
 
 

University of Birmingham

The rise of the ruling reptiles and ecosystem
recovery from the Permo-Triassic mass extinction
Ezcurra, Martin; Butler, Richard

DOI:
10.1098/rspb.2018.0361

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ezcurra, M & Butler, R 2018, 'The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic
mass extinction', Proceedings of the Royal Society B: Biological Sciences, vol. 285, no. 1880.
https://doi.org/10.1098/rspb.2018.0361

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction, Martín D. Ezcurra, Richard J. Butler, Proc.
R. Soc. B 2018 285 20180361; DOI: 10.1098/rspb.2018.0361. Published 13 June 2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1098/rspb.2018.0361
https://doi.org/10.1098/rspb.2018.0361
https://birmingham.elsevierpure.com/en/publications/882a0eae-8c9a-4e14-96ac-32ebd5d2879e


1 
 

SUPPLEMENTARY INFORMATION 
 

The rise of the ruling reptiles and ecosystem recovery from the 

Permian-Triassic mass extinction 

 
Martín D. Ezcurra and Richard J. Butler 

 
Corresponding authors emails: martindezcurra@yahoo.com.ar; r.butler.1@bham.ac.uk 

 

 

Outline of contents 

1. Institutional abbreviations 

2. Taxon-character data matrix and time-bins 

  a. Data matrix 

  b. Terminal pruning 

  c. Terminals occurring in >1 time bin 

  d. Parameters of the data matrices 

3. Phylogenetic analysis and temporal calibrations of the trees 

4. Observed species count, phylogenetic diversity estimation, specimen-level 

abundance data, and archosauromorph-bearing formations  

  a. Observed species count 

  b. Phylogenetic diversity 

  c. Specimen-level abundance data 

  d. Archosauromorph-bearing formations 

5. Morphological disparity analyses  

  a. Results including terminals with chronostratigraphic uncertainty 

  b. Results excluding terminals with chronostratigraphic uncertainty 

  c. Results of taxon sampling modified to equal that of Foth et al. (2016) 

6. Phenotypic evolutionary rates analyses 



2 
 

7. Key to silhouettes used in figures 1 and 3 

8. References for supplementary information 

 



3 
 

 

1. Institutional abbreviations 

BIRUG, Lapworth Museum of Geology, University of Birmingham, Birmingham, UK; 

CRILAR-Pv, Centro Regional de Investigaciones y Transferencia Tecnológica de La 

Rioja, Paleontología de Vertebrados, Anillaco, La Rioja, Argentina; GPIT, 

Paläontologische Sammlung der Universität Tübingen, Tübingen, Germany; GSI, 

Geological Survey of India, Kolkata, India; GZG, Geowissenschaftliches Zentrum der 

Universität Göttingen, Göttingen, Germany; ISI, Indian Statistical Institute, Kolkata, 

India; IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, 

China; MACN-Pv, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, 

Paleovertebrados, Buenos Aires, Argentina; NHMUK PV, The Natural History 

Museum, Palaeontology Vertebrates, London, UK; NMQR, National Museum, 

Bloemfontein, South Africa; PIN, Paleontological Institute of the Russian Academy of 

Sciences, Moscow, Russia; PULR, Paleontología, Universidad Nacional de La Rioja, 

La Rioja, Argentina; PVL, Paleontología de Vertebrados, Instituto ‘Miguel Lillo’, San 

Miguel de Tucumán, Argentina; SIDMMG, Sidmouth Museum, Sidmouth, United 

Kingdom; SMNS, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany; 

UNIPAMPA, Universidade Federal do Pampa, São Gabriel, Brazil; WARMS, 

Warwickshire Museum, Warwick, UK; ZPAL, Institute of Paleobiology of the Polish 

Academy of Sciences, Warsaw, Poland. 
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2. Taxon-character data matrix and time-bins 

(a) Data matrix 

The taxon-character data matrix built here is an expansion of that of Ezcurra (2016) and 

its subsequent modifications (Ezcurra et al., 2017; Nesbitt et al., 2017; Sengupta et al., 

2017; Stocker et al., 2017), sampling all 108 currently taxonomically valid middle 

Permian–early Late Triassic archosauromorph species as well as some unnamed taxa 

that likely represent distinct species (e.g. the ‘Moenkopi poposauroid’, the ‘Chañares 

rhynchosaur’, NMQR 3570, the ‘Waldhaus poposauroid’) (supplementary data 3). The 

scorings of the complete hypodigm of Archosaurus rossicus are based on the holotype 

plus three anterior–middle cervical vertebrae [PIN 1100/66, 66a, 66b], left dentary [PIN 

1100/78], skull roof [PIN 1100/84], and three tooth crowns [PIN 1100/85, 85a, 85b]. 

The scorings of Lewisuchus admixtus were modified after considering the referred 

specimens of “Pseudolagosuchus major” as referable to the former species (Arcucci, 

1997; Nesbitt et al., 2010; Novas et al., 2015). As a result, the scorings of Lewisuchus 

admixtus are based now on the holotype of the species (PULR 01), the formerly referred 

specimens of “Pseudolagosuchus major” (PULR 053, PVL 3454−3456, MACN-Pv 

18954), and a new partial skeleton (CRILAR-Pv 552). Most of the terminals added here 

were scored based on first hand observations of the specimens, but in some cases, 

alternatively, published literature was used (for a detailed list of the source of scorings 

see supplementary table 1). Character 119 was deactivated a priori following Ezcurra et 

al. (2017), but is maintained in the character list to keep the original character 

enumeration of Ezcurra (2016). 

