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Two use cases are presented for winter road maintenance and seasonal 

resilience on the railways to showcase the potentially transformative impact of 

the Internet of Things on observations and forecasting.  

HIGH-RESOLUTION 
MONITORING OF WEATHER 

IMPACTS ON INFRASTRUCTURE 
NETWORKS USING THE 
INTERNET OF THINGS

Lee Chapman and Simon J. Bell

T	 he  i mpac ts  of  weat her  a nd c l i mate on  
	 infrastructure are numerous. Whereas extreme  
	 events clearly pose the biggest challenges, signifi-

cant opportunities to improve the resilience of infra-
structure exist in the prediction of smaller “everyday” 
impacts where preventative action can be taken by 
operators to reduce the severity of the impacts. There 
are many examples where such actions are taken by 

industries to reduce the impact of weather on in-
frastructure, for example, winter road maintenance 
(Mahoney and Myers 2003), railway buckling (Ferranti 
et al. 2016), leaves on the line (Chapman et al. 2016), and 
wind impacts on power cabling (McColl et al. 2012).

Over the last two decades, developments in mod-
eling [e.g., route-based forecasting for winter road 
maintenance (Chapman and Thornes 2006)] and 
decision support systems [e.g., maintenance decision 
support system (MDSS); Petty and Mahoney 2008] 
mean that weather impacts can now be predicted 
at high resolution so that mitigation activities can 
be specifically targeted at vulnerable sections of 
infrastructure. This helps to minimize the cost of 
interventions while reducing disruption but, more 
importantly, secures the networks for continued use. 
The importance of this is not to be underestimated. 
It is not uncommon to encounter a range in surface 
temperatures of 30°C on the railway network in 
high summer (Chapman et al. 2006) or 10°C on the 
road network in winter (Shao et al. 1997). Such large 
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ranges of temperature can mean that while most of 
the infrastructure is safe, small sections could be 
potentially lethal if left untreated. Likewise, blanket 
treatments are wasteful, often unnecessary, and can 
have negative environmental impacts.

However, while decision support systems have been 
in operational use for the last decade, in an environ-
ment of increasing litigation, practitioners remain 
nervous about making decisions solely based on 
largely unverified high-resolution model output. This 
means that forecast validation is now needed on a scale 
previously not required. It is only with such forecast 
validation that end users will become responsive to 
using methods that save money without compromising 
infrastructure safety: for example, selective salting for 
winter road maintenance where only the coldest sec-
tions of road are treated (Handa et al. 2006) or local-
ized rail speed restrictions in hot weather as opposed 
to the blanket restrictions currently used (Ferranti 
et al. 2016). However, to date, existing measurement 
techniques do not meet this need (Hammond et al. 
2010). Traditional point measurements using sensors 
are expensive to install in the numbers required and 
therefore lack the spatial resolution. Mobile mea-
surements provide an alternative, but these lack the 
temporal resolution to provide the full picture and are 
of limited value for model initialization (Gustavsson 
1999). Hence, there is a need to consider new innovative 
techniques to provide high-resolution data to unlock 
the potential of high-resolution models. This paper 
discusses the role of the emerging Internet of Things 
(IoT) in fulfilling this need.

THE INTERNET OF THINGS. IoT quite literally 
means “things” (e.g., sensors and other smart devices) 
that are connected to the Internet. Since 2008, the 
number of things has outnumbered users online. 
Technological developments in the field are rapid and 
now mean that low-cost sensors can be produced and 
deployed in dense networks to monitor weather and 
climate (Young et al. 2014). The miniaturization and 
reduced cost of electronics is one key factor driving 
this change; however, the enabling technologies are 
improvements in batteries, communications, and 
cloud-based data storage.

Lithium batteries are already proving transforma-
tive across a range of applications (e.g., electric vehicles; 
Lu et al. 2013), but they are also playing a key role in 
the IoT. It is now possible to power a meteorological 
sensor (e.g., to measure temperature; Young et al. 2014) 
for several years from a single small cell. This step alone 
vastly reduces the cost of making a measurement, as 
a connection to a mains supply or the inclusion of an 
energy-harvesting solution is no longer required.

