of dATP, dCTP, dGTP, and dTTP (dNTPs, Solis BioDyne),
300 nM of each primer, 100 nM hydrolysis probe (Sigma-Aldrich) and HOT
FIREPol DNA polymerase according to the manufacturer’s instructions (Solis
BioDyne). Per reaction 12 µl master mix and 3 µl DNA were transferred to a 384-
well PCR plate (4titude Ltd, United Kingdom) using the automated pipetting
system epMotion 5075TMX (Eppendorf, Germany). Amplification was performed
on the ViiA 7 Real-Time PCR System operated by the ViiA™ 7 Software v1.1 (Life
Technologies, USA). DNA denaturation and enzyme activation were performed for
15 min at 95 °C. DNA was amplified over 40 cycles consisting of 95 °C for 20 s, 58 °
C for 20 s and 72 °C for 40 s.

The standard curve method was applied for determination of qPCR efficiency.
Briefly, amplification efficiencies calculated in each run separately from a dilution
series of mouse DNA harbouring 100% of the respective mitochondrial haplotype
ranged from 0.87 to 0.94 (R2 > 0.99; y intercepts from 28.3 to 34.5). All
experimental samples were covered by the linear dynamic range of the standard
curve. To assess assay specificity, each run contained a mouse DNA harbouring the
non-target mtDNA type of the respective heteroplasmic combination (i.e., C57BL/
6N or HB mtDNA). All assays discriminated C57BL/6N from HB or LE mtDNA
with a sensitivity of at least 0.5%. Absence of inhibition in a sample DNA was
regularly confirmed based on Cq value obtained from diluting the sample in Tris-
EDTA buffer (pH 8.0, Sigma-Aldrich).

Mitochondrial heteroplasmy was always calculated from the assay detecting the
minor allele (C57BL/6N or wild-derived (HB or LE) <50%). If both specific assays
gave values of more or around 50%, the mean value of both assays was taken. Each
qPCR run contained a mandatory no template control (NTC) for each assay
(Cq > 40). The study was conducted according to the minimum information for
publication of quantitative real-time PCR experiments3,41.

Transformation and analysis of heteroplasmy statistics. All analyses in this
article are platform-independent and the statistical procedures corresponding to
each section are described below.

Being a population fraction, heteroplasmy is bounded by zero and one and is
expected to vary nonlinearly with time even when the dynamics of individual
mtDNA species change linearly. The same selective pressure inducing a
heteroplasmy shift will lead to different absolute heteroplasmy changes for different
initial heteroplasmies. This nonlinearity also affects the structure of cell-to-cell
heteroplasmy distributions, which can be highly non-normal9,16, limiting the
interpretation of variance statistics. A well-known method to avoid this is to
normalise heteroplasmy variance by μ(1− μ), where μ is mean heteroplasmy.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04797-2

10 NATURE COMMUNICATIONS |  (2018) 9:2488 | DOI: 10.1038/s41467-018-04797-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


To overcome these difficulties, we use transformed heteroplasmy, which
expresses a change in heteroplasmy, from a reference value h0 to a sampled value h,
as the selective difference required to induce that change. We will use an early
heteroplasmy measurement in a reference tissue in a mother (tail or ear) for h0; h
corresponds to a later measurement in an oocyte or pup. Specifically

Δ′hðh; h0Þ ¼ ln
hðh0 � 1Þ
h0ðh� 1Þ

� �
ð4Þ

This transformation controls for initial heteroplasmy and so facilitates the
comparison of heterogeneous individuals in large datasets3,20. It is motivated by a
mathematical description of stochastic mtDNA dynamics20 and recapitulates
existing methods based on fitness differences22. A weakness of this transformation
is that it cannot, without correction, address homoplasmic cells, which lead to
divergences in Eq. 4, but such cells make up a very small fraction of our dataset and
do not substantially influence our results.

We will invoke a normality assumption for cell-to-cell distributions of
transformed heteroplasmy. That transformed heteroplasmy values should
approximate a normal distribution can readily be seen by applying the
transformation in Eq. 4 to theoretical distributions of heteroplasmy13, and we
demonstrate below that this assumption is compatible with our data. In practise,
measurement errors in heteroplasmy sampling can exist; in this model, these errors
can confound the inference of initial changes in variance (θ in our subsequent
model), but unless systematic changes in measurement error with organismal age
exist, inferences about the time behaviour of heteroplasmy statistics (β and φ in our
subsequent model) will be robust with respect to these errors.

Data availability. All raw heteroplasmy data are available as Supplementary
Data 1. Illustrative Mathematica notebooks containing the full analysis of hetero-
plasmy statistics are available upon request.
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