It should be noted that this data matrix was not built for the purpose of testing 

phylogenetic relationships, but instead to sample the morphological diversity of middle 
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Permian−early Carnian archosauromorphs through discrete character-states. The taxon 

sampling of the dataset was considerably increased in comparison to earlier versions of 

the matrix (e.g. Nesbitt et al., 2017; Ezcurra et al., 2017; Sengupta et al., 2017), but the 

terminals were selected because of their age rather than with the objective of 

reconstructing the phylogenetic relationships among taxa. For example, no late 

Carnian−Norian poposauroid, lagerpetid, or hyperodapedontine rhynchosaur species 

were included in the data set and the absence of such deeply nested and morphologically 

distinctive taxa may result in incorrect character optimizations, such as the optimization 

of character-states distributed along the most basal branches of a clade as 

synapomorphies rather than symplesiomorphies. As a result, we do not recommend that 

the data matrix used here is used to test phylogenetic relationships; instead we 

recommend use of the version built by Ezcurra (2016) and its subsequent modifications 

(Ezcurra et al., 2017; Nesbitt et al., 2017; Sengupta et al., 2017; Stocker et al., 2017). 

The following scorings were modified from the data set of Ezcurra (2016) and/or 

its subsequent modifications: 

- Character 2. First state expanded to 0.18−0.38. 

- Lewisuchus admixtus 

Multiple scorings were modified because specimens formerly referred to 

Pseudolagosuchus major (MACN-Pv 18954, PULR 053, PVL 3454, 3455, 3456) and a 

new partial skeleton (CRILAR-Pv 552) were included in this terminal. 

- Parringtonia gracilis 

Character 63: changed from (0) to (?) because the posterior half of the horizontal ramus 

of the maxilla is missing in the holotype. 

Character 613: changed from (0) to (1). 

- Tasmaniosaurus triassicus 
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Character 274: changed from (0) to (?) because the distal end of the posterocentral 

process of the dentary is damaged and, as a result, its shape cannot be determined 

confidently. 

- Yarasuchus deccanensis 

Character 489: changed from (2) to (?) because it is not clear which humeri and femora 

in the bone-bed belong to the same individuals (Sen, 2005). 

 

Supplementary table 1: List of terminals added here to the dataset and sources of 

scorings. 

New added terminals Source of scoring 

‘Panchet proterosuchid’ Multiple specimens from the Panchet 

Formation of India (GSI, ISI, NHMUK 

PV collections); MDE and RJB pers. obs. 

Teyujagua paradoxa UNIPAMPA 653; Pinheiro et al., 2016 

NMQR 3570 NMQR 3570; Modesto and Botha-Brink, 

2008 

Bystrowisuchus flerovi PIN 1043/1346; Sennikov, 2012 

Augustaburiania vatagini Sennikov, 2011 

Ctenosauriscus koeneni GZG.V.4191; Butler et al., 2011 

Vytshegdosuchus zbeshartensis PIN 3361/134; Sennikov, 1988, 1999 

Osmolskina czatkoviensis (complete 

hypodigm) 

ZPAL several specimens; Borsuk-

Białynicka and Evans, 2003 

Halazhaisuchus qiaoensis IVPP V6027; Sookias et al., 2014 

Tanystropheus haasi Rieppel, 2001 

Dinocephalosaurus orientalis Li, 2003; Rieppel et al., 2008 

Protanystropheus antiquus SMNS 10110, 16687, 50831; Sennikov, 

2011 

Trachelosaurus fischeri University of Halle unnumbered; Broili 

and Fischer, 1916 

‘Waldhaus poposauroid’ SMNS 91401−91405; Butler et al., 2011  

Hypselorhachis mirabilis NHMUK PV R16586; Butler et al., 2009 

Bromsgroveia walkeri WARMS G.1, 2, G.3a, b, G.5, G.970; 

BIRUG 2473; Benton and Gower, 1997; 

Galton, 2012 

Stagonosuchus nyassicus GPIT/RE/3831, 3832; Gebauer, 2004 

Mandasuchus tanyauchen NHMUK PV R6794; Butler et al., in press 

‘Otter Sandstone archosaur’ SIDMMG 1 2010, SIDMMG 2 2010, 

SIDMMG 4 2010; Benton, 2011 

Lutungutali sitwensis Peecook et al., 2013 

Nyasasaurus parringtoni NHMUK R6856; Nesbitt et al., 2012 

Pectodens zhenyuensis Li et al., 2017 

Macrocnemus fuyuanensis Li et al., 2007; Jiang et al., 2011 
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Macrocnemus obristi Fraser and Furrer, 2013 

Fuyuansaurus acutirostris Fraser et al., 2013 

Litorosuchus somnii Li et al., 2016 

‘Moenkopi poposauroid’ Nesbitt, 2005 

‘Chañares rhynchosaur’ CRILAR-Pv 461, 496, 497; Ezcurra et al., 

2014a, 2017  

Dagasuchus santacruzensis Lacerda et al., 2015 

 

 

(b) Terminal pruning 

The original version of the data matrix includes several taxa that are late Carnian or 

younger in age (e.g. Simoedosaurus lemoinei, Herrerasaurus ischigualastensis, 

Heterodontosaurus tucki, Dimorphodon macronyx, Trilophosaurus buettneri, 

Tanystropheus longobardicus, Dimorphodon macronyx, Aetosauroides scagliai), and 

which, as a result, lie outside the time span of interest for our analysis. Similarly, the 

original data matrix includes some non-archosauromorph diapsids (e.g. 

Planocephalosaurus robinsonae, Youngina capensis) that are outside the taxonomic 

scope of our analysis. Therefore, all non-archosauromorph species and 

archosauromorphs that occur in late Carnian or younger stratigraphic horizons were 

pruned before the disparity analyses, resulting in a final dataset of 112 terminals, 

including 108 named species and four unnamed taxa (see above). However, the 

stratigraphically younger archosauromorph terminals were retained for the phylogenetic 

diversity and evolutionary rates calculations because of the effects that the ghost 

lineages that they generate may have on older time bins (supplementary data 4). 

Choristoderans were excluded because of their problematic phylogenetic position as 

either the earliest branching archosauromorphs or as non-archosauromorph neodiapsids. 