Communications are traditionally one of the larg-
est drains on energy, as significant power is needed to 
transmit the data. This can be overcome (where avail-
able) by using a hardwired solution, but many weather 
outstations presently rely on the Global System for 
Mobile Communications (GSM). These are power 
hungry, draining a small lithium battery in a matter 
of hours. The IoT now has a vast array of low-power 
wireless options to overcome this. These include 
Bluetooth, Wi-Fi, and ZigBee over short distances 
(i.e., meters/line of sight), but the latest developments 

Fig. 1. Prototype road surface temperature sensor mounted, as operationally, on street furniture adjacent to 
a road. The small black hole is the thermopile aperture, which is aimed at the road surface.
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are seeing a rapid deployment of low-power wide area 
networks (LPWANs). These are specifically designed 
for the IoT (i.e., battery-operated sensors) and permit 
long-range communications (i.e., ≥30 km—effectively 
a whole city) with a single antenna. There presently 
exists a range of competing standards such as Long 
Range (LoRa), Sigfox, Long-Term Evolution (LTE), 
and Narrowband IoT (NB-IoT); however, all operate 
on the same low-power–low-
bit-rate principle to maxi-
mize battery life on the de-
vice. As such, a stand-alone 
sensor can now be located 
anywhere within a wide area 
where it will periodically 
relay data over the Internet 
to a server or “cloud.”

Cloud-based storage has 
now become the standard 
means to store data, and 
this development has also 
facilitated the rapid growth 
in the IoT by providing a 
stable and reliable means 
to store the vast amounts of 
data produced by potentially 
millions of devices. Cloud 
server and storage solutions 
are low cost, scalable, and 
bespoke, allowing for plat-
forms to be easily developed 

to display large datasets in real time or indeed to push 
(or pull) data via application programming interfaces 
(APIs) to end users to ingest into forecasting models. 
While devices themselves can be intelligent, enabling 
processing tasks within firmware, the cloud allows 
for a “smart server–dumb sensor/client” approach, 
which is preferable to mitigate against security threats 
(Weiss and Lockhart 2012).

Fig. 2. The Weiss series WKL 34 climate chamber. Inside are four test sen-
sors mounted above the slab of asphalt into which the reference thermistor 
is embedded.

T	he RST sensor uses the Melexis  
	infrared thermopile model 

MLX90614. It has a 5° field-of-view 
sensor and is small (~4-mm diameter). 
It has a range from −40° to 125°C for 
sensor temperature and from –70° 
to 380°C for object temperature 
with a resolution of 0.1°C or better 
and a reported accuracy between 
0.5° and 1°C. A number of sensors 
have been tested using a Weiss series 
WKL 34 climatic chamber capable of 
generating reproducible and stable 
temperature conditions from −40° 
to +180°C within a 34-L chamber. 
Temperature constancy in time is 
±0.3°C with cooling and heating rates 
of 6° and 4°C min−1, respectively. 
Humidity can also be controlled in 
the range 10%–98% with a built-in 

humidification–dehumidification sys-
tem (Fig. 2). To simulate operational 
conditions, test sensors were aimed at 
a slab of asphalt (22-cm width, 3-cm 
depth). As is customary for infrared 
road temperature sensors, sensors 
were configured to assume the asphalt 
surface has an emissivity of 0.95 at 
nadir. A reference platinum resistance 
thermometer was embedded in the 
center at a depth of 2 mm [precalibrat-
ed at a United Kingdom Accreditation 
Service (UKAS)-approved laboratory]. 
Figure 2 shows the configuration of the 
four prototype sensors in the chamber 
(referred to as S1, S2, S3, and S4). Each 
sensor was mounted vertically with a 
3-cm gap between the MLX90614 ap-
erture and the asphalt. Each test took 
a total of 12 h to complete (comprising 

three 4-hourly periods). The tempera-
ture of the chamber was set differently 
for each period: +10°, 0°, and −10°C. 
To ensure stability within the chamber, 
only data from the last hour of each 
4-h period were used. Results of the 
test are shown in Fig. 3 and Table 1.

The variance of the reference 
thermistor (black box plot in Fig. 3) is 
small, confirming that the asphalt slab 
reaches a stable state of equilibrium. 
While the median and mean of the 
prototype sensors rarely agree exactly 
with that of the reference thermistor, 
they do fall within acceptable limits of 
±0.7°C. If greater accuracies are re-
quired, bias correction per sensor can 
then be performed before deployment 
either within the firmware or on the 
cloud server.

LABORATORY TESTING OF A LOW-COST RST SENSOR

1149AMERICAN METEOROLOGICAL SOCIETY |JUNE 2018



As a direct result of these technological changes, 
the emergence of the IoT has been rapid and is already 
creating a significant presence in weather and climate. 
Recent years have seen an upsurge in scientific lit-
erature looking at opportunistic sensing (i.e., crowd-
sourcing), which harvests data from the growing 
number of low-cost consumer weather monitoring 
devices taking advantage of the abovementioned de-
velopments [see Muller et al. (2015) for a full review]. 
For example, the Netatmo personal weather station 
has become prolific, with tens of thousands of devices 
situated around the world. This means that in places 
where there has been a previous paucity of weather 
data (e.g., cities), dense networks are now available 
for climatological analyses and, potentially, weather 
services (e.g., Meier et al. 2017; Chapman et al. 2017; 
De Vos et al. 2017). Similar developments have also 
occurred obtaining data from vehicles (Mahoney and 
O’Sullivan 2013), where data can be filtered before 

use to improve data quality control using vehicle data 
translators (Drobot et al. 2010). Despite these studies 
and indeed considerable interest in the road weather 
sector, the discipline remains broadly wary of the op-
portunistic sensing approach. There are clearly issues 
in devolving the siting and maintenance of equipment 
to the crowd, and these concerns will remain until 
data quality control and assurance are satisfactorily 
dealt with. In contrast, the key operating principles 
actually underpinning the IoT are sound and as the 
following use cases demonstrate, when bespoke sen-
sors are built for dedicated applications and managed 
by professional meteorologists, there is potential for 
the approach to be truly transformative.