 

(c) Terminals occurring in >1 time bin 
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The biochron of the erythrosuchid genus Shansisuchus genuinely appears to span two 

time bins (Anisian and Ladinian) (Liu and Sullivan, 2017). The specimen (IVPP V 

22758) described by Liu & Sullivan (2017) from the Tongchuan Formation of Ladinian 

age possesses several of the diagnostic character-states proposed by Wang et al. (2013) 

to diagnose Shansisuchus shansisuchus—the most complete and only undoubtedly valid 

species of the genus—and, as a result, may be referred to this species pending a revision 

of the taxonomic status of Shansisuchus kuyeheensis (we could not study the holotype 

and only known specimen of this species because it could not be located in its 

repository in 2013; Ezcurra, 2016). Therefore, Shansisuchus shansisuchus was included 

in both the Anisian and Ladinian in all the analyses in order to sample the presence of 

the genus Shansisuchus in the latter time interval. 

 

(d) Parameters of the data matrices 

Complete data matrix 

Dimensions: 149 terminals and 688 characters 

Proportion of missing data and its standard deviation: 62.43±27.69% 

 

Data matrix including terminals with chronostratigraphic uncertainty and excluding 

non-archosauromorph and post-early Carnian terminals 

Dimensions: 112 terminals and 688 characters 

Proportion of missing data and its standard deviation: 67.06±27.21% 

 

Data matrix excluding terminals with chronostratigraphic uncertainty, as well as non-

archosauromorph and post-early Carnian terminals  

Dimensions: 99 terminals and 688 characters 
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Proportion of missing data and its standard deviation: 67.14±27.40% 

 

 

 

 

 

 

 

Supplementary table 2: Number of terminals sampled in the analyses including and 

excluding terminals with chronostratigraphic uncertainty, respectively. 

Time bin Including terminals with 

chronostratigraphic 

uncertainty 

Excluding terminals with 

chronostratigraphic 

uncertainty 

middle–late Permian 4 4 

Induan 14 9 

Olenekian 21 11 

Anisian 54 46 

Ladinian–early Carnian 33 30 

 

 

Supplementary table 3: Percentage of missing data in each time bin including and 

excluding terminals with chronostratigraphic uncertainty, respectively. 

Time bin Including terminals with 

chronostratigraphic 

uncertainty 

Excluding terminals with 

chronostratigraphic 

uncertainty 

Middle–late Permian 80.70% 80.70% 

Induan 67.08% 62.60% 

Olenekian 78.06% 81.94% 

Anisian 67.42% 68.54% 

Ladinian–early Carnian 56.44% 57.90% 
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3. Phylogenetic analysis and temporal calibrations of the trees 

The search strategy was described in detail in the Materials and Methods section and the 

following characters were considered additive (= ordered): 1, 2, 7, 10, 17, 19−21, 28, 

29, 36, 40, 42, 50, 54, 66, 71, 74−76, 122, 127, 146, 153, 156, 157, 171, 176, 177, 187, 

202, 221, 227, 263, 266, 278, 279, 283, 324, 327, 331, 337, 345, 351, 352, 354, 361, 

365, 370, 377, 379, 387, 398, 410, 424, 430, 435, 446, 448, 454, 458, 460, 463, 470, 

472, 478, 482, 483, 485, 489, 490, 504, 510, 516, 529, 537, 546, 552, 556, 557, 567, 

569, 571, 574, 581, 582, 588, 648, 652, and 662.  

The phylogenetic analysis recovered more than 10,000 most parsimonious trees 

(MPTs) of 3,704 steps, with a consistency index of 0.2414 and a retention index of 

0.6270. The topology of the strict consensus tree (SCT) generated from the sample of 

10,000 MPTs (supplementary figure 1; supplementary data 5) possesses several 

polytomies and a lower resolution than the SCTs of previous iterations of this data 

matrix (Ezcurra, 2016; Nesbitt et al., 2017; Stocker et al., 2017; Ezcurra et al., 2017; 

Sengupta et al., 2017). In particular, there are two major polytomies that strongly affect 

the topology of the SCT: one polytomy includes tanystropheids and their relatives, 

allokotosaurians, rhynchosaurs, and more derived archosauromorphs, and the other is 

composed of most archosauriforms, retaining only the monophyly of Aetosauria, 

Phytosauria, Erpetosuchidae, Proterochampsia, Avemetatarsalia, and the 

Litorosuchus+Vancleavea clade. 
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Supplementary figure 1: Strict consensus tree generated from the sample of 10,000 

MPTs. 
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The iterPCR procedure of Pol and Escapa (2009) was used to detect the unstable 

taxa that cause these major polytomies in the SCT. The iterPCR detected multiple 

unstable taxa and two iterative a posteriori prunings (removing terminals that resolve 

more than one node) were conducted in order to recover “moderately resolved” and 

almost fully resolved strict reduced consensus trees (SRCT). The first “moderately 

resolved” SRCT (supplementary figure 2) was generated after a posteriori pruning of 

Dagasuchus santacruzensis, the ‘Otter Sandstone archosaur’, Vytshegdosuchus 

zheshartensis, Chasmatosuchus rossicus, Chasmatosuchus magnus, “Chasmatosuchus” 

vjushkovi, Bystrowisuchus flerovi, NMQR 3570, Eorasaurus olsoni, and Prolacertoides 

jimusarensis. This SRCT shows good resolution of the main archosauromorph clades 

and higher-level interrelationships that are congruent with the results of previous 

analyses of modified versions of this dataset (e.g. Ezcurra et al., 2017; Nesbitt et al., 

2017; Sengupta et al., 2017). Some large polytomies remain within the tanystropheid 

lineage, non-rhynchosaurid and stenaulorhynchine rhynchosaurs, proterosuchids, the 

closest successive sister taxa of Erythrosuchidae and Eucrocopoda, erythrosuchids, the 

most basal eucrocopods, and paracrocodylomorph pseudosuchians. An almost fully 

resolved SRCT (supplementary figure 3) was generated after the pruning of the 

aforementioned ten terminals plus the following 17 terminals: Cuyosuchus huenei, 

Batrachotomus kupferzellensis, Koilamasuchus gonzalezdiazi, Ticinosuchus ferox, 

Youngosuchus sinensis, Mandasuchus tanyauchen, Bromsgroveia walkeri, the 

‘Moenkopi poposauroid’, Asperoris mnyama, Uralosaurus magnus, Dorosuchus 

neoetus, Xilousuchus sapingensis, Halazhaisuchus qiaoensis, Kalisuchus rewanensis, 

Vonhuenia fredericki, Archosaurus rossicus, and Noteosuchus colletti. The topology of 
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this SRCT is generally very well resolved and also fully congruent with the results of 

analyses of previous versions of this data matrix.  

 
Supplementary figure 2: First SRCT generated from the sample of 10,000 MPTs after 

the pruning of 10 terminals.
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Supplementary figure 3: Second SRCT generated from the sample of 10,000 MPTs 

after the pruning of 27 terminals.
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A random subsample of 100 MPTs were temporally calibrated using the “mbl” 

method (Laurin, 2004; Brusatte et al., 2008), with a minimum branch length of 0.1 myr 

and a root age of 269.3 Ma, and used for the main evolutionary rates analysis. 

Complementary evolutionary rates analyses were conducted using the same calibration 

settings but with minimum branch lengths of 0.5 myr and 1.0 myr, respectively. In each 

of these latter analyses a random subsample of 10 temporally calibrated trees were used 

in order to reduce computational times. 

 

Supplementary figure 4: Example of a time calibrated MPT (minimum branch length 

of 0.1 myr, randomly selected among all the sampled MPTs). Note that in this tree 

“other hyperodapedontines”, “other lagerpetids”, “other loricatans”, and 

“Shuvosauridae” were added by hand using positive monophyletic constrains (see 

“Phylogenetic diversity”). Branches younger than early Carnian were collapsed and are 

represented with an arrow. 
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 An additional evolutionary rates sensitivity analysis was conducted using the 

“cal3” calibration method of Bapst (2013). A set of time bins that equal the shortest 

intervals of chronostratigraphic uncertainties and possess overlapping ranges 

(supplementary table 4) was created in order to generate ten sampling sets of congruent 

taxon ranges estimated stochastically from the occurrence data using the 

seqTimeList() function of palaeotree (Bapst, 2012) and deactivating the 

weightSampling option. A value of 0.001 myr was added to the FADs and removed 

from the LADs of each terminal in order to avoid overlap with the boundaries of the 

time bins, and also to prevent the situation where terminals were wrongly assigned to an 

older or younger time bin than that in which they actually occur. Five sets of sampling 

(0.5822477, 0.5822477, 0.5678570, 0.5527619, and 0.2495298) and extinction 

(0.10258445, 0.10258445, 0.10427546, 0.09738943, and 0.08226771; used as a proxy 

of speciation rate) rates were calculated using maximum-likelihood estimates based on 

this data (Foote, 1997) and were used for the “cal3” calibration. A subsample of four 

MPTs was selected randomly in order to reduce computational time and were time-

calibrated with the cal3TimePaleoPhy() function, generating three trees per 

calibration, not allowing the inference of potential ancestor-descendant relationships, 

setting the root of the trees to a maximum age of 269.3 Ma, and considering branch 

rates equal to extinction rates. This protocol was repeated for each of the five sets of 

sampling and extinction rates in order to account for the uncertainty in these estimated 

rates, resulting in a total of 60 time-calibrated trees that were used for the evolutionary 

rates analysis. 
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Supplementary table 4: Set of time bins used to generate the sampling sets with the 

function seqTimeList(). 

Time bin Lower bound Upper bound 

late Capitanian–Wuchiapingian 262.45 254.14 

middle Wuchiapingian 258.90 255.70 

middle–late Wuchiapingian 257.91 254.14 

Changsinghian 254.14 252.17 

Induan 252.17 251.20 

early Olenekian 251.20 249.20 

late Olenekian–early Anisian 249.20 244.60 

late Anisian 244.60 242.00 

early Ladinian–late Ladinian 242.00 236.00 

late Ladinian 239.50 236.00 

early Carnian 236.00 232.00 

late Carnian–Aalenian 232.00 170.30   
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4. Observed species count, phylogenetic diversity estimation, specimen-level 

abundance data, and archosauromorph-bearing formations 

We analyzed patterns of diversity change in the middle Permian−early Carnian 

archosauromorph record by calculating the following metrics for each of the five time 

bins. 

 

(a) Observed species count 

Represents the raw species count per time bin – this count includes terminals with 

chronostratigraphic uncertainty (figure 1B; supplementary table 5). 

 

(b) Phylogenetic diversity 

This metric represents the number of observed species plus the inferred ghost lineages 

per time bin (Norell, 1992). Some ghost lineages should be present in our time-

calibrated trees based on the results of previous phylogenetic analyses, but they are not 

recorded because the late Carnian−Norian terminals that produce them are not included 

in our taxonomic sample which is focused on late Permian−early Carnian taxa (figure 

1A). As a result, we included by hand the following four late Carnian−Norian terminals, 

constraining in TNT 1.5 their monophyly with a specified stratigraphically older taxon, 

to produce the missing ghost lineages: i) “other hyperodapedontines” constrained as the 

sister-taxon of Isalorhynchus (sensu Montefeltro et al., 2010); ii) “other lagerpetids” 

constrained as the sister-taxon of Lagerpeton (sensu Irmis et al., 2007; Cabreira et al., 

2017); iii) “Shuvosauridae” constrained as the sister-taxon of the ‘Moenkopi 

poposauroid’ (sensu Nesbitt, 2005); and iv) “other loricatans” constrained as the sister-

taxon of Batrachotomus (sensu Nesbitt, 2011). The data matrix with these positive 

monophyletic constraints was analysed using the same tree search strategy described 
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above. A total of 10,000 MPTs were saved from this analysis and were temporally 

calibrated using the protocol described above, with a minimum branch length of 0.1 myr 

(supplementary figure 4). Because the number of ghost lineages that occur per time bin 

changes with the topology of the tree, we calculated the phylogenetic diversity through 

time for each of the 10,000 time-calibrated MPTs. Subsequently, a mean phylogenetic 

diversity with its standard deviation was calculated for each time bin (figure 1C; table 

1). Phylogenetic diversity was calculated using a code written for R (R Core Team, 

2017) (supplementary data 5).  