USE CASES. Winter resilience on highways. Highway 
engineers consult Road Weather Information System  
(RWIS) observations and weather forecasts to make a 
daily decision as to whether the road network needs 
treatment. There have been significant developments 
in all components of RWIS over the last two decades. 
The range of techniques available to make observa-
tions has increased significantly, notably with a large 
range of noncontact devices to measure road surface 
temperature (RST) and condition. However, equip-
ment costs have remained high, and there is still a 
paucity of measurement devices. Forecasting and 
decision support systems have also developed sig-
nificantly. Bolstered by increasing computer power, 
high-resolution mesoscale models, and improved 
downscaling techniques, route-based forecasts now 
contain detailed forecasts for every stretch of road 
(most of which is unmonitored). If the IoT approach 
can improve confidence in these forecasts, then se-
lective salting (where treatment is only actioned on 

Fig. 3. Box-and-whisker plot summary of temperature readings at three different chamber temperatures: 
(left) +10°, (center) 0°, and (right) −10°C by the reference thermistor and four prototype sensors. Each box 
represents data collected over 1 h.

Table 1. Mean temperature bias for four sen-
sors (S1, S2, S3, and S4) at each of the three test 
temperatures relative to observations made by 
the reference thermistor (only reference observa-
tions within 3 s of infrared sensor observations 
are used). The sample size for each cell is ~240, 
with the value in parentheses denoting the stan-
dard deviation of the bias. 

Sensor

Reference (°C)

10.02 −0.02 −10.11

S1 −0.24 (0.09) −0.47 (0.10) −0.67 (0.12)

S2 0.01 (0.09) −0.21 (0.10) −0.27 (0.11)

S3 0.49 (0.09) 0.24 (0.11) 0.02 (0.13)

S4 0.07 (0.09) −0.07 (0.08) −0.13 (0.09)
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sections forecast to freeze) would result in large cost 
savings. The infrastructure (e.g., maintenance deci-
sion support systems; Petty and Mahoney 2008) to 
achieve this has been in place for over a decade, but a 
paucity of observations remains a significant barrier 
to implementation.

To fill this need, a low-cost road surface tempera-
ture sensor using a thermopile has been developed 
(Fig. 1). Based on the full set of IoT principles, it 
consumes minimal energy and can be powered for a 
full winter season using two standard, off-the-shelf, 
AA alkaline batteries. Communication options are 
based around LPWAN (where available), with Wi-Fi 
as a backup option. The accuracy of observations 
remains crucial for road weather applications, so it 

is important to determine whether low-cost sensors 
are sufficiently accurate. Laboratory testing can be 
used to increase confidence in this approach (Fig. 2), 
and the results indicate that accurate observations of 
road surface temperature now appear to be possible 
using low-cost IoT sensors (Fig. 3 and Table 1; details 
in the sidebar). In the field, data are relayed in real 
time to the cloud, where it undergoes quality-control 
processing (e.g., bias correction/filtering to remove 
traffic effects) before being displayed to the end user.

Overall, the sensor is portable and self-contained 
within a weatherproof enclosure and requires no 
external power or communications. The low price of 
this approach compared to traditional sensors (vir-
tually two orders of magnitude cheaper) now means 

Fig. 4. Screenshots of the web application used to visualize sensor data. Live networks are shown to illustrate 
(a) network-scale deployment and (b) high-resolution deployment at the scale required to validate a route-
based forecast (copyright Google, Inc.).
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that the IoT can provide a complimentary observa-
tion module within RWIS. A simple network could 
involve locating a single sensor on each salting route 
(Fig. 4a). This in itself would provide a step change in 
granularity or observations, but the potential remains 
to instrument the network at the same resolution 
of a route-based forecast, for example, every 100 m 
(Fig. 4b), potentially transforming current winter re-
silience practices via selective salting or even dynamic 
routing (Handa et al. 2006).