 

(c) Specimen-level abundance data 

We counted the minimum number of individuals that are currently sampled for each of 

the middle Permian−early Carnian archosauromorph terminals on the basis of published 

data and personal observations. We consider different specimens to represent different 

individuals only if they have overlapping bones. As a result, our estimate is a minimum 

and is conservative (figure 1C; table 1; supplementary data 2).  

 

(d) Archosauromorph-bearing formations 

We counted the number of formations that have yielded currently valid late 

Permian−early Carnian archosauromorph species on the basis of published data and 

personal observations (supplementary table 5; supplementary data 2). Formations with 

chronostratigraphic uncertainty were counted in both time bins.  
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Supplementary table 5: Observed species count and number of archosauromorph-

bearing formations for currently valid late Permian−early Carnian species. Estimated 

phylogenetic diversity and specimen-level abundance data (number of individuals) are 

shown in table 1. 

Time bin Observed species count Archosauromorph-bearing 

formations 

middle–late Permian 4 4 

Induan 14 8 

Olenekian 21 14 

Anisian 54 23 

Ladinian−early Carnian 33 16 

 

 

 The normal distribution of all the variables was tested in R using the function 

shapiro.test() and a normal distribution was not rejected in all cases (p>0.1). 

Comparisons between the above described time series were conducted using generalized 

least squares (see Materials and Methods). Significant relationships were identified 

between the time series represented by abundance data, number of archosauromorph-

bearing formations and observed species count (supplementary table 6). As a result, 

these three metrics are not considered as independent from each other in our analyses. 

By contrast, the time series of phylogenetic diversity was not found to be significantly 

similar to those of the other metrics.  

 

Supplementary table 6: Results of pairwise comparisons between time series using 

generalized least squares. Statistically significant results indicated in bold. Estimated 

phylogenetic diversity and specimen-level abundance data (number of individuals) are 

shown in table 1. 

Comparisons Slope t-value p-value pseudo-R
2
 

Abundance ~ Formation counts 17.84 4.88 0.016 0.86 

Abundance ~ Observed species 7.40 8.62 0.003 0.95 

Abundance ~ Phylogenetic diversity 1.74 1.03 0.380 0.18 

Observed species ~ Formation counts 2.48 11.26 0.002 0.97 

Observed species ~ Phylogenetic 

diversity 

0.27 1.33 0.276 0.24 

Formation counts ~ Phylogenetic 

diversity 

0.130 1.82 0.166 0.39 
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5. Morphological disparity analyses  

Range-based post-ordination (i.e. metrics calculated following a Principal Coordinates 

Analysis [PCoA]) disparity descriptors (e.g. sum of ranges) are frequently strongly 

correlated with sample size and amount of missing data. Our dataset possesses highly 

uneven sample sizes between the five time bins and a relatively high amount of missing 

data (> 60%) (see above). As a result, we tested the correlation between the amount of 

missing data in a terminal and its distance from the centroid of the morphospace. We 

found significant correlations (p<0.0001) between these two variables when considering 

the first 2, 5, 10, 25, 50, 75, and all coordinates of the PCoA generated from the GED 

dissimilarity matrix (supplementary figure 5). The exclusion of terminals with more 

than 80% and 70% of missing data still resulted in significant correlations between the 

amount of missing data and the position of terminals in morphospace when the first two 

coordinates were considered (80%: p<0.0001; 70%: p=0.0051), and this correlation was 

lost only after the pruning the terminals with more than 50% of missing data 

(p=0.1842). However, the exclusion of terminals with more than 50% of missing data 

resulted in a strongly reduced, non-representative taxon sampling. Similarly, although 

no significant correlation was recovered between the amount of missing data and the 

distance of terminals from the centroid, the morphospace generated from the MORD 

dissimilarity matrix shows some odd features, such as the occurrence of some 

fragmentary taxa on the periphery of the plot of the first two principal coordinates 

(25.14% of accumulated variance) (e.g. Aenigmastropheus parringtoni, Tanystropheus 

haasi, the ‘Chañares rhynchosaur’, Bromsgroveia walkeri). It is striking that these 

fragmentary taxa do not occur in positions close to more complete taxa with very 
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similar scorings (e.g. Tanystropheus haasi close to Tanystropheus longobardicus, the 

‘Chañares rhynchosaur’ close to Stenaulorhynchus stockleyi, Bromsgroveia walkeri 

close to Arizonasaurus babbitti). As a result, we decided not to use post-ordination 

disparity descriptors because they seem to be considerably biased by missing data. 

Nevertheless, we used the morphospace generated from the PCoA using the GED 

dissimilarity matrix to show graphically the continuous increase of morphological 

disparity of archosauromorphs through time (figure 3). The biased position of 

fragmentary terminals close to the centroid of the morphospace should not affect the 

general pattern of range expansion in the early evolutionary history of 

Archosauromorpha because there is no apparent systematic trend in the proportion of 

missing data through time (supplementary table 3). 

By contrast, the pre-ordination disparity metric WMPD (see below) does not 

show a significant correlation with the proportion of missing data (GED including 

terminals with chronostratigraphic uncertainty: p=0.0981; MORD including terminals 

with chronostratigraphic uncertainty: p=0.9787; GED excluding terminals with 

chronostratigraphic uncertainty: p=0.3170; MORD excluding terminals with 

chronostratigraphic uncertainty: p=0.6559) or observed species count (GED including 

terminals with chronostratigraphic uncertainty: p=0.0904; MORD including terminals 

with chronostratigraphic uncertainty: p=0.4489; GED excluding terminals with 

chronostratigraphic uncertainty: p=0.0531; MORD excluding terminals with 

chronostratigraphic uncertainty: p=0.4190) in each time bin, indicating that it is less 

affected, at least in this dataset, by this bias. The disparity analyses were conducted for 

the two alternative data sets: that including terminals with chronostratigraphic 

uncertainty and the other that excludes them. These alternative analyses are aimed at 

accounting for the sensitivity of the analyses to chronostratigraphic ambiguity of the 
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sampled terminals. Significant differences between time bins were determined by 

calculating 95% confidence intervals after 1,000 bootstrap pseudoreplicates of the 

original data matrix and a recalculation of the dissimilarity matrix and WMPD based on 

the resampled data sets. 

  

 

Supplementary figure 5: Bivariate plots of the ratio of missing data of each terminal 

and its distance to the centroid for the first 2 (A), 10 (B), 25 (C), 50 (D), 75 (E), and all 

(F) the principal coordinates generated from the GED dissimilarity matrix. 

   

(a) Results including terminals with chronostratigraphic uncertainty 

The WMPD values calculated from the GED dissimilarity matrix show a continuous 

increase of early archosauromorph morphological disparity through time (middle–late 

Permian to early Carnian) (figure 2B; supplementary figure 6; supplementary table 7). 

The 95% bootstrapped confidence intervals indicate that the middle–late Permian 

morphological disparity was significantly lower than in the Olenekian and younger time 

bins and the Ladinian–early Carnian morphological disparity was significantly higher 

than in the Olenekian and older time bins. 
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The WMPD values calculated from the MORD dissimilarity matrix show a 

pattern of morphological disparity increase through time consistent with that recovered 

from the GED matrix during the Early, Middle, and early Late Triassic (figure 2; 

supplementary figure 6; supplementary table 8). In this time span, the Induan 

morphological disparity is significantly lower than that of younger time bins and the 

Olenekian disparity is significantly lower than that of the Anisian and Ladinian–early 

Carnian. The disparity estimates of the latter two time bins do not differ significantly 

from each other. The results obtained from MORD differ from those recovered from 

GED in a middle–late Permian WMPD similar and non-significantly different to post-

Induan values. However, it should be noted that the 95% bootstrapped confidence 

interval of the middle–late Permian is remarkably broad, with an upper bound 

considerable higher than those of the Middle–early Late Triassic and a lower bound that 

closely approaches the confidence interval of the Induan. Such a broad confidence 

interval is not unexpected because of the very low archosauromorph sample available 

during the middle–late Permian (supplementary table 5). 

The most striking difference between the WMPD results using the GED and 

MORD matrices is the presence in the latter of an Induan morphological disparity 

significantly lower than that of all the other time bins. This result agrees with previous 

claims of a very low morphological diversity of archosauromorphs during the Induan as 

a result of the diversity of the group being restricted to proterosuchid-like disaster taxa 

(Ezcurra and Butler, 2015a). Thus, beyond the different disparity results recovered for 

the middle–late Permian and Induan, the general pattern of an increase of morphological 

disparity through time after the Induan is consistent using both dissimilarity matrices. 
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Supplementary table 7: WMPD results per time bin recovered after the GED 

dissimilarity matrix and including terminals with chronostratigraphic uncertainty. 

Bootstrapped WMPD is the mean of the WMPD calculated for each of the 

pseudoreplicates and lower and upper bounds represent the boundaries of the 95% 

bootstrapped confidence intervals. 

Time bin WMPD Bootstrapped WMPD Lower bound Upper bound 

middle–late 

Permian       

6.743715        6.730356     6.260627     7.211803 

Induan             7.346691        7.335081     6.893008     7.790195 

Olenekian          8.000208        7.988577     7.540508     8.433184 

Anisian            9.375760        9.356068     8.857069     9.863189 

Ladinian–

early Carnian  

10.246279       10.232467     9.702785    10.736783 

 

Supplementary table 8: WMPD results per time bin recovered after the MORD 

dissimilarity matrix and including two-timer terminals. Bootstrapped WMPD is the 

mean of the WMPD calculated for each of the pseudoreplicates and lower and upper 

bounds represents the boundaries of the 95% bootstrapped confidence intervals. 

Time bin WMPD Bootstrapped WMPD Lower bound Upper bound 

middle-late 

Permian       

0.4895113       0.4816887   0.3490920    0.6069852 

Induan             0.3231418       0.3181848   0.2882402    0.3463113 

Olenekian          0.4512585       0.4454826   0.4120701    0.4801130 

Anisian            0.5079372       0.5054870   0.4851678    0.5244358 

Ladinian-

early Carnian  

0.5020170       0.5007393   0.4821310    0.5186482 
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Supplementary figure 6: WMPD values calculated from the GED and MORD 

dissimilarity matrices, respectively, including terminals with chronostratigraphic 

uncertainty, plotted through time. Vertical lines represent the 95% bootstrapped 

confidence intervals.  

 

(b) Results excluding terminals with chronostratigraphic uncertainty 

The WMPD patterns through time recovered from the data set excluding terminals with 

chronostratigraphic uncertainty and using GED or MORD dissimilarity matrices are 

very similar to that found with the complete data set. The main difference between the 

results using the GED matrix is the proportionally lower disparity during the Induan and 

Olenekian after the exclusion of terminals with chronostratigraphic uncertainty 

(supplementary figure 7; supplementary table 9). As a result, the middle–late Permian, 

Induan, and Olenekian disparities do not differ from each other, but they are 

significantly lower than the values recovered for the Anisian and Ladinian–early 

Carnian. Thus, the disparity curve generated after the exclusion of terminals with 

chronostratigraphic uncertainty results in a more drastic change in disparity between the 

Permian−early Middle Triassic and the late Middle Triassic−early Late Triassic time 

spans. The results recovered from the MORD dissimilarity matrix between the data sets 

including and excluding terminals with chronostratigraphic uncertainty are very similar 

to each other, but the Induan disparity is even lower and departs more from the values 

of the other time-bins (supplementary figure 7; supplementary table 10). In conclusion, 

the results recovered after the exclusion of terminals with chronostratigraphic 

uncertainty show that the influence of these taxa on the WMPD disparity metrics are 

minimal and that they do not modify the general evolutionary patterns recovered here. 