Summer and autumn resilience on the railways. While 
railways represent one of the most efficient modes of 
transportation, day-to-day weather can cause chal-
lenges. In summer, heat-related delays on the railway 
are a consequence of the buckling of railway tracks 

and the overheating of lineside equipment (Palin 
et al. 2013; Ferranti et al. 2016). In autumn, leaves on 
the line are a perennial problem. Leaves that fall onto 
the track and are accompanied by a small amount 
of moisture (e.g., dew) compact and create a Teflon-
type coating on the top of the rail. This coating has 
a negative impact on braking performance, which 
leads to delays due to platform overruns and, worse 
still, signals passed at danger (Fulford 2004). Again, 
forecasts are provided to help mitigate the problem. 
These forecasts are used to impose speed restric-
tions to reduce safety impacts of buckling during 
spells of hot weather (Palin et al. 2013) or support 
spreading sandite onto the tracks to improve adhe-
sion at problem locations in the autumn (Chapman 
et al. 2016). Such problems are localized, and these 
actions can be better targeted to reduce costs and 
delays. To this end, high-resolution forecasts are 
starting to be produced for the rail industry, but as 
per winter road maintenance, adequate verification 
data will be required before such products are used 
to maximum benefit.

Again, the IoT can provide a solution. As far as 
monitoring of summer heat is concerned, a thermo-
pile sensor (i.e., Fig. 1) can again be used to provide 
a noncontact means of measuring rail temperature. 
These would be deployed in a network at known 
“hot spots.” Autumn resilience is more challenging 
and requires estimates of daily leaf fall along with 
observations from a suite of sensors to measure rail 
temperature, air temperature (e.g., Young et al. 2014), 
and moisture. The latter is the most important vari-
able, as it has been shown that the smallest amounts 
of water on the track (i.e., dew or drizzle) are the 
most problematic and suggests that a sensor needs to 
have the capability of detecting these trace amounts. 
Recent research has shown that this is possible using 
IoT leaf wetness sensors located on a “dummy rail” 
at the side of the live track (Fig. 5). Again, climate 
chamber tests and field deployments have yielded 
positive results, and the potential of the approach to 
densely instrument known sections of poor adhesion 
is evident [see Chapman et al. (2016) for full details]. 
However, existing approaches are dependent on the 
use of dummy rails, so further research is required to 
facilitate measurements by noncontact means.

DISCUSSION AND CONCLUSIONS. This pa-
per has highlighted the need for high-resolution sen-
sor networks and indeed the transformative potential 
of the IoT for the infrastructure sector and weather 
forecasting more generally. However, both scientific 
and technological challenges still exist.

Fig. 5. Low-cost rail moisture sensor on trial using a 
dummy rail next to a live railway (image courtesy of 
Elliott Warren).
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Scientifically, there is a need to provide sensors 
of comparable quality to existing standards. As this 
paper and others (Young et al. 2014; Chapman et al. 
2017; Meier et al. 2017) suggest, despite the low-cost 
nature of IoT sensors, performance in both laboratory 
and field trials appear positive. One frequent concern 
with low-cost sensors is sensor drift, and given the 
age of the technology, this has been impossible to 
fully ascertain to date. A further challenge as net-
works mature is to consider how annual maintenance 
and calibration regimes fit into this new paradigm. 
Low-cost devices are essentially consumables, and a 
rotational deployment–calibration strategy could be 
an option here.

Technologically, the IoT continues to develop at a 
tremendous rate, tackling challenges that were sig-
nificant hurdles just a couple of years ago. LPWAN 
access remains a barrier in many parts of the world, 
but this is rapidly changing. Similarly, battery and 
energy-harvesting technologies continue to improve 
year on year.

Given the pace of developments, and assuming 
increasing adoption of the IoT is inevitable in the 
industry, it is worth considering the broader im-
plications of high-resolution observation data. For 
example, current forecasts are largely built to cope 
with a paucity of data. Data could soon be available at 
an unprecedented scale and in turn may lead to a new 
generation of forecasting products in the statistical 
and nowcasting arenas (e.g., Shao and Lister 1996). 
A potential move to more open data would also free 
up innovation within the sector in this regard. In the 
commercial sector, there could also be significant 
changes, causing the traditional lines between in-
strumentation manufacturers and forecast providers 
to become increasingly blurred. Likewise, the indus-
try could see technologists increasingly marketing 
meteorological products. This would be a concern, 
as the integrity of the measurement is of paramount 
importance. However, the conservative nature of the 
infrastructure sector, and broader meteorological 
community, should ensure this remains the case. 
For example, atmospheric scientists have been quick 
to highlight issues with low-cost air quality sensors 
(Lewis and Edwards 2016).

In summary, the IoT has the potential to completely 
change decision-making and operations on infrastruc-
ture. It will unlock the potential of high-resolution 
models as well as stimulate further innovation, in-
creasing the weather resilience of infrastructure. 
Aside from infrastructure improvements, the IoT will 
promote new developments in the weather industry, 
including open data and opportunistic sensing.
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