 

Supplementary table 9: WMPD results per time bin recovered after the GED 

dissimilarity matrix and excluding terminals with chronostratigraphic uncertainty. 

Bootstrapped WMPD is the mean of the WMPD calculated for each of the 

pseudoreplicates and lower and upper bounds represent the boundaries of the 95% 

bootstrapped confidence intervals. 
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Time bin WMPD Bootstrapped WMPD Lower bound Upper bound 

middle-late 

Permian       

6.743715        6.730356 6.260627 7.211803 

Induan             6.658628 6.651397 6.211682 7.083774 

Olenekian          7.355798 7.348228 6.847054 7.817243 

Anisian            9.383340 9.363134 8.845098 9.894774 

Ladinian-

early Carnian  

10.111620 10.097289 9.564919 10.584896 

 

Supplementary table 10: WMPD results per time bin recovered after the MORD 

dissimilarity matrix and excluding two-timer terminals. Bootstrapped WMPD is the 

mean of the WMPD calculated for each of the pseudoreplicates and lower and upper 

bounds represents the boundaries of the 95% bootstrapped confidence intervals. 

Time bin WMPD Bootstrapped WMPD Lower bound Upper bound 

middle-late 

Permian       

0.4895113 0.4816887 0.3490920 0.6069852 

Induan             0.2815542 0.2780965 0.2462212 0.3077007 

Olenekian          0.4594965 0.4531201 0.4014895 0.5027308 

Anisian            0.5090947 0.5065923 0.4854769 0.5262566 

Ladinian-

early Carnian  

0.4986726 0.4974425 0.4783433 0.5169089 

 

 

 

Supplementary figure 7: WMPD values calculated from the GED and MORD 

dissimilarity matrixes, respectively, excluding terminals with chronostratigraphic 

uncertainty, plotted through time. Vertical lines represent the 95% bootstrapped 

confidence intervals. 

 

 

(c) Results of the modified taxon sampling to equal that of Foth et al. (2016) 
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The original taxon sampling of our disparity analysis was reduced to equal that of Foth 

et al. (2016), in which only species for which fairly complete skulls are known were 

sampled using two-dimensional geometric morphometrics. In addition, the same 

chronostratigraphic ranges of taxa determined by Foth et al. (2016) were used in this 

sensitivity analysis. GED and MORD dissimilarity matrices were calculated from this 

dataset and they were used to calculate WMPD values for the same time bins used by 

Foth et al. (2016), namely Early Triassic, Anisian, and Ladinian (disparity could not be 

calculated here for the late Permian because there was only a single species sampled for 

this time bin: Protorosaurus speneri). The WMPD values calculated from both GED 

and MORD show significant increases of disparity from the Early Triassic to the 

Anisian and non-significant changes between the Anisian and Ladinian (supplementary 

tables 11, 12). However, the absolute WMPD value of the Anisian is lower than that of 

the Ladinian using GED and the opposite occurs using MORD. Thus, these results are 

fairly consistent with those recovered using the complete data set. 

Low archosauromorph disparity around the PT boundary and an increase during 

the Middle and earliest Late Triassic match the results recovered by Foth et al. (2016), 

which were based on archosauromorph skulls sampled with two-dimensional geometric 

morphometrics in lateral view. Foth et al. (2016) found that this pattern was interrupted 

by a decrease of cranial disparity during the Ladinian, although this decrease was non-

significant. A congruent, non-significant, but considerably less conspicuous reduction 

of archosauromorph disparity is also found here in the Ladinian−early Carnian using 

MORDdm. We reran our disparity analyses reducing taxon sampling to equal that of 

Foth et al. (2016), allowing us to generate a more direct comparison between both 

analyses. These analyses recovered basically the same results as those described above, 

but the decrease in Ladinian disparity using MORDdm was slightly more conspicuous, 
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though still non-significant, resembling more closely the results of Foth et al. (2016). 

These comparisons suggest that disparity analyses based on discretized characters and 

two-dimensional geometric morphometrics produce similar results for the early 

archosauromorph radiation, as was previously found for other vertebrate groups (Villier 

and Eble, 2004; Foth et al., 2012; Hetherington et al., 2015).  

 

Supplementary table 11: WMPD results per time bin recovered from the GED 

dissimilarity matrix calculated for the reduced dataset that equals that of Foth et al. 

(2016). Bootstrapped WMPD is the mean of the WMPD calculated for each of the 

pseudoreplicates and lower and upper bounds represent the boundaries of the 95% 

bootstrapped confidence intervals. 

Time bin WMPD Bootstrapped WMPD Lower bound Upper bound 

middle-late 

Permian       

NA        NA NA NA 

Early 

Triassic             

9.188211 9.171059 8.602816 9.739448 

Anisian            11.667421 11.645882 10.895298 12.472598 

Ladinian  12.346640 12.343231 11.672796 13.022914 

 

Supplementary table 12: WMPD results per time bin recovered from the MORD 

dissimilarity matrix calculated for the reduced dataset that equals that of Foth et al. 

(2016). Bootstrapped WMPD is the mean of the WMPD calculated for each of the 

pseudoreplicates and lower and upper bounds represents the boundaries of the 95% 

bootstrapped confidence intervals. 

Time bin WMPD Bootstrapped WMPD Lower bound Upper bound 

middle-late 

Permian       

NA NA NA NA 

Early 

Triassic             

0.3723086 0.3709579 0.3441900 0.3967570 

Anisian            0.5139368 0.5129762 0.4895383 0.5361311 

Ladinian  0.5001818 0.4999518 0.4768739 0.5224676 
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6. Phenotypic evolutionary rates analyses 

Our results show that the evolutionary rates are significantly different (p<0.0001) across 

the time bins and the tree, respectively, in each of the 100 time-calibrated MPTs using a 

minimum branch length of 0.1 myr. This analysis found that the vast majority of the 

trees have significantly lower evolutionary rates than the pooled average during the 

middle–late Permian (mean = 8.76±1.06 character changes per million years), but a few 

trees possess non-significantly different rates (figure 2A). The Induan evolutionary rates 

(mean = 16.85±4.52 changes per million years) are not significantly different from the 

pooled average in most of the MPTs, but several other trees possess significantly higher 

rates and only one tree shows a significantly low evolutionary rate. The confidence 

intervals show that the Induan has significantly higher evolutionary rates than the 

middle–late Permian. Significantly higher evolutionary rates than the pooled average 

were recovered for all the 100 time-calibrated MPTs in the Olenekian (mean = 

20.97±1.27 changes per million years). The Olenekian evolutionary rates are not 

significantly different from those during the Induan, but this is probably an artefact of 

the wide range of results recovered among the sampled MPTs in the Induan. 

Nevertheless, Olenekian rates are significantly higher, with a mean more than twice as 

high, than those during the middle–late Permian. Anisian evolutionary rates (mean = 

11.97±0.46 changes per million years) are significantly lower than those during the 

Olenekian, marginally non-significantly different than those during the Induan, and 

significantly higher than those during the middle–late Permian. Anisian evolutionary 

rates are not significantly different than the pooled average in the vast majority of the 

MPTs and only a low proportion of them show significantly higher rates. Finally, 

Ladinian–early Carnian evolutionary rates (mean = 8.27±0.34 changed per million 
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years) are significantly lower than the pooled average in all MPTs and also significantly 

lower than the other Triassic time bins, but not significantly different from the rates 

calculated for the middle–late Permian. The absence of some archosauromorph lineages 

that are not sampled in our dataset because they do not occur in the fossil record until 

the late Carnian or later time intervals may result in a underestimation of Ladinian–early 

Carnian evolutionary rates (e.g. hyperodapedontine rhynchosaurs other than 

Isalorhynchus). However, the vast majority of these younger clades are represented here 

by at least one of its most informative species (e.g. trilophosaurids, derived doswelliids, 

some proterochampsids, pterosaurs, dinosaurs, derived silesaurids, derived phytosaurs, 

aetosaurs, ornithosuchids, derived erpetosuchids) and it seems unlikely that the 

Ladinian–early Carnian evolutionary rates are strongly underestimated. Thus, we 

interpret the significantly lower Ladinian–early Carnian evolutionary rates relative to 

rates in older Triassic time bins as a real biological pattern rather than a sampling 

artefact. 
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Supplementary figure 8: Randomly selected time-calibrated tree showing evolutionary 

rates (branch rates) of morphological evolution as a heatmap, in which the values range 

from 0 (blue) to 481.8 (red). 

 

 The analyses of the 10 MPTs time-calibrated using minimum branch lengths of 

0.5 and 1.0 myr, respectively, found a similar general pattern that that described above 

(supplementary figure 8; supplementary table 13). Induan and Olenekian evolutionary 

rates are significantly higher than those during the middle–late Permian and later 

Triassic time bins, but no significant difference occurs between these two Early Triassic 

time bins.  
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Supplementary table 13: Mean values and standard deviation of the additional 

evolutionary rates analyses for each time bin. Evolutionary rate values that significantly 

different from those of the previous time bin are shown in bold. 

Time bins Minimum branch 

length 0.5 myr 

Minimum branch 

length 1.0 myr 

cal3 calibration 

late Permian 6.687±0.944 4.469±0.391 7.459±0.702 

Induan 12.877±1.693 8.241±0.805 
7.103±0.941 

Olenekian 11.645±0.648 7.661±0.359 
8.636±0.372 

Anisian 8.738±0.371 6.693±0.327 7.356±0.308 

Ladinian–early Carnian 6.459±0.326 5.230±0.272 4.340±0.183 

 

 

 

 

 

 

Supplementary figure 9: “Spaghetti” plot showing significantly fast (red) or slow 

(blue) rates of phenotypic evolution calculated from 10 randomly selected MPTs time-

calibrated using a minimum branch length of 0.5 myr. Grey points do not differ 

significantly from the pooled average rate. Each thin line represents the analysis of one 

MPT.  
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The evolutionary rates analysis based on the 60 time-calibrated trees using the 

“cal3” method recovered mostly the same pattern as the analysis that used the trees 

calibrated with minimum branch lengths of 0.1 myr. A peak of evolutionary rates is 

recovered during the Olenekian and significantly lower rates are calculated for the other 

time bins (supplementary figure 10; supplementary table 13). Most of the Anisian rates 

are significantly higher than the pooled average, contrasting with the analyses using the 

“mbl” calibrations, and thus the deceleration of the evolutionary rates is slower using 

this calibration method. The lowest rates are calculated for the Ladinian−early Carnian, 

in which most rates are significantly lower than the pooled average. A difference with 

respect to the analyses using “mbl” calibrations are the relatively high evolutionary rates 

calculated for the middle–late Permian, in which the mean of the rates is slightly higher, 

but non-significantly, than that during the Induan. Thus, these alternative analyses show 

that the key evolutionary rate results recovered here, namely high rates in the Early 

Triassic and a significant decrease during the Middle and early Late Triassic, are not 

sensitive to the different temporal calibrations of the MPTs used here.  
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Supplementary figure 10: “Spaghetti” plot showing significantly fast (red) or slow 

(blue) rates of phenotypic evolution calculated from 60 time-calibrated trees using the 

“cal3” method. Grey points do not differ significantly from the pooled average rate. 

Each thin line represents the analysis of one tree.
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7. Key to silhouettes used in figures 1 and 3 

 

Supplementary figure 11: Explanation of the silhouettes used in figures 1 and 3. 

Silhouettes taken from Ezcurra and Butler (2015b), Nesbitt et al. (2015, 2017), Li et al. 

(2016), and Ezcurra et al. (2017). 
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